Cleaning transcriptome annotations with ab initio assemblers
Introduction
AnnotationCleaner is designed to automate the construction of ab initio assembled transcriptomes using several different tools. This will allow you to test the impact of assembler choice on downstream applications. Currently, the a
Code Snippets
91 92 | wrapper: "v2.1.1/bio/samtools/sort" |
19 20 21 22 23 24 25 | shell: """ portcullis prep -t {threads} -o prepare_portcullis {params.extra_prep} {input.fasta} {input.bams} 1> {log} 2>&1 portcullis junc -t {threads} --orientation {params.orientation} \ --strandedness {params.strandedness} -o results/identify_junctions/junctions {params.extra_junc} \ prepare_portcullis/ 1> {log} 2>&1 """ |
46 47 48 49 50 | shell: """ mikado configure --list {input.mlist} --scoring {params.scoring} --reference {input.reference} \ --junctions {input.junctions} -bt {input.proteins} -od results/mikado_configure/ {params.extra} -t {threads} {output} 1> {log} 2>&1 """ |
67 68 | shell: "mikado prepare --json-conf {input} -od results/mikado_prepare/ {params.extra} 1> {log} 2>&1" |
84 85 86 87 | shell: """ TransDecoder.LongOrfs -t {input.fasta} --output_dir results/identify_orfs/ {params.extra} 2> {log} """ |
102 103 104 105 | shell: """ TransDecoder.Predict -t {input.transcripts} --output_dir results/identify_orfs/ 2> {log} """ |
122 123 124 125 | shell: """ makeblastdb -in {input.proteins} -dbtype prot -parse_seqids {params.extra} -out results/mikado_blastdb/mikado_blastdb 1> {log} 2>&1 """ |
142 143 144 145 | shell: """ pyfasta split -n {params.nsub} {input.fasta} """ |
160 161 162 163 164 | shell: """ blastx {params.extra} -outfmt "6 qseqid sseqid pident length mismatch gapopen qstart qend sstart send evalue bitscore ppos btop" \ -num_threads {threads} -query {input.fasta} -db results/mikado_blastdb/mikado_blastdb -out {output.mikado_blast} 2> {log} """ |
184 185 186 187 188 | shell: """ mikado serialise --json-conf {input.mconfig} --transcripts {input.transcripts} --orfs {input.orfs} -od results/mikado_serialise/ \ --junctions {input.junctions} -p {threads} --tsv results/mikado_blast/ --blast_targets {input.blast_db} {params.extra} 1> {log} 2>&1 """ |
220 221 222 223 224 | shell: """ blastx {params.extra} -outfmt "6 qseqid sseqid pident length mismatch gapopen qstart qend sstart send evalue bitscore ppos btop" \ -num_threads {threads} -query {input.fasta} -db results/mikado_blastdb/mikado_blastdb -out {output.mikado_blast} 2> {log} """ |
247 248 249 250 251 | shell: """ mikado serialise --json-conf {input.mconfig} --transcripts {input.transcripts} --orfs {input.orfs} -od results/mikado_serialise/ \ --junctions {input.junctions} --tsv {input.blast} --blast_targets {input.blast_db} {params.extra} 1> {log} 2>&1 """ |
269 270 | shell: "mikado pick --configuration {input.mconfig} -db {input.db} --loci_out mikado.loci.gff3 --subloci_out mikado.subloci.gff3 -od results/mikado_pick/ {params.extra} 1> {log} 2>&1" |
285 286 287 288 289 290 | shell: """ mikado compare -r {input.reference} --index 1> {log} 2>&1 mikado compare -r {input.reference} -p {input.mikado_out} -o results/mikado_compare/compare 1> {log} 2>&1 touch {output.dummy} """ |
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 | run: scallop = params.scallop stringtie = params.stringtie provided_annotations = params.provided_annotations with open(output[0], 'w') as f: if scallop["use_scallop"]: scallop.pop("use_scallop") taco = scallop.pop("use_taco") paths = SCALLOP_PATHS counter = 1 for p in paths: row = [str(value) for value in scallop.values()] row.insert(0, str(p)) row[1] = row[1] + str(counter) counter = counter + 1 f.write('\t'.join(row) + '\n') if stringtie["use_stringtie"]: stringtie.pop("use_stringtie") taco = stringtie.pop("use_taco") merge = stringtie.pop("use_merge") paths = STRINGTIE_PATHS counter = 1 for p in paths: row = [str(value) for value in stringtie.values()] row.insert(0, str(p)) row[1] = row[1] + str(counter) counter = counter + 1 f.write('\t'.join(row) + '\n') if ~bool(provided_annotations): for key, inner_dict in provided_annotations.items(): row = [str(value) for value in inner_dict.values()] row.insert(1, key) f.write('\t'.join(row) + '\n') |
13 14 | shell: "scallop -i {input} -o {output.gtf} {params.extra} 1> {log} 2>&1" |
22 23 24 25 | run: with open(output[0], "w") as file: for path in input: file.write(path + "\n") |
41 42 43 44 45 46 | shell: """ taco_run -o ./results/scallop_taco/ -p {threads} {params.extra_taco} {input} 1> {log} 2>&1 taco_refcomp -o ./results/scallop_taco_refcomp/ -r {params.gtf} -t ./results/scallop_taco/assembly.gtf {params.extra_refcomp} 1> {log} 2>&1 touch {output.output_dummy} """ |
14 15 | shell: "stringtie -o {output} -p {threads} -G {params.gtf} {params.extra} {input} 1> {log} 2>&1" |
30 31 | shell: "stringtie --merge -p {threads} -G {params.gtf} -o {output} {params.extra} {input}" |
39 40 41 42 | run: with open(output[0], "w") as file: for path in input: file.write(path + "\n") |
58 59 60 61 62 63 | shell: """ taco_run -o ./results/stringtie_taco/ -p {threads} {params.extra_taco} {input} 1> {log} 2>&1 taco_refcomp -o ./results/stringtie_taco_refcomp/ -r {params.gtf} -t ./results/stringtie_taco/assembly.gtf {params.extra_refcomp} 1> {log} 2>&1 touch {output.output_dummy} """ |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | __author__ = "Johannes Köster" __copyright__ = "Copyright 2016, Johannes Köster" __email__ = "koester@jimmy.harvard.edu" __license__ = "MIT" import tempfile from pathlib import Path from snakemake.shell import shell from snakemake_wrapper_utils.snakemake import get_mem from snakemake_wrapper_utils.samtools import get_samtools_opts samtools_opts = get_samtools_opts(snakemake) extra = snakemake.params.get("extra", "") log = snakemake.log_fmt_shell(stdout=True, stderr=True) mem_per_thread_mb = int(get_mem(snakemake) / snakemake.threads) with tempfile.TemporaryDirectory() as tmpdir: tmp_prefix = Path(tmpdir) / "samtools_sort" shell( "samtools sort {samtools_opts} -m {mem_per_thread_mb}M {extra} -T {tmp_prefix} {snakemake.input[0]} {log}" ) |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Created: 1yr ago
Updated: 1yr ago
Maitainers:
public
URL:
https://github.com/isaacvock/AnnotationCleaner
Name:
annotationcleaner
Version:
1
Downloaded:
0
Copyright:
Public Domain
License:
None
Keywords:
- Future updates
Related Workflows

ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...

Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...

snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...

ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics

RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...

This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...