Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output, operation
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
This is a RNA-seq pipeline structured by snakemake template. It is for the PI3K project stand on the standard RNA-seq pipeline. Insert your code into the respective folders, i.e.
scripts
,
rules
, and
envs
. Define the entry point of the workflow in the
Snakefile
and the main configuration in the
config.yaml
file.
Authors
- chaodi (@dic)
Usage
Running on respublica by: snakemake --use-conda -c "qsub -l h_vmem={params.mem} -l mem_free={params.mem} -pe smp {threads} -V -cwd -e qsub/{params.jobName}.e -o qsub/{params.jobName}.o" -j -p
Code Snippets
26 27 | script: "../scripts/count-matrix.py" |
45 46 | script: "../scripts/deseq2_allsample_plot.R" |
64 65 | script: "../scripts/deseq2_diffexp.R" |
15 16 17 18 19 20 | shell: "factor=`cat {input.rpm_factors} | grep {wildcards.sample} | cut -f2` && " "genomeCoverageBed -split -bg -ibam {input.bam} -scale $factor > bw_rpm/{wildcards.sample}.bg && " "bedtools sort -i bw_rpm/{wildcards.sample}.bg > bw_rpm/{wildcards.sample}.sort.bg && " "bedGraphToBigWig bw_rpm/{wildcards.sample}.sort.bg STAR_index/chrNameLength.txt {output} && " "rm bw_rpm/{wildcards.sample}.bg bw_rpm/{wildcards.sample}.sort.bg" |
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | shell: ''' rm -f {output}; for i in {input}; do sampleName="$(basename $i .Log.final.out)"; cat $i | grep 'Number of input reads' | awk '{{print $6}}' > foo1; cat $i | grep 'Uniquely mapped reads number' | awk '{{print $6}}' > foo2; cat $i | grep 'Number of reads mapped to multiple loci' | awk '{{print $9}}' > foo3; cat $i | grep "Uniquely mapped reads %" | awk '{{print $6}}' > foo4; cat $i | grep "% of reads mapped to multiple loci"|awk '{{print $9}}' > foo5; paste foo1 foo2 foo3 foo4 foo5 | awk '{{print "'$sampleName'\t"$1"\t"$2+$3"\t"$4+$5}}' >> {output.mappedReads} done cat {output.mappedReads} | awk '{{print $1"\t"1000000/$2}}' > {output.rpmFactor} sed -i '1isample\ttotal_reads\tmapped_reads\t%mapped' {output.mappedReads}; rm -f foo* ''' |
16 17 18 19 20 21 22 | shell: "STAR --runThreadN {threads} --genomeDir {params.genome_dir} " "--outFileNamePrefix STAR_align/{wildcards.sample}. --outSAMtype BAM SortedByCoordinate " "--outSAMmapqUnique 255 --outFilterMultimapNmax 1 " "--quantMode GeneCounts --sjdbGTFfile {params.annotation} " "--readFilesIn {input} --outSJfilterReads Unique --readFilesCommand gunzip -c && " "mv STAR_align/{wildcards.sample}.Aligned.sortedByCoord.out.bam STAR_align/{wildcards.sample}.bam" |
33 34 | shell: "samtools index {input} {output}" |
16 17 18 19 | shell: "trim_galore --cores {threads} --gzip --fastqc --paired -o {params.outdir} {input} &> {log} && " "mv trimmed_fq/{wildcards.sample}_1_val_1.fq.gz {output.fq1} &>> {log} && " "mv trimmed_fq/{wildcards.sample}_2_val_2.fq.gz {output.fq2} &>> {log}" |
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | import pandas as pd def get_count_column(strand): if strand == "no": return 1 #non stranded protocol elif strand == "yes": return 2 #3rd column in STAR output {sample}.ReadsPerGene.out.tab elif strand == "reverse": return 3 #4th column, usually for Illumina truseq else: raise ValueError("'strand' column should be empty or has the value of 'none', 'yes' or 'reverse'!!!") counts = [pd.read_table(count_file, index_col=0, usecols=[0, get_count_column(strand)], header=None, skiprows=4) for count_file, strand in zip(snakemake.input, snakemake.params.strand_list)] for df, sample in zip(counts, snakemake.params.sample_list): df.columns = [sample] matrix = pd.concat(counts, axis=1) matrix.index.name = "gene" # collapse technical replicates # matrix = matrix.groupby(matrix.columns, axis=1).sum() matrix.to_csv(snakemake.output[0], sep="\t") |
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 | library(DESeq2) library(pheatmap) library(genefilter) library(ggplot2) library(RColorBrewer) log <- file(snakemake@log[[1]], open="wt") sink(log) sink(log, type="message") parallel <- FALSE if (snakemake@threads > 1) { library("BiocParallel") # setup parallelization register(MulticoreParam(snakemake@threads)) parallel <- TRUE } # colData and countData must have the same sample order, but this is ensured # by the way we create the count matrix cts <- read.table(snakemake@input[["count_table"]], header=TRUE, row.names="gene", check.names=FALSE) coldata <- read.table(snakemake@params[["sample_table"]], header=TRUE, row.names="sample", check.names=FALSE) dds <- DESeqDataSetFromMatrix(countData=cts, colData=coldata, design = ~ cell_type + condition) dds$condition <- relevel(dds$condition, "Pre") # use "Pre" as the reference # Using a grouping variable as contrast dds$group <- factor(paste0(dds$cell_type, dds$condition)) design(dds) <- ~ group # remove uninformative columns dds <- dds[rowSums(counts(dds)) > 1, ] # normalization and pre-processing dds <- DESeq(dds, parallel=parallel) # raw count normalization norm_counts <- counts(dds, normalized=TRUE) # count transformation, log2 scale, either rlog or vst vsd <- vst(dds, blind=FALSE) ## visualizations ## # pca plot pdf(snakemake@output[["pca_plot"]]) pcaData <- plotPCA(vsd, intgroup=c("condition", "cell_type"), returnData=TRUE) percentVar <- round(100 * attr(pcaData, "percentVar")) ggplot(pcaData, aes(PC1, PC2, color=condition, shape=cell_type)) + geom_point(size=3) + xlab(paste0("PC1: ",percentVar[1],"% variance")) + ylab(paste0("PC2: ",percentVar[2],"% variance")) + coord_fixed() dev.off() # heatmap of the count matrix #select <- order(rowMeans(norm_counts), decreasing=TRUE)[1:30] # most highly expressed select <- head(order(-rowVars(assay(vsd))),35) # most variable genes pdata <- assay(vsd)[select,] df <- as.data.frame(colData(dds)[,c("condition","cell_type")]) rownames(df) <- rownames(colData(dds)) colnames(df) <- c("condition","cell_type") pdf(snakemake@output[["heatmap_exp"]]) pheatmap(pdata, cluster_rows=TRUE, show_rownames=TRUE, cluster_cols=TRUE, annotation_col=df) dev.off() # heatmap of sample-sample distances pdf(snakemake@output[["heatmap_dist"]]) sampleDists = dist(t(assay(vsd))) sampleDistMatrix <- as.matrix(sampleDists) rownames(sampleDistMatrix) <- paste(vsd$condition, vsd$cell_type, sep="-") colnames(sampleDistMatrix) <- NULL colors <- colorRampPalette( rev(brewer.pal(9, "Blues")) )(255) pheatmap(sampleDistMatrix, clustering_distance_rows=sampleDists, clustering_distance_cols=sampleDists, col=colors) dev.off() |
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 | library(DESeq2) library(pheatmap) library(genefilter) library(ggplot2) library(RColorBrewer) library(fdrtool) library(EnhancedVolcano) log <- file(snakemake@log[[1]], open="wt") sink(log) sink(log, type="message") parallel <- FALSE if (snakemake@threads > 1) { library("BiocParallel") # setup parallelization register(MulticoreParam(snakemake@threads)) parallel <- TRUE } # colData and countData must have the same sample order, but this is ensured # by the way we create the count matrix cts <- read.table(snakemake@input[["count_table"]], header=TRUE, row.names="gene", check.names=FALSE) coldata <- read.table(snakemake@params[["sample_table"]], header=TRUE, row.names="sample", check.names=FALSE) dds <- DESeqDataSetFromMatrix(countData=cts, colData=coldata, design = ~ cell_type + condition) dds$condition <- relevel(dds$condition, "Pre") # use "Pre" as the reference # Using a grouping variable as contrast dds$group <- factor(paste0(dds$cell_type, dds$condition)) design(dds) <- ~ group # remove uninformative columns dds <- dds[rowSums(counts(dds)) > 1, ] # normalization and pre-processing dds <- DESeq(dds, parallel=parallel) # raw count normalization norm_counts <- counts(dds, normalized=TRUE) # count transformation, log2 scale, either rlog or vst vsd <- vst(dds, blind=FALSE) # get the current contrast/cell_type from snakemake output, e.g., "CD8Tnn_Post_vs_Pre" output_file <- snakemake@output[["table"]] comp = gsub(".diffexp.tsv", "", tail(unlist(strsplit(output_file, "/")),1)) cell = gsub("_Post_vs_Pre", "", comp) # get Post_vs_Pre by groups(i.e., cell_types) res <- results(dds, contrast = c("group", paste0(cell,"Post"), paste0(cell,"Pre")), parallel = parallel) # use fdrtool to correct the overestimated p-value, # https://www.huber.embl.de/users/klaus/Teaching/DESeq2Predoc2014.html res <- res[!is.na(res$pvalue),] res <- res[!is.na(res$padj),] res <- res[,-which(names(res)=="padj")] FDR.res <- fdrtool(res$stat, statistic="normal", plot=F) res[,"padj"] <- p.adjust(FDR.res$pval, method = "BH") message(comp, paste0(" : # Up = ", length(res[which(res$padj<=0.1 & res$log2FoldChange>0),]$padj)), paste0(" # Down = ", length(res[which(res$padj<=0.1 & res$log2FoldChange<0),]$padj))) # shrink fold changes for lowly expressed genes res <- lfcShrink(dds, contrast = c("group", paste0(cell,"Post"), paste0(cell,"Pre")), res=res, type="ashr") # extract the current cell_type samples df_vsd = as.data.frame(assay(vsd)) df_vsd_cell = df_vsd[,grep(paste0(cell,'$'),colnames(df_vsd))] # merge with normalized count data and output the table resdata <- merge(df_vsd_cell, as.data.frame(res), by="row.names",sort=FALSE) names(resdata)[1] <- "Gene" #print(head(resdata)) write.table(resdata, file=snakemake@output[["table"]], sep="\t", quote=FALSE, row.names=FALSE) ## basic plots for Data quality assessment # M-A plot, points are red with padj < 0.1, points fall out of the window are open triangles pdf(snakemake@output[["ma_plot"]]) plotMA(res, main=comp, colLine="red") dev.off() |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Created: 1yr ago
Updated: 1yr ago
Maitainers:
public
URL:
https://github.com/chaodi51/20190815_PIK3CD-140106977_RNA-seq
Name:
20190815_pik3cd-140106977_rna-seq
Version:
1
Downloaded:
0
Copyright:
Public Domain
License:
MIT License
Keywords:
- Future updates
Related Workflows

ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...

Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...

snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...

ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics

RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...

This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...