Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output, operation
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
Active STRs Analysis
This repository contains a Snakemake workflow for analyzing the regulatory and functional role of short tandem repeat (STR) catalogs. The project was funded by the Staford BioX undergraduate research fellowship under the mentorship of Dr. Graham Erwin in the Synder Lab.
Code Snippets
31 32 33 | shell: "wget --user-agent=\"Mozilla/5.0 (X11; Linux x86_64; rv:60.0) Gecko/20100101 Firefox/60.0\" " "-O {output} {config[catalog_urls][estrs]}" |
38 39 | shell: "wget {config[catalog_urls][trf]} -O {output}" |
44 45 | shell: "wget {config[catalog_urls][gangstr]} -O {output}" |
56 57 | script: "../scripts/xlsx_to_tsv.py" |
87 88 | shell: "gzip -dc {input} > {output}" |
97 98 | shell: "vk vcf2tsv wide --print-header {input} > {output}" |
105 106 | shell: "cat {input} > {output}" |
115 116 117 118 119 120 121 122 123 124 | script: "../scripts/preprocess_novel_json.py" ''' Standardization rules --- Rearrange columns of catalogs such that first four columns are: chr, start, stop, motif in addition to applying global filters specified in config file ''' |
134 135 | script: "../scripts/standardize_catalog/estrs.py" |
144 145 | script: "../scripts/standardize_catalog/gangstr.py" |
154 155 | script: "../scripts/standardize_catalog/trf.py" |
164 165 | script: "../scripts/standardize_catalog/novel.py" |
173 174 | shell: "tail -n +2 {input} | cut -f1-4 | sort -k1,1 -k2,2n > {output}" |
12 13 14 15 | shell: "wget -O {output.gz} {params.url} && " "gzip -dc {output.gz} > {output.unsorted} && " "sort -k1,1 -k2,2n {output.unsorted} > {output.sorted}" |
35 36 | shell: "bedtools closest -D ref -a {input.catalog} -b {input.histone} > {output}" |
13 14 | script: "../scripts/parse_relative_mismatches_optimized.py" |
15 16 | shell: "wget {config[annotation_urls][ccre]} -O {output}" |
28 29 | shell: "bedtools closest -D ref -a {input.ann} -b {input.cat} > {output}" |
59 60 | shell: "bedtools intersect -wa -a {a} -b {b} > {output}" |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 | import re import pandas as pd import pysam from collections import defaultdict from time import time extract_nodes_p = re.compile('(\d+)\[((?:\d+[A-Z])+)\]', re.IGNORECASE) extract_operations_p = re.compile('(\d+)([A-Z])', re.IGNORECASE) class LocusFlankData(object): def __init__(self) -> None: self.flank_data = { 'left': defaultdict(lambda: defaultdict(int)), 'right': defaultdict(lambda: defaultdict(int)), } def add_range(self, flank, position, operation, count) -> None: for i in range(count): self.flank_data[flank][position + i][operation] += 1 def parse_graph_cigar(self, cigar_string): nodes = extract_nodes_p.findall(cigar_string) for node in nodes: node_id, cigar_string = node node_id = int(node_id) if node_id == 0: self.parse_cigar_string('left', cigar_string) elif node_id == 2: self.parse_cigar_string('right', cigar_string) def parse_cigar_string(self, flank, cigar_string) -> None: operations = extract_operations_p.findall(cigar_string) if flank == 'left': operations.reverse() current_position = 1 for count, op in operations: count = int(count) if op not in 'S': self.add_range(flank, current_position, op, count) if op in 'MX': current_position += count def to_df(self) -> pd.DataFrame: dfs = [] for flank in self.flank_data: data = self.flank_data[flank] df = pd.DataFrame({ 'position': data.keys(), 'matches': [data[pos]['M'] for pos in data], 'mismatches': [data[pos]['X'] for pos in data], 'insertions': [data[pos]['I'] for pos in data], 'deletions': [data[pos]['D'] for pos in data], }) # df['flank'] = flank if flank == 'left': df['position'] *= -1 dfs.append(df) return pd.concat(dfs, ignore_index=True) bam_file_path = snakemake.input['bam'] out_file_path = snakemake.output[0] sample = snakemake.wildcards['sample'] # bam_file_path = 'resources/realigned_bam/active/HG00118/HG00118_realigned.bam' # out_file_path = 'mutations.h5' # sample = 'HG00118' # Get all cigar strings loci_cigars = defaultdict(list) bam = pysam.AlignmentFile(bam_file_path) for read in bam.fetch(until_eof=True): locus_id, _, cigar_string = read.get_tag('XG').split(',') loci_cigars[locus_id].append(cigar_string) print('Finished fetching {} reads. Parsing...'.format(sample)) # Parse and store, while continously freeing up memory all_locus_ids = list(loci_cigars.keys()) for locus_id in all_locus_ids: locus_flank_data = LocusFlankData() for cigar_string in loci_cigars[locus_id]: locus_flank_data.parse_graph_cigar(cigar_string) df = locus_flank_data.to_df() df['locus_id'] = locus_id df = df.set_index(['locus_id', 'position']) df.to_hdf(out_file_path, sample, format='table', append=True, min_itemsize={ 'locus_id' : 32 }) del loci_cigars[locus_id] |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | import json import pandas as pd import re from utils import LooseDataFrame catalog = json.load(open(snakemake.input[0], 'r')) df = pd.DataFrame(catalog) old_cols = list(df.columns) new_cols = ['chr', 'start', 'stop'] # Expand locus IDs into separate chr, start, stop columns df[new_cols] = df['LocusId'].str.split('_', expand=True) df['motif'] = '' new_cols.append('motif') # Place chr, start, stop, motif columns at the beginning df = df[new_cols + old_cols] # Expand variants begin = re.escape('(') end = re.escape(')*') p = re.compile('{}[GCAT]+{}'.format(begin, end)) new_df = LooseDataFrame(df.columns) for i, row in df.iterrows(): structure_motifs = p.findall(row['LocusStructure']) if len(structure_motifs) > 1: ref_regions = row['ReferenceRegion'] variant_ids = row['VariantId'] variant_types = row['VariantType'] else: ref_regions = [row['ReferenceRegion']] variant_ids = [row['VariantId']] variant_types = [row['VariantType']] assert len(structure_motifs) == len(ref_regions) == len(variant_ids) == len(variant_types) for i in range(len(structure_motifs)): chr, pos = ref_regions[i].split(':') start, stop = pos.split('-') new_row = row.to_dict() new_row['start'] = start new_row['stop'] = stop # Slice motif to remove regex and keep repeating unit motif new_row['motif'] = structure_motifs[i][1:-2] new_row['VariantId'] = variant_ids[i] new_row['VariantType'] = variant_types[i] new_df.append(new_row) new_df = new_df.to_df() new_df.to_csv(snakemake.output[0], sep='\t', index=False) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | import pandas as pd from pyliftover import LiftOver from common import apply_filters estrs = pd.read_csv(snakemake.input[0], sep='\t') estrs = estrs.rename({ 'chrom': 'chr', 'str.start': 'start', 'str.end': 'stop', 'str.motif.forward': 'motif' }, axis='columns') former_cols = ['chr', 'start', 'stop', 'motif'] latter_cols = [col for col in estrs.columns if col not in former_cols] estrs = estrs[former_cols + latter_cols] # Only include finely-mapped eSTRs (CAVIAR score >0.3) estrs = estrs[estrs['score'] > 0.3] estrs_hg19 = estrs.copy() estrs_hg38 = estrs.copy() # Liftover lo = LiftOver('hg19', 'hg38') to_drop = [] for i, row in estrs_hg38.iterrows(): start = lo.convert_coordinate(row['chr'], row['start']) stop = lo.convert_coordinate(row['chr'], row['stop']) if len(start) > 0 and len(stop) > 0: estrs_hg38.loc[i, 'start'] = start[0][1] estrs_hg38.loc[i, 'stop'] = stop[0][1] else: to_drop.append(i) estrs_hg38 = estrs_hg38.drop(to_drop, axis='rows') estrs_hg19 = apply_filters(estrs_hg19, snakemake.config) estrs_hg38 = apply_filters(estrs_hg38, snakemake.config) estrs_hg19.to_csv(snakemake.output['hg19'], sep='\t', index=False) estrs_hg38.to_csv(snakemake.output['hg38'], sep='\t', index=False) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | import pandas as pd from common import apply_filters gangstr = pd.read_csv(snakemake.input[0], sep='\t') gangstr = gangstr.rename({ 'CHROM': 'chr', 'POS': 'start', 'END': 'stop', 'RU': 'motif' }, axis='columns') former_cols = ['chr', 'start', 'stop', 'motif'] latter_cols = [col for col in gangstr.columns if col not in former_cols] gangstr = gangstr[former_cols + latter_cols] # Remove loci that do not pass gangstr = gangstr[gangstr['NA12892_FILTER'] == 'PASS'] # Zero-index start positions gangstr['start'] = gangstr['start'] - 1 gangstr = apply_filters(gangstr, snakemake.config) gangstr.to_csv(snakemake.output[0], sep='\t', index=False) |
1 2 3 4 5 6 7 8 9 10 11 12 13 | import pandas as pd from common import apply_filters novel = pd.read_csv(snakemake.input[0], sep='\t') former_cols = ['chr', 'start', 'stop', 'motif'] latter_cols = [col for col in novel.columns if col not in former_cols] novel = novel[former_cols + latter_cols] novel = apply_filters(novel, snakemake.config) novel.to_csv(snakemake.output[0], sep='\t', index=False) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | import pandas as pd from common import apply_filters trf = pd.read_csv(snakemake.input[0], sep='\t') trf.columns = ['bin', 'chr', 'start', 'stop', 'name', 'period', 'copyNum', 'consensusSize', 'perMatch', 'perIndel', 'score', 'A', 'C', 'G', 'T', 'entropy', 'motif'] former_cols = ['chr', 'start', 'stop', 'motif'] latter_cols = [col for col in trf.columns if col not in former_cols] trf = trf[former_cols + latter_cols] trf = apply_filters(trf, snakemake.config) trf.to_csv(snakemake.output[0], sep='\t', index=False) |
1 2 3 4 5 | import pandas as pd xls = pd.ExcelFile(snakemake.input[0]) df = pd.read_excel(xls, snakemake.params['sheet']) df.to_csv(snakemake.output[0], sep='\t', index=False) |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Created: 1yr ago
Updated: 1yr ago
Maitainers:
public
URL:
https://github.com/rashidalabri/active-strs-analysis
Name:
active-strs-analysis
Version:
1
Downloaded:
0
Copyright:
Public Domain
License:
GNU General Public License v3.0
Keywords:
- Future updates
Related Workflows

ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...

Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...

snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...

ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics

RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...

This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...