Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output, operation, topic
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
an example run script
configfile=config/config.yaml
threads=200
snakemake --configfile $configfile --cores $threads --use-conda -p
Or if you want to distribute over a cluster:
mkdir dir -p logs/drmaa
configfile=config/config.yaml
threads=200
snakemake --configfile $configfile --jobs $threads --use-conda -p \ --drmaa " -l centos=7 -l h_rt=48:00:00 -l mfree=8G -pe serial {threads} -V -cwd -S /bin/bash -w n" --drmaa-log-dir logs/drmaa
Or if you want to make ideograms:
configfile=config/config.yaml
threads=200
snakemake --configfile $configfile --cores $threads --use-conda -p ideogram
Notes on use of the pipeline in Vollger et al., 2023
Running alignment and gene conersion identification pipeline:
snakemake \ --configfile config/config_asm20.yaml \ --cores $threads \ --use-conda \ -p \ gene_conversion
Information on where to download the input assemblies can be found on Zenodo .
Config files for human assemblies:
config/config_asm20.yaml
config/table.asm.tbl
Config files for the Clint PTR assembly:
config/clint.yaml
config/clint.asm.tbl
Code Snippets
16 17 18 19 20 21 22 | shell: """ awk '$4-$3>{params.min_aln_len}' {input.paf} \ | rb paf-to-sam \ | samtools sort -@ {threads} -m {resources.mem}G \ > {output.bam} """ |
38 39 40 41 42 43 44 | shell: """ awk '$4-$3>{params.min_aln_len}' {input.paf} \ | rb paf-to-sam -f {input.query} \ | samtools sort -@ {threads} -m {resources.mem}G \ > {output.bam} """ |
58 59 60 61 | shell: """ samtools sort -@ {threads} -m {resources.mem}G {input.aln} > {output.bam} """ |
77 78 79 80 | shell: """ htsbox pileup -q0 -evcf {input.ref} {input.bam} > {output.vcf} """ |
96 97 98 99 100 101 102 103 104 | shell: """ ( dipcall-aux.js vcfpair -s {wildcards.sm} -a {input.vcf} \ | bcftools norm -Ov -m-any \ | bcftools norm -Ov -d exact \ | bcftools norm -Ov -m-any --fasta-ref {input.ref} --check-ref w \ | bcftools sort -m {resources.mem}G \ | htsbox bgzip > {output.vcf} ) 2> {log} """ |
114 115 116 117 | shell: """ bcftools index {input.vcf} """ |
139 140 141 142 143 144 145 146 147 148 149 150 151 152 | shell: """ if [ {params.n_samples} == 1 ]; then bcftools norm --threads {threads} -Ov -m-any {input.vcf} \ | bgzip -@ {threads} \ > {output.vcf} else bcftools merge \ --threads {threads} {input.vcf} \ | bcftools norm --threads {threads} -Ov -m-any \ | bgzip -@ {threads} \ > {output.vcf} fi """ |
165 166 167 168 169 170 | shell: """ awk '$4-$3>{params.min_aln_len}' {input.paf} \ | csvtk cut -tT -f 6,8,9,1,3,4 \ | bgzip > {output.bed} """ |
189 190 191 192 193 194 195 196 197 198 199 200 | shell: """ ls {input.bed} \ | parallel -n 1 \ $'zcat {} | cut -f 1-3 | sed \'s/$/\\t{{/.}}/g\' ' > {output.bed} head {output.bed} python {params.add_gt} -v {input.vcf} {output.bed} \ | bgzip -@ {threads} \ > {output.vcf} """ |
214 215 216 217 218 219 220 221 222 | shell: """ ( echo '{params.header}'; \ bcftools query \ -f '%CHROM\t%POS0\t%END\t%CHROM-%POS-%TYPE-%REF-%ALT\t%TYPE\t%REF\t%ALT\t{wildcards.sm}\th1;h2\t[ %GT]\n' \ {input.vcf} \ ) \ | bgzip > {output.bed} """ |
25 26 27 28 29 30 31 32 | shell: """ bedtools sort -i {input.bed} \ | bedtools merge -i - \ | bedtools slop -i - -g {input.genome} -b {params.slop} \ | bedtools merge -i - \ > {output.bed} """ |
52 53 54 55 56 57 58 59 60 | shell: """ awk '$4-$3>{params.min_aln_len}' {input.paf} \ | rb --threads {threads} liftover --bed <( grep -v "^#" {input.bed}) \ | csvtk cut -tT -f 1,3,4 \ | bedtools makewindows -s {params.slide} -w {params.window} -b - \ | sed 's/$/\t{wildcards.sm}/g' \ > {output.bed} """ |
78 79 80 81 82 83 84 85 86 87 88 89 | shell: """ grep -w {wildcards.sm} {input.bed} \ | cut -f 1-3 \ | bedtools sort -i - > {output.tbed} ( rb -vv --threads {threads} liftover \ -q --bed <( grep -v "^#" {output.tbed} ) \ --largest {input.paf} \ | grep -v "cg:Z:{params.window}=" \ > {output.paf} ) 2> {log} """ |
106 107 108 109 110 | shell: """ seqtk seq -A -l 60 {input.query} > {output.fa} samtools faidx {output.fa} """ |
131 132 133 134 135 136 137 138 139 140 141 142 143 | shell: """ minimap2 -K 1G -t {threads} \ -cx asm20 \ -k 15 \ --secondary=no --eqx \ {input.ref} \ <( bedtools getfasta -name+ \ -fi {input.query} \ -bed <(awk -v OFS=$'\t' '{{name=$1":"$3"-"$4}}{{print $6,$8,$9,name}}' {input.paf}) \ ) \ > {output.aln} """ |
156 157 158 159 160 161 162 | shell: """ rb --threads {threads} stats --paf {input.paf} \ > {output.tbl} rb --threads {threads} stats --paf {input.liftover_paf} \ > {output.liftover_tbl} """ |
175 176 | script: "../scripts/combine-mappings.R" |
189 190 191 192 193 194 195 196 | shell: """ python {params.find_pairs} \ --fraction 0.01 --overlap 1 --source-windows \ --distance {params.window} \ --input {input.bed} \ > {output.bed} """ |
213 214 215 216 217 218 219 220 | shell: """ rb liftover -q \ --bed <(cut -f 1-3 {input.bed} | grep -v "^#" ) \ --largest {input.paf} \ | grep -v "cg:Z:{params.window}=" \ > {output.paf} 2> {log} """ |
237 238 239 240 241 242 243 244 245 246 247 248 249 | shell: """ minimap2 -K 1G -t {threads} \ -cx asm20 \ -k 15 \ --secondary=no --eqx \ {input.ref} \ <( bedtools getfasta -name+ \ -fi {input.query} \ -bed <(awk -v OFS=$'\t' '{{name=$1":"$3"-"$4}}{{print $6,$8,$9,name}}' {input.paf}) \ ) \ > {output.aln} """ |
262 263 264 265 266 267 268 | shell: """ rb --threads {threads} stats --paf {input.paf} \ > {output.tbl} rb --threads {threads} stats --paf {input.liftover_paf} \ > {output.liftover_tbl} """ |
281 282 | script: "../scripts/combine-mappings.R" |
294 295 296 297 298 299 300 | shell: """ python {params.find_pairs} \ --fraction 0.5 --overlap 1 \ --input {input.bed} \ > {output.bed} """ |
316 317 | script: "../scripts/gene-conversion-windows.R" |
332 333 334 335 336 337 | shell: """ (head -n 1 {input.beds[0]}; tail -q -n +2 {input.beds}) \ | pigz -p {threads} \ > {output.bed} """ |
353 354 | script: "../scripts/gene-conversion-windows.R" |
369 370 371 372 373 374 | shell: """ bgzip -@ {threads} {input.acceptor} -c > {output.acceptor} bgzip -@ {threads} {input.bed} -c > {output.bed} bgzip -@ {threads} {input.interact} -c > {output.interact} """ |
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 | shell: """ # make interactions bedtools sort -i {input.interact} \ > {output.bed} bedToBigBed -as={params.interact} \ -type=bed5+13 {output.bed} {input.fai} {output.interact} # all windows bedToBigBed -as={params.fmt} -type=bed9+10 \ {input.bed} {input.fai} {output.bb} # bed graphs bedtools genomecov -i <(grep -w Donor {input.bed}) \ -g {input.fai} -bg > {output.bg} bedGraphToBigWig {output.bg} {input.fai} {output.bwd} bedtools genomecov -i <(grep -w Acceptor {input.bed}) \ -g {input.fai} -bg > {output.bg} bedGraphToBigWig {output.bg} {input.fai} {output.bwa} """ |
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 | shell: """ # make interactions bedtools sort -i {input.interact} \ > {output.bed} bedToBigBed -as={params.interact} \ -type=bed5+13 {output.bed} {input.fai} {output.interact} # make others bedToBigBed -as={params.fmt} -type=bed9+ \ {input.bed} {input.fai} {output.bb} csvtk cut -tT -C "$" \ -f query_name,query_start,query_end,mismatches \ {input.liftover_tbl} \ | tail -n+2 \ | awk -v OFS=$'\t' '{{print $1,$2,$2+1,$4}}' \ | bedtools sort -i - \ | bedtools merge -i - -c 4 -o mean \ > {output.bed} bedGraphToBigWig {output.bed} {input.fai} {output.bg} """ |
482 483 | script: "../scripts/track_hub.py" |
498 499 500 501 502 503 504 505 506 507 508 509 | run: with open(output.tbl, "w+") as out: out.write("sample\thap\tfile\n") for sm, f in zip(params.samples, input): sm, hap = sm.split("_") out.write( "{}\t{}\t{}\n".format( sm, hap, os.path.abspath(f), ) ) |
528 529 530 531 532 533 534 535 536 537 538 | shell: """ head -n1 {input.bed[0]} > {output.tmp} cat {input.bed} | grep -v "^#" >> {output.tmp} python {params.find_pairs} \ --fraction 0.8 --reciprocal \ --input {output.tmp} \ | bgzip -@ {threads} \ > {output.bed} """ |
40 41 | shell: "minimap2 -t {threads} -ax asm20 -d {output.mmi} {input.ref}" |
60 61 62 63 64 65 66 67 | shell: """ minimap2 -t {threads} -a --eqx --cs \ {params.mm2_opts} \ {input.ref} {input.query} \ | samtools view -F 4 -b - \ > {output.aln} 2> {log} """ |
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 | shell: """ if [ {params.second_aln} == "yes" ]; then minimap2 -t {threads} -a --eqx --cs \ {params.mm2_opts} \ <(seqtk seq \ -M <(samtools view -h {input.aln} | paftools.js sam2paf - | cut -f 6,8,9 | bedtools sort -i -) \ -n "N" {input.ref_fasta} \ ) \ <(seqtk seq \ -M <(samtools view -h {input.aln} | paftools.js sam2paf - | cut -f 1,3,4 | bedtools sort -i -) \ -n "N" {input.query} \ ) \ | samtools view -F 4 -b - \ > {output.aln} 2> {log} else samtools view -b -H {input.aln} > {output.aln} fi """ |
117 118 119 120 121 | shell: """ samtools cat {input.aln} {input.aln2} \ -o {output.aln} """ |
133 134 135 136 137 138 | shell: """ samtools view -h {input.aln} \ | paftools.js sam2paf - \ > {output.paf} """ |
150 151 152 153 154 155 | shell: """ rustybam trim-paf {input.paf} \ | rustybam break-paf --max-size {params.break_paf} \ > {output.paf} """ |
167 168 169 170 | shell: """ rb --threads {threads} stats {input.aln} > {output.bed} """ |
184 185 186 187 188 189 190 | shell: """ Rscript {params.smkdir}/scripts/ideogram.R \ --asm {input.bed} \ --asm2 {input.bed2} \ --plot {output.pdf} """ |
203 204 205 206 207 208 209 | shell: """ {params.smkdir}/scripts/ends_from_paf.py \ --minwidth 10 \ --width 1 \ {input.paf} > {output.bed} """ |
221 222 223 224 225 226 227 228 | shell: """ rb liftover --largest --qbed \ --bed <( grep -v "^#" {input.bed} ) \ {input.paf} \ | rb stats --paf --qbed \ > {output.bed} """ |
239 240 241 242 243 244 245 246 247 | shell: """ head -n 1 {input.beds[0]} > {output.bed} cat {input.beds} \ | grep -v "^#" \ | awk '$2 > $3 {{ temp = $3; $3 = $2; $2 = temp }} 1' OFS='\t' \ | bedtools sort -i - \ >> {output.bed} """ |
259 260 261 262 263 264 265 266 267 | shell: """ bedtools intersect -wa -wb -header \ -a <(printf "#chr\tstart\tend\n" ; bedtools makewindows -w 1000000 -g {input.fai} ) \ -b {input.bed} \ > {output.bed} header=$(head -n1 {input.bed}) sed -i " 1 s/$/\t$header/" {output.bed} """ |
279 280 281 282 283 284 285 286 | shell: """ bedtools nuc \ -fi {input.ref} \ -bed <(bedtools makewindows -s 100 -w 1000 -g {input.fai} ) \ | pigz \ > {output.allbed} """ |
299 300 301 302 303 304 305 | shell: """ bedtools intersect -header -u -a {input.allbed} \ -b <(bedtools slop -b 10000 -g {input.fai} -i {input.bed}) \ | pigz \ > {output.bed} """ |
15 16 17 18 19 20 21 22 | shell: """ rb break-paf --max-size {params.break_saffire} {input.paf} \ | rb orient \ | rb filter --paired-len {params.paired_aln_len} \ | rb stats --paf \ > {output.bed} """ |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 | source("workflow/scripts/plotutils.R") sample <- "HG002_1" windowf <- "results/CHM13_V1.1/gene-conversion/HG002_1_windows.tbl.gz" liftoverf <- "results/CHM13_V1.1/gene-conversion/HG002_1_liftover_windows.tbl.gz" liftoverf <- "/Users/mrvollger/Desktop/EichlerVolumes/assembly_breaks/nobackups/asm-to-reference-alignment/results/CHM13_V1.1/gene-conversion/HG002_1_liftover_windows.tbl.gz" windowf <- "/Users/mrvollger/Desktop/EichlerVolumes/assembly_breaks/nobackups/asm-to-reference-alignment/results/CHM13_V1.1/gene-conversion/HG002_1_windows.tbl.gz" windowf <- snakemake@input$window liftoverf <- snakemake@input$liftover sample <- snakemake@wildcards$sm window <- 10000 window <- snakemake@params$window print(windowf) print(liftoverf) print(sample) options(scipen = 999) window.df <- fread(windowf) %>% separate(query_name, into = c("original_mapping", "original_source"), sep = "::" ) %>% separate(original_source, into = c("contig", "start", "end"), sep = ":|-", remove = FALSE ) %>% mutate( contig_start = as.numeric(start) + query_start, contig_end = as.numeric(start) + query_end ) %>% dplyr::select(-query_start, -query_end, -query_length, -start, -end) %>% data.table() liftover.df <- fread(liftoverf) %>% mutate( original_mapping = paste( query_name, ":", query_start, "-", query_end, sep = "" ), original_source = paste( `#reference_name`, ":", reference_start, "-", reference_end, sep = "" ), ) %>% dplyr::rename( contig = `#reference_name`, contig_start = `reference_start`, contig_end = `reference_end`, reference_name.liftover = query_name, reference_start = query_start, reference_end = query_end ) %>% dplyr::select(-query_length) %>% data.table() overlap_bp <- function(df) { # x1 <= y2 && y1 <= x2 intersects <- df$`#reference_name` == df$reference_name.liftover & df$reference_start <= df$reference_end.liftover & df$reference_start.liftover <= df$reference_end overlap <- df$reference_end.liftover - df$reference_start intersects * overlap } df <- merge( window.df, liftover.df, by = c("original_mapping", "original_source"), suffixes = c("", ".liftover") ) %>% mutate(overlap = overlap_bp(.)) %>% filter( overlap == 0 & # matches + mismatches >= 0.9 * window & # matches.liftover + mismatches.liftover >= 0.9 * window & matches + mismatches >= 0.9 * (matches.liftover + mismatches.liftover) & matches - matches.liftover >= 0 ) %>% relocate(original_mapping, .after = last_col()) %>% relocate(original_source, .after = last_col()) %>% arrange(`#reference_name`, `reference_start`, `reference_end`) %>% data.table() df$sample <- sample write.table(df, file = snakemake@output$bed, sep = "\t", row.names = F, quote = F) |
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 | import os import sys import argparse import pandas as pd """ Col Type Description 1 string Query sequence name 2 int Query sequence length 3 int Query start (0-based; BED-like; closed) 4 int Query end (0-based; BED-like; open) 5 char Relative strand: "+" or "-" 6 string Target sequence name 7 int Target sequence length 8 int Target start on original strand (0-based) 9 int Target end on original strand (0-based) 10 int Number of residue matches 11 int Alignment block length 12 int Mapping quality (0-255; 255 for missing) """ if __name__ == "__main__": parser = argparse.ArgumentParser( description="", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("infile", help="positional input") parser.add_argument( "-d", help="store args.d as true if -d", action="store_true", default=False ) parser.add_argument( "--minwidth", help="minimum alignment size to keep", type=int, default=5e4 ) parser.add_argument("-w", "--width", help="end size", type=int, default=1000) args = parser.parse_args() df = pd.read_csv( args.infile, sep="\t", header=0, usecols=range(12), names=list(range(12)) ) # filter alignments that are too small to consider # unless they make up the entire contig more or less # remove = (df[10] < args.minwidth) & (df[1] > 2*args.minwidth) # df = df[~remove] outfmt = "{}\t{}\t{}\t{}\t{}\t{}" for name, g in df.groupby(0): length = g[1].min() mmin = g[2].min() mmax = g[3].max() if (mmax - mmin) < 2 * args.width: print(outfmt.format(name, mmin, mmax, name + "_full", length, "full")) else: print( outfmt.format( name, mmin, mmin + args.width, name + "_start", length, "start" ) ) print( outfmt.format( name, mmax - args.width, mmax, name + "_end", length, "end" ) ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 | source("workflow/scripts/plotutils.R") f <- "/Users/mrvollger/Desktop/EichlerVolumes/assembly_breaks/nobackups/asm-to-reference-alignment/results/CHM13_V1.1/gene-conversion/all_candidate_windows.tbl.gz" f <- "results/CHM13_V1.1/gene-conversion/all_candidate_windows.tbl.gz" window <- 1e4 window <- snakemake@params$window simplify <- snakemake@params$simplify merge <- snakemake@params$merge f <- snakemake@input$bed print(f) options(scipen = 999) ttdf <- fread(f, nThread = 8, sep = "\t") %>% mutate(reference_name = `#reference_name`) %>% group_by(group, contig, reference_name, reference_name.liftover, sample) if (merge) { tdf <- ttdf %>% ungroup() %>% group_by(group, reference_name, reference_name.liftover) } if (simplify) { print("SIMPLIFY") tdf <- ttdf %>% mutate(mmscore = matches - matches.liftover) %>% group_by( group, contig, reference_name, reference_name.liftover, sample ) %>% slice_max(mmscore, n = 1, with_ties = FALSE) %>% dplyr::select(-mmscore) print(paste(nrow(ttdf), nrow(tdf))) } df <- tdf %>% summarise( `#reference_name` = unique(`#reference_name`), reference_name = unique(reference_name), reference_start = min(reference_start), reference_end = max(reference_end), matches = sum(matches), mismatches = sum(mismatches), deletion_events = sum(deletion_events), insertion_events = sum(insertion_events), deletions = sum(deletions), insertions = sum(insertions), reference_name.liftover = unique(reference_name.liftover), reference_start.liftover = min(reference_start.liftover), reference_end.liftover = max(reference_end.liftover), matches.liftover = sum(matches.liftover), mismatches.liftover = sum(mismatches.liftover), deletion_events.liftover = sum(deletion_events.liftover), insertion_events.liftover = sum(insertion_events.liftover), deletions.liftover = sum(deletions.liftover), insertions.liftover = sum(insertions.liftover), sample = paste(unique(sample), collapse = ";"), # sample= unique(sample), contig = paste(unique(contig), collapse = ";"), contig_start = min(contig_start), contig_end = max(contig_end), overlap = sum(overlap) ) %>% mutate( perID_by_matches = 100 * matches / (matches + mismatches), perID_by_events = 100 * matches / (matches + mismatches + insertion_events + deletion_events), perID_by_all = 100 * matches / (matches + mismatches + insertions + deletions), perID_by_matches.liftover = 100 * matches.liftover / (matches.liftover + mismatches.liftover), perID_by_events.liftover = 100 * matches.liftover / (matches.liftover + mismatches.liftover + insertion_events.liftover + deletion_events.liftover), perID_by_all.liftover = 100 * matches.liftover / (matches.liftover + mismatches.liftover + insertions.liftover + deletions.liftover), original_source = paste(contig, ":", contig_start, "-", contig_end, sep = "") ) %>% data.table() remove_par <- (df$reference_name == "chrX" & df$reference_name.liftover == "chrY") | (df$reference_name == "chrY" & df$reference_name.liftover == "chrX") df <- df[!remove_par, ] df # reference_name == reference_name.liftover & gc.df <- df[ (perID_by_matches >= 99.5 & perID_by_all > perID_by_all.liftover & ( (mismatches.liftover - mismatches >= 2 * window / 1e4) | (mismatches.liftover / mismatches > 2) ) ) ] dim(gc.df) print("data subset") if (F) { dim(gc.df) p <- df[perID_by_all >= 99.0 & perID_by_all - perID_by_all.liftover > 0.00 & matches - matches.liftover > 0 & matches + mismatches > 9e3 & matches.liftover + mismatches.liftover > 9e3 & `#reference_name` != "chrY"] %>% filter(perID_by_events > 99.5) %>% ggplot() + geom_histogram(aes(matches - matches.liftover), binwidth = 1 ) + facet_zoom(xlim = c(0, 20)) + # scale_y_continuous(trans = "log10") + # scale_x_continuous(trans = "log10") + # annotation_logticks() + theme_cowplot() nrow(p$data) p <- p + annotate("text", x = 500, y = 500, label = paste("n = ", comma(nrow(p$data))), size = 3 ) ggsave("~/Desktop/gc.pdf", plot = p) } gc.df$name <- paste( gc.df$mismatches.liftover - gc.df$mismatches, ";", gc.df$reference_name, ":", gc.df$reference_start, sep = "" ) gc.df$name <- gc.df$mismatches.liftover - gc.df$mismatches gc.df$strand <- "." gc.df$color <- "0,127,211" gc.df$score <- pmin(gc.df$mismatches.liftover - gc.df$mismatches, 1000) gc.df$thickStart <- gc.df$reference_start.liftover gc.df$thickEnd <- gc.df$reference_end.liftover gc.df$status <- "Acceptor" odf <- gc.df[, c( "reference_name.liftover", "reference_start.liftover", "reference_end.liftover", "name", "score", "strand", "thickStart", "thickEnd", "color", "status", "reference_name", "reference_start", "reference_end", "mismatches.liftover", "mismatches", "perID_by_all.liftover", "perID_by_all", "sample", "original_source" )] fwrite( odf %>% arrange(reference_name.liftover, reference_start.liftover) %>% dplyr::rename(`#reference_name.liftover` = reference_name.liftover) %>% data.table(), file = snakemake@output$acceptor, sep = "\t", row.names = F, quote = F, scipen = 999 ) # # add donor sites # odf2 <- data.table(copy(odf)) odf2$color <- "211,144,0" odf2$status <- "Donor" odf2$reference_name.liftover <- odf$reference_name odf2$reference_start.liftover <- odf$reference_start odf2$reference_end.liftover <- odf$reference_end odf2$reference_name <- odf$reference_name.liftover odf2$reference_start <- odf$reference_start.liftover odf2$reference_end <- odf$reference_end.liftover odf2$thickStart <- odf2$reference_start.liftover odf2$thickEnd <- odf2$reference_end.liftover fwrite( rbind(odf, odf2) %>% arrange(reference_name.liftover, reference_start.liftover) %>% dplyr::rename(`#reference_name.liftover` = reference_name.liftover) %>% data.table(), file = snakemake@output$bed, sep = "\t", row.names = F, quote = F, scipen = 999 ) # make the interaction file names <- c( "#chrom", "chromStart", "chromEnd", "name", "score", "value", "exp", "color", "sourceChrom", "sourceStart", "sourceEnd", "sourceName", "sourceStrand", "targetChrom", "targetStart", "targetEnd", "targetName", "targetStrand" ) sdf <- copy(odf) ndf <- data.table() ndf$`#chrom` <- sdf$`reference_name.liftover` ndf$chromStart <- sdf$`reference_start.liftover` ndf[sdf$`reference_start.liftover` > sdf$reference_start]$chromStart <- copy(sdf[sdf$`reference_start.liftover` > sdf$reference_start]$reference_start) ndf$chromEnd <- sdf$`reference_end.liftover` ndf[sdf$`reference_end.liftover` < sdf$reference_end]$chromEnd <- copy(sdf[sdf$`reference_end.liftover` < sdf$reference_end]$reference_end) ndf$name <- "." ndf$score <- pmin(sdf$mismatches.liftover - sdf$mismatches, 1000) ndf$value <- sdf$mismatches.liftover / sdf$mismatches ndf$exp <- "." ndf$color <- 0 ndf$sourceChrom <- sdf$reference_name.liftover ndf$sourceStart <- sdf$reference_start.liftover ndf$sourceEnd <- sdf$reference_end.liftover ndf$sourceName <- "." ndf$sourceStrand <- "." ndf$targetChrom <- sdf$reference_name ndf$targetStart <- sdf$reference_start ndf$targetEnd <- sdf$reference_end ndf$targetName <- "." ndf$targetStrand <- "." # fix the columns when interchromosomal inter <- as.character(sdf$reference_name) != as.character(sdf$reference_name.liftover) sum(inter) dim(odf) dim(sdf) dim(ndf) print(head(ndf)) if (T) { print("inter: setting 1-3") ndf[inter]$`#chrom` <- sdf[inter]$reference_name.liftover ndf[inter]$chromStart <- sdf[inter]$reference_start.liftover ndf[inter]$chromEnd <- sdf[inter]$reference_end.liftover print("inter: setting source") ndf[inter]$sourceChrom <- sdf[inter]$reference_name ndf[inter]$sourceStart <- sdf[inter]$reference_start ndf[inter]$sourceEnd <- sdf[inter]$reference_end print("inter: setting target name") ndf[inter]$targetChrom <- sdf[inter]$reference_name.liftover print("inter: setting target start") ndf[inter]$targetStart <- sdf[inter]$reference_start.liftover print("inter: setting target end") ndf[inter]$targetEnd <- sdf[inter]$reference_end.liftover } else { ndf <- ndf[!inter] } print(head(ndf)) print(dim(ndf)) fwrite( ndf, file = snakemake@output$interact, sep = "\t", row.names = F, quote = F, scipen = 999 ) print("written") |
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 | library(tidyverse) library(ggnewscale) library(ggrepel) library(data.table) library(glue) library(RColorBrewer) library(scales) library(cowplot) library(argparse) library(karyoploteR) library(GenomicRanges) dir <- paste0(getwd(), "/workflow/scripts") load(glue("{dir}/chm13.karyo.RData")) # create parser object indir <- "~/Desktop" parser <- ArgumentParser() parser$add_argument("-a", "--asm", help = "bed file with all the asm mapping", default = glue("{indir}/GM08714_1.bed")) parser$add_argument("-b", "--asm2", help = "bed file with a second asm mapping")#, default = glue("{indir}/GM08714_2.bed")) parser$add_argument("-k", "--karyotype", help = "karyotpye file for different genomes") parser$add_argument("--min", help = "minimum amount of total alginemnts between a target and query for it to appear", default = 1e6) parser$add_argument("-p", "--plot", help = "output plot, must have .pdf ext.", default = "~/Desktop/ideogram.pdf") args <- parser$parse_args() filename <- args$asm asmdf <- function(filename, colors, minalnsize = args$min) { asmvshg <- read.table(filename, header = T, comment.char = ">") names(asmvshg)[1:3] <- c("chr", "start", "end") asmvshg <- asmvshg %>% group_by(query_name, chr) %>% summarise( bp_aligned = sum(end - start), min_start = min(start), max_end = max(end), ) %>% filter(bp_aligned > minalnsize) %>% merge(asmvshg) %>% mutate(group_num = group_indices(., query_name, chr)) %>% group_by(query_name, chr) %>% mutate(count_in_chr = n(),) %>% ungroup() %>% arrange(chr, min_start) %>% data.table() asmvshg$name <- asmvshg$query_name print(head(asmvshg)) print(tail(asmvshg)) curcolor <- 1 lencolors <- length(colors) precontig <- "" asmcolor <- NULL seen <- c() y <- NULL for (i in 1:nrow(asmvshg)) { contig <- as.character(asmvshg$name[i]) if (contig != precontig) { curcolor <- (curcolor + 1) %% lencolors precontig <- contig } asmcolor <- c(asmcolor, colors[curcolor + 1]) y <- c(y, curcolor / 4) } asmvshg$color <- asmcolor asmvshg$y <- y asmvshg$y1 <- asmvshg$y + .25 print(head(asmvshg)) return(asmvshg) } asmvshg <- asmdf(filename, c("#2081f9", "#f99820")) tables = list(asmvshg) if (!is.null(args$asm2)) { asmvshg2 <- asmdf(args$asm2, c("#159934", "#99157a")) tables[[2]] = asmvshg2 } tables cex <- 0.5 print("Plotting") pdf(file = args$plot, width = 9, height = 11) if (is.null(args$asm2)) { kp <- plotKaryotype(genome = GENOME, cytobands = CYTOFULL, chromosomes = NOM) } else { kp <- plotKaryotype( genome = GENOME, cytobands = CYTOFULL, chromosomes = NOM, plot.type = 2 ) } for (i in 1:length(tables)) { data = tables[[i]] data$mid = (data$y + data$y1) / 2 data_u = data %>% group_by(chr, query_name, mid, min_start, max_end, color) %>% summarise() # add spanning lines kpRect( kp, chr = data_u$chr, x0 = data_u$min_start, x1 = data_u$max_end, y0 = data_u$mid, y1 = data_u$mid, col = data_u$color, data.panel = i ) # add colored blocks kpRect( kp, chr = data$chr, x0 = data$start, x1 = data$end, y0 = data$y, y1 = data$y1, col = data$color, data.panel = i ) } dev.off() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 | hub = """ hub gene-conversion shortLabel gene-conversion longLabel gene-conversion genomesFile genomes.txt email mvollger.edu """ genomes = """ genome {ref} trackDb trackDb.txt """ track_db_header = """ track gene-conversion compositeTrack off shortLabel gene-conversion longLabel gene-conversion visibility hide type bigBed 9 + itemRgb on maxItems 100000 filter.score 5:1000 filterByRange.score on filterLimits.score 0:1000 filterLabel.score Minimum decrease in mismatches """ track = """ track g-c-{sm} parent gene-conversion bigDataUrl gene-conversion/{sm}.bb shortLabel {sm} gc D/A longLabel {sm} gene conversion type bigBed 9 + itemRgb on priority {pri} visibility dense """ track_db_interact_header = """ track interact-gene-conversion compositeTrack off shortLabel interact-gc longLabel gene conversion interactions visibility hide type bigInteract maxItems 100000 filter.score 5:1000 filterByRange.score on filterLimits.score 0:1000 """ track_interact = """ track interact-g-c-{sm} parent gene-conversion bigDataUrl gene-conversion/{sm}.interact.bb shortLabel {sm} gc longLabel {sm} gene conversion interactions type bigInteract maxHeightPixels 100:30:5 priority {pri2} visibility full """ track_super = """ track gene-conversion-by-sample superTrack on show shortLabel gc-by-sample longLabel gene conversion by sample filter.score 5:1000 filterByRange.score on filterLimits.score 0:1000 """ track_comp = """ track {sm} parent gene-conversion-by-sample compositeTrack on shortLabel {sm}-gc longLabel {sm} gene conversion type bigWig visibility full track gc-{sm} parent {sm} bigDataUrl gene-conversion/{sm}.bb shortLabel {sm} gc longLabel {sm} gene conversion type bigBed 9 + itemRgb on visibility dense track interact-{sm} parent {sm} bigDataUrl gene-conversion/{sm}.interact.bb shortLabel {sm} interact longLabel {sm} interactions type bigInteract maxHeightPixels 100:30:5 visibility full """ all_tracks = """ track g-c-interact bigDataUrl all_candidate_interactions.bb shortLabel all gc interact longLabel all gene conversion interactions type bigInteract visibility hide track Donor bigDataUrl all_candidate_windows_donor.bw shortLabel Donor longLabel Donor type bigWig color 211,144,0 autoScale on visibility full track Acceptor bigDataUrl all_candidate_windows_acceptor.bw shortLabel Acceptor longLabel Acceptor type bigWig color 0,127,211 autoScale on visibility full track gene-conversion-windows bigDataUrl all_candidate_windows.bb shortLabel all g-c windows longLabel all gene conversion windows type bigBed 9 + itemRgb on visibility dense maxItems 100000 """ view_format_super = """ # SuperTrack declaration no type or visibility is required # However "show" is needed to have a superTrack on by default track gene-conversion longLabel gene conversion for HPRC samples superTrack on show shortLabel gene-conversion """ view_format_comp = """ # Composite declaration, usually composite tracks are all of one type, # and the type can be declared. # When a mixed type (some bigBeds, some bigWigs) you need to use the unusual # 'type bed 3' declaration. # The subGroup1 line will define groups, # in this case the special 'view' group # (a new subGroup2 could be metadata) # Later individual tracks will identify what 'subGroups id' they belong to. track gene-conversion-by-sample type bed 3 longLabel gene conversion by sample parent gene-conversion compositeTrack on shortLabel gc-by-sample visibility full subGroup1 view Views bb=Colored_bigBed_items int=Interact_Data bg=BigBedGraph_items """ view_fromat_bb = """ # This is the unexpected part about views, # you need a separate parent to group the view # So this new view-specific stanza with "view id" # can collect all tracks with some visibility settings track gene-conversion-by-sample-bb parent gene-conversion-by-sample on view bb visibility pack itemRgb on maxItems 100000 filter.score 5:1000 filterByRange.score on filterLimits.score 0:1000 """ view_format_bb_sm = """ # Child bigBed in this view # The 'subGroups view=bb' shares this track belongs in a view, # even though a parent declaration is also needed # All these tracks should be the same type of data track gene-conversion-by-sample-bb-{sm} parent gene-conversion-by-sample-bb type bigBed 9 + longLabel {sm} gene conversion bb bigDataUrl gene-conversion/{sm}.bb shortLabel {sm}-gc-bb subGroups view=bb """ view_format_int = """ # New View Stanza that collects all interact in this composite # This declares related bigInteract tracks track gene-conversion-by-sample-interact parent gene-conversion-by-sample on view int visibility full maxHeightPixels 100:55:5 maxItems 100000 filter.score 5:1000 filterByRange.score on filterLimits.score 0:1000 """ view_format_int_sm = """ # Child one Interact track gene-conversion-by-sample-interact-{sm} parent gene-conversion-by-sample-interact type bigInteract longLabel {sm} gene conversion interactions bigDataUrl gene-conversion/{sm}.interact.bb shortLabel {sm}-gc-interact subGroups view=int """ view_format_bg = """ track gene-conversion-by-sample-bg parent gene-conversion-by-sample on view bg visibility full maxHeightPixels 100:10:5 maxItems 100000 """ view_format_bg_sm = """ track gene-conversion-by-sample-bg-{sm} parent gene-conversion-by-sample-bg longLabel {sm} gene conversion bg bigDataUrl gene-conversion/{sm}.bg shortLabel {sm}-gc-bg subGroups view=bg autoScale Off graphTypeDefault Bar gridDefault OFF windowingFunction Mean color 175,4,4 altColor 47,79,79 viewLimits 0:5 type bigWig 0 1000 """ with open(snakemake.output.track, "w") as out: out.write(all_tracks) if False: out.write(track_db_header) # out.write(track_db_interact_header) [ out.write( (track + track_interact).format( sm=sm, pri=2 * idx + 1, pri2=2 * idx + 2 ) ) # pri=idx + 1, pri2=idx + 2)) for idx, sm in enumerate(snakemake.params.samples) ] elif True: out.write(view_format_super) out.write(view_format_comp) # big beds out.write(view_fromat_bb) [out.write(view_format_bb_sm.format(sm=sm)) for sm in snakemake.params.samples] # bigInteract out.write(view_format_int) [out.write(view_format_int_sm.format(sm=sm)) for sm in snakemake.params.samples] # bedGraph out.write(view_format_bg) [out.write(view_format_bg_sm.format(sm=sm)) for sm in snakemake.params.samples] else: out.write(track_super) [out.write(track_comp.format(sm=sm)) for sm in snakemake.params.samples] open(snakemake.output.hub, "w").write(hub) ref = snakemake.wildcards.ref if "CHM13_V1.1" in ref: print("changing ref") ref = "t2t-chm13-v1.1" open(snakemake.output.genomes, "w").write(genomes.format(ref=ref)) |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Created: 1yr ago
Updated: 1yr ago
Maitainers:
public
URL:
https://github.com/mrvollger/asm-to-reference-alignment
Name:
asm-to-reference-alignment
Version:
v0.1
Downloaded:
0
Copyright:
Public Domain
License:
None
Keywords:
- Future updates
Related Workflows

ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...

Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...

snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...

ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics

RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...

This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...