Flexible workflow designed for bacterial WGS analyses (annotation, core/pan-genome reconstruction, phylogeny)
This pipeline is written specifically for annotating the bacteria whole genome sequences (WGS) . The pipeline handles multiple operations that are necessary for bacterial genome analysis. Including:
-
Annotating bacterial WGS
-
Constructing a pangenome for bacterial WGS dataset
-
Identify core and accessory loci for bacterial WGS dataset
-
Produce core gene concatenation alignment (with & without recombination detection)
-
Identify potential recombination regions (recent & ancestral) - (WGS wise & Per-gene)
-
Identify SNPs from conserved regions of the bacterial genomes
-
Reconstruct Phylogeny of input dataset (Maximum Liklihood)
-
Add Annotation to alignment and ML trees taxa (designed for BEAST Analysis)
Overall Workflow
Installation
-
Install conda (Python3) in your local computer or on the computing cluster. Detailed instruction can be find here
-
make a working directory
mkdir {BactPrep_dir}* cd {BactPrep_dir}
* this name can change base on your project
-
clone the repository into local working directory
git clone https://github.com/rx32940/BactPrep.git
-
If first time using the pipeline
cd BactPrep conda create -n BactPrep python=3 mamba -c conda-forge -y conda activate BactPrep # if this step is not complete, set channel priirity in conda env to flexible with command: # conda config --set channel_priority true mamba install --file workflow/env/install.yaml source INSTALL.sh
* this name can change base on your project
-
-
4.1) if used the pipeline before or has matlab runtime R2016b (MCR)
AND
fastGear executable installed on the machine, use flag
--mcr_path
and--fastgear_exe
to specify the absolute path to MCR and fasrGear executable. IF these two software were installed during previous use of BactPrep. you can find them in theresources
folder from the previous download (please see example #6 below for detail).
-
4.1) if used the pipeline before or has matlab runtime R2016b (MCR)
AND
fastGear executable installed on the machine, use flag
-
You are now good to go! RUN:
start_analysis.py ALL(coreGen/wgsRecomb/panRecomb)
OR
python start_analysis.py ALL(coreGen/wgsRecomb/panRecomb)
-
after running all your analysis, deactivate the env
conda deactivate
Sample dataset
- The sample dataset can be downloaded to your work directory by:
mkdir -p $INPATH/assemblies
cd $INPATH/assemblies
zenodo_get -d 10.5281/zenodo.5603335
rm $INPATH/assemblies/md5sums*
Reference genome for Streptococcus pneumoniae PMEN1 can be downloaded from NCBI: Streptococcus pneumoniae ATCC 700669 (firmicutes)
cd $INPATH/
wget https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/026/665/GCF_000026665.1_ASM2666v1/GCF_000026665.1_ASM2666v1_genomic.fna.gz
gunzip GCF_000026665.1_ASM2666v1_genomic.fna.gz
Instruction
Module Selection:
ALL
: this module will attempt to run
wgsRecomb
,
coreGen
, and
coreRecomb
module
-
All options required for these three modules are also required for
ALL
module
wgsRecomb
: detect recombination from WGS alignment
coreGen
: construct bacteria pangenome
panRecomb
: will attempt to detect recombination for each gene in the all genes in the pangenome individually
- predict recombinaiton among lineages detected by BAPs (can also provide your own lineage)
- this module use gene loci detected by Roary, thus will also run module coreGen
- please use geneRecomb module for individual gene/alignment of interest
geneRecomb
: will detect recombination from a gene/alignment interested
coreRecomb
: will dect recombinations only from the core genes detected by coreGen module (Roary)
- this is part of the ALL module
- this module use gene loci detected by Roary, thus will also run module coreGen
- will mask detected recombination region, and call SNPs from conserved region of core genome alignment
- recombinations were detected for each gene individually
- will also reconstruct phylogeny for the dataset based on the core clonal SNPs.
usage: start_analysis.py MODULE [options]
Please always specify the program to use in the first argument, or the whole pipeline will attemp to run
positional arguments:
{ALL,wgsRecomb,coreGen,coreRecomb,panRecomb,geneRecomb}
Specify the module you would like to run
optional arguments:
-h, --help show this help message and exit
general arguments:
-i , --input path to input dir with assemblies
-p , --name provide name prefix for the output files
-t , --thread num of threads
-o , --output path to the output directory
arguments for if you would like to add metadata to output:
-M, --addMetadata must have the flag specify if want to allow annotation
-a , --annotate path to a csv file containing sample metadata
-s , --sample integer indicates which column the sample name is in the metadata csv file
-m , --metadata metadata chosen to annotate ML tree/alignment after the sample name
arguments for wgsRecomb module:
-r , --ref reference (required for wgsRecomb module)
-v , --phage phage region identified for masking (bed file)
-G , --gubbins any additional Gubbins arguments (please refer to Gubbins manual)
arguments for coreGen module:
-g , --gff path to input dir with gff (this can replace input assemblies dir in coreGen module Must be gff3 files)
-c , --core define core gene definition by percentage for coreGen module (default=99)
-k , --kingdom specify the kingom of input assemlies for genome annotation (default=Bacteria)
-R , --roary any additional roary arguments (please refer to Roary manual)
arguments for all three fastGear modules (coreRecomb, panRecomb, geneRecomb):
--mcr_path path to mcr runtime (need to install before use any of the fastGear module
--fastgear_exe path to the excutable of fastGear
--fg , --fastgear_param
path to fastGear params
arguments for geneRecomb module:
-n , --alignment input alignment (either -n/-fl is required for geneRecomb module)
-fl , --alnlist input alignment list with path to gene alignments (either -n/-fl is required for geneRecomb module)
Enjoy the program! :)
Run
:
start_analysis.py ALL(coreGen/wgsRecomb/panRecomb)
Output Files
FAQS
1) Get Start - How to run ALL Module if you would like to run "wgsRecomb", "coreGen", and "coreRecomb" modules all together, you can just use the "ALL" module. Note: a reference genome (-r) is necessary to run "wgsRecomb" module
EXAMPLE:
start_analysis.py ALL -p PMEN1.dated \
-o $OUTPATH \
-i $INPATH/assemblies \
-r $INPATH/GCF_000026665.1_ASM2666v1_genomic.fna
1.1) If you already have gff files obtained from previous analysis, gff dir can be used as input for "coreGen module". This will saves a lot time
start_analysis.py ALL -p PMEN1.dated \
-o $OUTPATH \
-t 10 \
-g $INPATH/gff \ # gff dir as input
--mcr_path {path_to_previous_BactPrep_folder}/resources/mcr \ # absolute path to mcr R2016b
--fastgear_exe /home/user/SOFTWARE/fastGEARpackageLinux64bit # absolute path to fastGear excutable
2) Obtain Annotated Outputs
if you would like to obtain annotated phylogenies and alignments, please provide a CSV file with annotation of every isolates. Flag
-M
must be specified for annotation.
-a
is the path to the CSV metadata file.
-s
allows the you to specify the index of the column
matches with the input assemblies' file names
, default is 1.
-m
asks for the column names of the metadata you would like to add for annotations (comma separated).
EXAMPLE CSV File: ENA Accession | Strain | Year | Country -- | -- | -- | -- ERS009226 | ARG 740 | 1995 | Argentina ERS009778 | 3122 | 1994 | Canada ERS009785 | 36148 | 2008 | Canada ERS004773 | HK P1 | 2000 | China ERS004775 | HK P38 | 2000 | China
EXAMPLE:
start_analysis.py ALL -p PMEN1.dated \
-o $OUTPATH \
-i $INPATH/assemblies \
-r $INPATH/GCF_000026665.1_ASM2666v1_genomic.fna \
-M \
-a $INPATH/PMEN1.dated.metadata.csv \
-s 1 \
-m Year,Country
3) IF you would only like to run "wgsRecomb" please keep in mind, a reference genome must provided by user."wgsRecomb" module will call snps from the reference genome for each input WGS assemblies, and combine them into a multiple sequence alignment using Snippy , where genome regions shared by all isolates in the input dataset will be extracted. Gubbins will take the Snippy input to detect recombination regions from the multi-sequence alignment. At end of the pipeline, SNPs outside of the recombination regions will be used to reconstruct the input dataset's phylogeny with IQTree . Annotation will be added to phylogenies and SNPs alignments if a metadata file is provided by user (please see example 2 for details).
EXAMPLE:
start_analysis.py wgsRecomb -p PMEN1.dated \
-o $OUTPATH \
-i $INPATH/assemblies \
-r $INPATH/GCF_000026665.1_ASM2666v1_genomic.fna
4) IF you would only like to run "coreGen"
a reference file would be required for this module. All input WGS assemblies will be annotated by
Prokka
. Using prokka's gene annotations,
Roary
will 1) reconstruct the pangenome of the input dataset, and 2) identify core genes shared by 99% (this can be adjust by user by
-c
flag) of the isolates in the input dataset. Roary will also provide a core gene concatenation alignment, which will be used for phylogeny reconstruction using
IQTree
at end of the pipeline. Annotation will be added to phylogenies and SNPs alignments if a metadata file is provided by user (please see example 2 for details).
EXAMPLE:
start_analysis.py wgsRecomb -p PMEN1.dated \
-o $OUTPATH \
-i $INPATH/assemblies
5) IF you would only like to run "coreRecomb" pipeline implemented in the "coreGen" module will run first. "coreRecomb" module will identify homologous recombinaition from every core gene identified by Roary . The identified recombination regions will be masked in the gene alignments before all core genes' masked alignments are concatenated into a super-gene alignment. core SNPs outside of the recombination regions will be called, SNPs outside of the recombination regions will be used to reconstruct the input dataset's phylogeny with IQTree . Annotation will be added to phylogenies and SNPs alignments if a metadata file is provided by user (please see example 2 for details).
EXAMPLE:
start_analysis.py coreRecomb \
-p PMEN1.dated \
-o $WORKPATH -i $WORKPATH/assemblies \
-r $WORKPATH/GCF_000026665.1_ASM2666v1_genomic.fna \
-t 10 \
-M \
-a $WORKPATH/PMEN1.dated.metadata.csv \
-m Year,Country
6) IF matlab runtime (MCR) version R2016a is installed or this is not the first time you are running this pipeline.
if you have already installed MCR R2016a and fastGear executable before on your machine, or you have already installed these two dependencies the previous times you were using BactPrep. You can use flag
--mcr_path
and
--fastgear_exe
to avoid installing these two dependencies again.
you don't need to run
INSTALL.sh
script again if these two scripts is already installed, but a conda env still need to be created and activated to run BactPrep pipeline
EXAMPLE:
conda env create -f workflow/env/install.yaml -n BactPrep
conda activate BactPrep
start_analysis.py panRecomb -p PMEN1.dated_fastGear_pan \
-o $OUTPATH \
-t 10 \
-i $INPATH/assemblies \
--mcr_path {path_to_previous_BactPrep_folder}/matlab/v901 \
--fastgear_exe {path_to_previous_BactPrep_folder}/fastGEARpackageLinux64bit
7) IF you would like to inform wgsRecomb (gubbins) about already known phage region
phage region can be provided to snippy before running gubbins. If you would like to provide known phage region while running gubbins, use
-v
or
--phage
to provide phage region in a BED file.
EXAMPLE:
start_analysis.py wgsRecomb \
-p PMEN1.dated \
-o $WORKPATH -i $WORKPATH/assemblies \
-r $WORKPATH/GCF_000026665.1_ASM2666v1_genomic.fna \
-v $WORKPATH/phage_region.bed
8) IF additional arguments need to be specificed for Roary and Gubbins when using "coreGEN", "wgsRecomb", or "ALL" module
additional Roary and Gubbins arguments that is not specificed by BactPrep can be added by using the
-R
of
-G
flags, respectively. Dependencies used for these additional arguments need to be install by user.
SPACE is necessary at the beginning of the string
Example:
start_analysis.py ALL \
-p PMEN1.dated \
-o $WORKPATH -g $WORKPATH/gff \
-r $WORKPATH/GCF_000026665.1_ASM2666v1_genomic.fna \
-R " -r -y -iv 1.5"
-
If you have trouble installing fastGear with
INSTALL.sh
script. please follow the instruction below for installation.-
mcr has many versions, use the link to download the version compatible with fastGear :
Download and install fastGear excutable:
-
change directory to:
{absolute_path_to_BactPrep}/resources/mcr
-
you can download mcr provided by fastGear developers: https://users.ics.aalto.fi/~pemartti/fastGEAR/
wget --no-check-certificate https://users.ics.aalto.fi/~pemartti/fastGEAR/fastGEARpackageLinux64bit.tar.gz -P {absolute_path_to_BactPrep}/resources
) -
Unzip the downloaded file
tar -zvxf fastGEARpackageLinux64bit.tar.gz
Download and install Matlab Runtime:
-
Download MCR zip provided by fastGear developers:
wget https://users.ics.aalto.fi/~pemartti/fastGEAR/MCRInstallerLinux64bit.zip -P {absolute_path_to_BactPrep}/resources --no-check-certificate
-
Unzip the downloaded file
unzip MCRInstallerLinux64bit.zip
- or download version R2016a from MATLAB: https://www.mathworks.com/products/compiler/matlab-runtime.html
-
change directory after unzip the downloaded file
cd MCRInstallerLinux64bit
-
install:
./install -destinationFolder {absolute_path_to_BactPrep}/resources/mcr/ -mode silent -agreeToLicense yes
-
if you would like to install with a GUI interface, please allow
X11 display
at the terminial, do
./install
, this will open the GUI installation, and will allow you to change the directory to install, please install to{absolute_path_to_BactPrep}/resources/mcr
-
if you would like to install with a GUI interface, please allow
X11 display
at the terminial, do
-
change directory to:
-
if you already have mcr (R2016a) on your machine (or used this pipeline before), you do not need to reinstall mcr, please specify the absolute path with
--mcr_path
flag, which leads to the absolute path of your installed mcr-
--mcr_path
: ex.--mcr_path {absolute_path_to_BactPrep}resources/mcr/
-
-
Code Snippets
10 11 12 13 14 15 16 17 18 | shell: """ if [[ -n {input.metadata_file} ]]; then python {WORKFLOW}scripts/change_fasta_header.py {input.metadata_file} {input.original_alignment} {params.meta_include} {params.key_column_index} {output} else touch {output} fi """ |
29 30 31 32 33 34 35 36 37 | shell: """ if [[ -n {input.metadata_file} ]]; then python {WORKFLOW}scripts/rename_phylogeny_taxa.py {input.metadata_file} {input.tree} {params.meta_include} {params.key_column_index} {output} else touch {output} fi """ |
10 11 12 13 14 15 16 17 18 | shell: """ if [[ -n {input.metadata_file} ]]; then python {WORKFLOW}scripts/change_fasta_header.py {input.metadata_file} {input.original_alignment} {params.meta_include} {params.key_column_index} {output} else touch {output} fi """ |
29 30 31 32 33 34 35 36 37 | shell: """ if [[ -n {input.metadata_file} ]]; then python {WORKFLOW}scripts/rename_phylogeny_taxa.py {input.metadata_file} {input.tree} {params.meta_include} {params.key_column_index} {output} else touch {output} fi """ |
10 11 12 13 14 15 16 17 18 | shell: """ if [[ -n {input.metadata_file} ]]; then python {WORKFLOW}scripts/change_fasta_header.py {input.metadata_file} {input.original_alignment} {params.meta_include} {params.key_column_index} {output} else touch {output} fi """ |
29 30 31 32 33 34 35 36 37 | shell: """ if [[ -n {input.metadata_file} ]]; then python {WORKFLOW}scripts/rename_phylogeny_taxa.py {input.metadata_file} {input.tree} {params.meta_include} {params.key_column_index} {output} else touch {output} fi """ |
6 7 8 9 | shell: """ python {WORKFLOW}scripts/get.genes.roary.core.aln.py {input} {output} """ |
20 21 22 23 24 25 | shell: """ LD_LIBRARY_PATH={matlab_path} {fastGear_exe}run_fastGEAR.sh {mcr_path} {fastGear_dir}roary_pangenome_seq/{wildcards.core_locus}.fa.aln {fastGear_core_dir}core_loci_fastGear_out/{wildcards.core_locus}/{wildcards.core_locus}.mat {fastGear_params} cp {fastGear_dir}roary_pangenome_seq/{wildcards.core_locus}.fa.aln {fastGear_core_dir}core_loci_fastGear_out/{wildcards.core_locus}/{wildcards.core_locus}.fa """ |
45 46 47 48 | shell: """ bedtools maskfasta -fi {input.fasta} -bed {input.bed} -fo {output} """ |
61 62 63 64 | run: loci = [file.split("/")[-1].split("_core_mask")[0].strip() for file in input if not file.startswith(".")] with open(str(output[0]), mode='w', encoding='utf-8') as myfile: myfile.write('\n'.join(loci)) |
73 74 75 76 77 78 79 80 81 | shell: """ cd {fastGear_core_dir}plot_coregenome/ python {WORKFLOW}scripts/post_fastGear.py \ -i {fastGear_core_dir}core_loci_fastGear_out \ -g {input.loci} \ -o {fastGear_core_dir}plot_coregenome/core_fastgear_plot \ -s True -f pdf -p {input.tree} -z True -y 100 -x 100 """ |
88 89 90 91 | shell: """ perl {WORKFLOW}scripts/catfasta2phyml.pl -f -c -s --verbose {fastGear_core_dir}masked_coregene_aln/*fasta > {output} """ |
100 101 102 103 | shell: """ snp-sites {input} -o {output} """ |
117 118 119 120 | shell: """ iqtree -bb 1000 -nt AUTO -m MFP -pre {params.prefix} -s {input.snps_aln} -fconst $(snp-sites -C {input.core_aln}) """ |
6 7 8 9 10 11 12 | shell: """ for i in {params.input_files}; do cp $i {fastGear_gene_dir}input_alns/{wildcards.gene}.fasta done """ |
22 23 24 25 26 | shell: """ LD_LIBRARY_PATH={matlab_path} {fastGear_exe}run_fastGEAR.sh {mcr_path} {input} {fastGear_gene_dir}{wildcards.gene}/{wildcards.gene}.mat {fastGear_exe}fG_input_specs.txt """ |
6 7 8 9 10 | shell: """ mkdir -p {fastGear_dir}roary_pangenome_seq python {WORKFLOW}scripts/change.roary.gene.alns.headers.py {roary_dir}pan_genome_sequences {fastGear_dir}roary_pangenome_seq {input} """ |
18 19 20 21 22 23 | shell: """ LD_LIBRARY_PATH={matlab_path} {fastGear_exe}run_fastGEAR.sh {mcr_path} {fastGear_dir}roary_pangenome_seq/{wildcards.locus}.fa.aln {fastGear_dir}loci_fastGear_out/{wildcards.locus}/{wildcards.locus}.mat {fastGear_params} cp {fastGear_dir}roary_pangenome_seq/{wildcards.locus}.fa.aln {fastGear_dir}loci_fastGear_out/{wildcards.locus}/{wildcards.locus}.fa """ |
35 36 37 38 39 | run: loci = [file.split("/")[-3] for file in input] print(loci) with open(str(output[0]), mode='w', encoding='utf-8') as myfile: myfile.write('\n'.join(loci)) |
48 49 50 51 52 53 54 55 56 | shell: """ cd {fastGear_dir}plot_pangenome/ python {WORKFLOW}scripts/post_fastGear.py \ -i {fastGear_dir}loci_fastGear_out \ -g {input.loci} \ -o {fastGear_dir}plot_pangenome/pan_fastgear_plot \ -s True -f pdf -p {input.tree} -z False -y 100 -x 100 """ |
13 14 15 16 17 | shell: """ cd {gubbins_dir} run_gubbins.py{params.additional} --threads {threads} -v -p {params.out_prefix} {input} """ |
26 27 28 29 | shell: """ cat {input} | seqkit grep -v -p Reference > {output} """ |
42 43 44 45 | shell: """ iqtree -bb 1000 -nt AUTO -m MFP -pre {params.prefix} -s {input} """ |
13 14 15 16 17 18 19 | shell: """ PIRATE \ -i {input} -o {params.out_dir} \ -a -r -t {threads} \ {params.mcl} """ |
28 29 30 31 32 | shell: """ perl {WORKFLOW}PIRATE_to_roary.pl -i {input} -o {pirate_dir}pirate_roary_pres_abs.csv """ |
4 5 6 7 | shell: """ mv {asm_dir}{wildcards.sample}* {output} """ |
21 22 23 24 25 26 27 28 | shell: """ prokka -kingdom {params.kingdom} \ -outdir {output} \ -prefix {wildcards.sample} \ {input} --force -cpu {threads} """ |
34 35 36 37 | shell: """ cp {input}/{wildcards.sample}.gff {gff_dir}{wildcards.sample}".gff" """ |
16 17 18 19 20 21 22 23 | shell: """ roary{params.additional} -e -n -p {threads} -f {params.out_dir} {input} -v -cd {core_percentage} -z cp -r {roary_dir}*/* {roary_dir} rm -rf {roary_dir}_* """ |
36 37 38 39 | shell: """ iqtree -bb 1000 -nt AUTO -m MFP -pre {params.prefix} -s {input} """ |
6 7 | script: "{WORKFLOW}scripts/get_sample_names.py" |
11 12 13 14 | shell: """ snippy --outdir {output} --ctgs {input} --ref {reference} --cpus {threads} """ |
25 26 27 28 | shell: """ snippy-core{params.mask} {input} --prefix {snippy_dir}core """ |
37 38 39 40 41 | shell: """ snippy-clean_full_aln {input} > {snippy_dir}clean.full.aln """ |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | from Bio import SeqIO import pandas as pd import sys print(sys.argv[1]) metadata = pd.read_csv(str(sys.argv[1])) print(int(sys.argv[4])) dict_key= metadata.columns[int(sys.argv[4])] dict_list=[] items_list=str(sys.argv[3]).split(",") for item in items_list: temp_dict=metadata.loc[:,[dict_key,item]].set_index(dict_key).to_dict()[item] dict_list.append(temp_dict) with open(str(sys.argv[5]), "w+") as w: print("start a new file, overwrriten the old file if exist") with open(str(sys.argv[2])) as f, open(str(sys.argv[5]), "w") as w: records = SeqIO.parse(f,"fasta") for r in records: old_id = r.id new_name=r.id for d in range(len(dict_list)): current_dict= dict_list[d] current_meta=current_dict[old_id] new_name = new_name + "|" + str(current_meta) r.id = new_name r.description = "" print(r.id) SeqIO.write(r, w, "fasta") |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | import pandas as pd from Bio import SeqIO import sys import os input_dir=sys.argv[1] output_dir=sys.argv[2] # read in roary's output file roary_output=pd.read_csv(sys.argv[3]) # remove the first 14 columns biosample_roaryID=roary_output.iloc[1,14:].to_frame() # set the name for the columb with Roary ID biosample_roaryID.columns = ["RoaryID"] # remove the cluster number after roary ID biosample_roaryID= biosample_roaryID["RoaryID"].str.split("_").str[0].to_frame() # make rownames (BioSample Accesion) a column (instead of rownames) biosample_roaryID.index.name = 'BioSampleID' # reset the rwonames of the dataframe biosample_roaryID.reset_index(inplace=True) # turn dataframe into a dictionary between Roary ID and BioSample Accession biosample_roaryID_dict=biosample_roaryID.set_index('RoaryID').to_dict()['BioSampleID'] # declare a function to change the header from Roary output to Biosample ID def change_header(gene_fasta, changed_fasta): with open(gene_fasta) as f, open(changed_fasta, "w") as w: records = SeqIO.parse(f,"fasta") for r in records: currentID=r.id roaryID = currentID.split("_")[0] BioSampleAcc=biosample_roaryID_dict[roaryID] r.id = BioSampleAcc r.description = "" SeqIO.write(r, w, "fasta") # get directory directory = os.fsencode(os.path.join(input_dir)) for file in os.listdir(directory): filename = os.fsdecode(file) old_filename=os.path.join(input_dir,filename) new_filename=os.path.join(output_dir,filename) change_header(old_filename, new_filename) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | import os from Bio import SeqIO import sys roary_aln_coreGenes = sys.argv[1] roary_coreGenes_file = sys.argv[2] with open(roary_coreGenes_file, "w") as w: print("Start writing core genes locus tag in Roary's core_gene_alignment.aln") with open(roary_aln_coreGenes) as file: for line in file.readlines(): if "locus_tag" in line: current_tag=line.split("=")[1] with open(roary_coreGenes_file, "a") as w: w.write(current_tag) |
1 2 3 4 5 | import os with open(snakemake.output[0], "w") as f: for file in os.listdir(snakemake.input[0]): f.write(os.path.splitext(file)[0] + "\n") |
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 | import copy from Bio import SeqIO from collections import defaultdict from collections import OrderedDict from random import randint import gzip from glob import glob import multiprocessing import argparse import matplotlib.pyplot as plt import matplotlib.patches as patches from glob import glob import pandas as pd from Bio import Phylo import pylab import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from matplotlib.ticker import FuncFormatter, MaxNLocator, MultipleLocator, FixedLocator, FormatStrFormatter #BW: for x-axis labelling import os.path def main(): parser = argparse.ArgumentParser(description='make various plots from fastGEAR output') parser.add_argument("-i", type=str, help="FastGEAR folder. Should have folders with gene names only no suffix or prefix") parser.add_argument("-o", type=str, help="Ouput name") parser.add_argument("-g", type=str, help="Genes of interest GOI list. Can be comma separated after flag GOI1,GOI2,GOI3 or a file.txt with one GOI per line. GOIs need to be named exactly as per fastGEAR run", default = None) parser.add_argument("-b", type=str, help="Sample of interest SOI list. Can be comma separated after flag SOI1,SOI2,SOI3 or a file.txt with one SOI per line. SOIs need to be named exactly as per fastGEAR run. PLEASE NOTE, ancestral recombinations cannot be filtered out by sample name. Suggest using recent only if using SOI list.", default = None) parser.add_argument("-t", type=int, help="Threads", default = 4) parser.add_argument("-y", type=int, help="Minimum y value to display gene name is scatter plot", default = 4) parser.add_argument("-x", type=int, help="Minimum y value to display gene name is scatter plot", default = 4) parser.add_argument("-s", type=str2bool, help="Make scatter plot of recent Vs ancestral recombinations", default = True) parser.add_argument("-z", type=str2bool, help="Make heatmap of recombinations. Default True", default = True) parser.add_argument("-u", type=str2bool, help="Make recombinations per gene plot. Default True", default = True) parser.add_argument("-a", type=str2bool, help="Include ancestral recombination. Default True", default = True) parser.add_argument("-r", type=str2bool, help="Exclude genes that had no recombination. Default True", default = True) parser.add_argument("-p", type=str, help="Tree file for sample order OR txt file of samples in order one per line must end in .txt or will parse as tree file.") parser.add_argument("-f", type=str, help="File type. Default png.", default = 'png') parser.add_argument("-xs", type=int, help="Heatmap x-axis font size", default = '10') parser.add_argument("-d", type=int, help="Division factor to draw ticks in heatmap. If 0, will use gene boundaries", default = 0) #BW: for x-axis labelling args = parser.parse_args() fout_sanity_checker = open('counts.txt','w') #plot heatmap y_height, order = parse_tree(args) #BW added MaxYaxis to calculate y-axis ticks MaxYaxis = len(order)-1 gene_len_dict = parse_genes(args) genes = list(gene_len_dict.keys()) colors = ['blue','green','#e6194b','#f58231','#911eb4','#46f0f0','#f032e6', '#d2f53c','#fabebe','#008080','#e6beff','#aa6e28', '#808000','#000080','#808080','#000000','#aaffc3']#as distaninct as possible recombinations = defaultdict(int) for i in range(0, len(genes), args.t): chunk = genes[i:i+args.t] recent_recombinations_sets = scatter_multi('recent', i, args, chunk, order) for gene_recent, recent_recombinations in recent_recombinations_sets: recombinations[gene_recent] += len(recent_recombinations) if args.a: ancestral_recombinations_sets = scatter_multi('ancestral', i, args, chunk, order) for gene_ancestral, ancestral_recombinations in ancestral_recombinations_sets: recombinations[gene_ancestral] += len(ancestral_recombinations) #remove genes with no recombination if args.r: recombinations = {key:value for key,value in recombinations.items() if value != 0} gene_len_dict = {key:value for key,value in gene_len_dict.items() if key in recombinations} genes = [gene for gene in genes if gene in recombinations] assert len(genes) == len(recombinations) if args.u: print ('Making recombination count plot') #instanciate plot fig = plt.figure(figsize=(50, 50), dpi =300) ax = fig.add_subplot(111, aspect='equal') # Default (x,y), width, height #legend legend = [] for i in range(9):#might need to make this dynamic... c=colors[i] i+=1.0 i/=10.0 p = patches.Rectangle((0.5, i), 0.1, 0.05, facecolor=c,edgecolor='black') legend.append(p) plt.legend(legend, ['0-24', '25-49', '50-74','75-99', '100-124','125-149','150-174','175-200', '200+'], fontsize=55) tick_locs = [] lens = [] for gene in recombinations: total_length = sum(list(gene_len_dict.values())) x, total_length_so_far, gene_len_percent = get_coords(args, gene_len_dict, gene, total_length) count = recombinations.get(gene) if count in list(range(0,25)): c=colors[0] elif count in list(range(25,50)): c=colors[1] elif count in list(range(50,75)): c=colors[2] elif count in list(range(75,100)): c=colors[3] elif count in list(range(100,125)): c=colors[4] elif count in list(range(125,150)): c=colors[5] elif count in list(range(150,175)): c=colors[6] elif count in list(range(175,200)): c=colors[7] elif count in list(range(201,1111)): c=colors[8] else: print ('number of recombinations exceeds codes ability to color!!!', count) if count == 0: height = 0.0 else: height = (float(count)/2.0)*0.01 p = patches.Rectangle((x, 0.0), gene_len_percent, height, facecolor=c,edgecolor=None) ax.add_patch(p) tick_locs.append(sum(lens) + gene_len_percent/2.0)#get loc in middle of gene lens.append(gene_len_percent) if len(recombinations) < 33: plt.xticks(tick_locs, list(recombinations.keys()),rotation=45, fontsize = 33) plt.title('Recombinations per ' + str(len(recombinations)) + ' gene') plt.savefig(args.o + '_recombination_count.' + args.f, dpi=300, bbox_inches='tight') plt.close('all') fout_sanity_checker.write('recombination count plot gene count: ' + str(len(recombinations))) for gene in recombinations: fout_sanity_checker.write(gene+',') fout_sanity_checker.write('\n') if args.z: print ('making heatmap...') #instanciate plot fig = plt.figure(figsize=(50, 50), dpi =300) ax = fig.add_subplot(111, aspect='equal') # Default (x,y), width, height for i in range(0, len(genes), args.t): tmp = genes[i:i+args.t] tmp = [(gene, args, gene_len_dict, y_height, order, colors) for gene in tmp] p = multiprocessing.Pool(processes = args.t) tmp_genes = p.map(make_patches, tmp) p.close() for gene_patch_list in tmp_genes: for gene_patch in gene_patch_list: ax.add_patch(gene_patch) ''' #BW Divide x axis by number of fractions, or by gene boundaries, depending on -d flag cumulativeLenlist = [] if args.d is 0: #Set ticks by genes cumulativeLen2 = 0 listOfGenes = [] for key in gene_len_dict: cumulativeLen2 = cumulativeLen2 + gene_len_dict[key] cumulativeLenlist.append(cumulativeLen2/cumulativeLen) listOfGenes.append(key) #get list of genes for label ax.xaxis.set_major_locator(FixedLocator(cumulativeLenlist)) #Sets ticks at intervals of given by -d. ax.set_xticklabels((listOfGenes), fontsize=args.xs, rotation='vertical') else: divisionFactor = args.d ax.xaxis.set_major_locator(MultipleLocator(1/divisionFactor)) #Sets ticks at intervals of given by -d. ax.set_xticklabels(frange((0-(cumulativeLen/divisionFactor)), cumulativeLen, cumulativeLen/divisionFactor), fontsize=args.xs, rotation='vertical') #broke #ax.yaxis.set_major_locator(MultipleLocator(1/MaxYaxis)) #BW Sets y-axis ticks to match the number of taxa #print (MaxYaxis, 1/MaxYaxis) #ax.set_yticklabels(frange(0.0, MaxYaxis, 1.0/MaxYaxis), fontsize=0) #Sets labels for y-axis to invisible (size 0) ''' fig.savefig(args.o + '_heat.' + args.f, dpi=300, bbox_inches='tight') plt.close('all') if args.s: print ('Getting recombinations per gene') #plot recent (y) Vs ancestral (x) on scatter plot data = {'x':[], 'y':[], 'gene':[]} for i in range(0, len(genes), args.t): chunk = genes[i:i+args.t] recent_recombinations_dicts = scatter_multi('recent', i, args, chunk, order) ancestral_recombinations_dicts = scatter_multi('ancestral', i, args, chunk, order) for gene_recent, recent_recombinations_dict in recent_recombinations_dicts: data['y'].append(len(recent_recombinations_dict)) data['gene'].append(gene_recent) for j, tmp_tuple in enumerate(ancestral_recombinations_dicts): gene_ancestral, ancestral_recombinations_dict = tmp_tuple try: assert data['gene'][i+j] == gene_ancestral except: print (data['gene'][i+j], gene_ancestral) data['x'].append(len(ancestral_recombinations_dict)) # display scatter plot data plt.figure(figsize=(15,15)) plt.scatter(data['x'], data['y'], marker = 'o') plt.title('FastGEAR ancestral Vs recent recombinations', fontsize=20) plt.xlabel('Ancestral', fontsize=15) plt.ylabel('Recent', fontsize=15) plt.xticks([x for x in (range((max(data.get('x')) + 20)*2)[::20])], fontsize=10)#always more recent plt.yticks([x for x in (range(max(data.get('y')) + 20)[::20])], fontsize=10) # add labels with open(args.o + '_scatter_count.csv', 'w') as fout: fout.write('Gene,Recent,Ancestral\n') for label, x, y in zip(data['gene'], data['x'], data['y']): fout.write(','.join([label, str(y), str(x)]) + '\n') if x > int(args.x) and y > int(args.y): plt.annotate(label, xy = (x, y), fontsize=15) plt.savefig(args.o + '_scatter.' + args.f, dpi=300, bbox_inches='tight') plt.close('all') fout_sanity_checker.close() def str2bool(v): if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') def scatter_multi(when, i, args, tmp, order): tmp = [(args, gene, when, order) for gene in tmp] p = multiprocessing.Pool(processes = args.t) recombinations_dicts = p.map(count_recombinations, tmp) p.close() return recombinations_dicts def make_patches(tuple_of_args): ''' Calculate all patches ''' gene, args, gene_len_dict, height, order, colors = tuple_of_args #parse FG output folder lineages, base = base_lineage(args, gene, order) recent_recombinations_dict = get_recombinations(args, gene, 'recent', order) ancestral_recombinations_dict = get_recombinations(args, gene, 'ancestral', order) #-no strain name details ''' print (gene, 'order',order[:3],order) print ('') print (gene,'lineages',list(lineages.keys())[:3]) print ('') print (gene,'recent_recombinations_dict',list(recent_recombinations_dict.keys())[:3],recent_recombinations_dict) print ('') print (gene,'ancestral_recombinations_dict',list(ancestral_recombinations_dict.keys())[:3],ancestral_recombinations_dict) ''' #prepare colors yellow = '#ffff00' #most common - background tmp_colors = copy.deepcopy(colors) tmp_colors.insert(int(base), yellow) #pepare to make patches gene_len = gene_len_dict.get(gene) total_length = sum(list(gene_len_dict.values())) x, total_length_so_far, gene_len_percent = get_coords(args, gene_len_dict, gene, total_length) y = 1.0 patches_list = [] #width = 1.5/float(len(order)) width= 0.01 for j, sample in enumerate(order): if sample in lineages: c = tmp_colors[lineages.get(sample)] p = patches.Rectangle((x, y - height), gene_len_percent, height, facecolor=c,edgecolor='black', linewidth=width ) #(x,y), width, height patches_list.append(p) if len(ancestral_recombinations_dict) > 0:#identify the strains in the recipient lineage - lineage2 == lineages.get(sample) for recombination in ancestral_recombinations_dict: if int(ancestral_recombinations_dict.get(recombination).get('lineage2')) == int(lineages.get(sample)): start = ancestral_recombinations_dict.get(recombination).get('start') end = ancestral_recombinations_dict.get(recombination).get('end') c = tmp_colors[int(ancestral_recombinations_dict.get(recombination).get('lineage1'))]#use color of donor lineage patches_list = overlay_recombinations(x, total_length, height, y, patches_list, width, c, start, end) if sample in recent_recombinations_dict:#recent ontop of ancestral for recombination in recent_recombinations_dict.get(sample): start = recent_recombinations_dict.get(sample).get(recombination).get('start') end = recent_recombinations_dict.get(sample).get(recombination).get('end') c = tmp_colors[recent_recombinations_dict.get(sample).get(recombination).get('donor_lineage')] patches_list = overlay_recombinations(x, total_length, height, y, patches_list, width, c, start, end) y -= height return patches_list def overlay_recombinations(x, total_length, height, y, patches_list, width, c, start, end): tmp_x = x + (start/total_length) recombination_len = (x + (end/total_length)) - tmp_x p = patches.Rectangle((tmp_x, y - height), recombination_len, height, facecolor=c, edgecolor='black', linewidth=width) patches_list.append(p) return patches_list def parse_list(arg): if ',' in arg: GOI = arg.strip().split(',') else: GOI=[] with open(arg, 'r') as fin: for line in fin: GOI.append(line.strip()) return GOI def parse_tree(args): ''' Get the order of sample in the tree ''' order = [] if args.p.endswith('.txt'): with open(args.p, 'r') as fin: for line in fin: order.append(line.strip()) else: t = Phylo.read(args.p, 'newick') t.ladderize()#branches with fewer leaf nodes are displayed on top - as per itol for node in t.find_clades(): if node.name: order.append(node.name) #PLot - full tree only fig = plt.figure(figsize=(15, 55), dpi =300) ax = fig.add_subplot(111) Phylo.draw(t, do_show=False, axes=ax, ) pylab.axis('off') pylab.rcParams.update({'font.size': 0.5}) pylab.savefig(args.o+'_tree.' + args.f,format=args.f, bbox_inches='tight', dpi=300) plt.close('all') if args.b: SOI = parse_list(args.b) order = [sample for sample in order if sample in SOI] last_sample_in_SOI = sorted(list(SOI))[-1] try: assert len(SOI) == len(order) except: print ('Your sample names dont match those in the tree!!!! tree = ', node.name, 'ur input = ', last_sample_in_SOI) height = 1.00/len(order) #write with open('order_of_samples_from_tree.txt', 'w') as fout: for sample in order: fout.write(sample + '\n') print ('Number of samples in tree or order file: ', len(order)) return height, order def parse_genes(args): ''' Parse fastGEAR output folder ''' if args.g: GOI = parse_list(args.g) if args.g: genes_output_folders = [] for gene in GOI: genes_output_folders.append(args.i + '/' + gene) else: genes_output_folders = glob(args.i + '/*') number_of_samples = [] gene_len_dict = OrderedDict() for i, gene_path in enumerate(genes_output_folders): if os.path.isfile(gene_path+'/output/recombinations_recent.txt'): if os.path.isfile(gene_path+'/output/lineage_information.txt'): with open(gene_path+'/output/recombinations_recent.txt', 'r') as fin: if fin.readline().strip() == '0 RECENT RECOMBINATION EVENTS': if not args.a:# skip if ancestral = Fasle continue gene = gene_path.strip().split('/')[-1] if args.g: if gene not in GOI: continue found = False for suffix in ['.fa', '.fasta', '.fna', '.aln', '.fsa']: if os.path.exists(gene_path + '/' + gene + suffix): for i, record in enumerate(SeqIO.parse(gene_path + '/' + gene + suffix,'fasta')): gene_len_dict[gene] = len(str(record.seq)) found = True number_of_samples.append(i+1) if not found: print('Cant find gene alignment for ' + gene + ' . Please use one of the following suffixes: .fa', '.fasta', '.fna', '.aln', '.fsa') else: print ('missing a file!!!!!!!!!!!!',gene_path+'/output/lineage_information.txt') else: print ('missing a file!!!!!!!!!!!!',gene_path+'/output/recombinations_recent.txt') if args.g: input_gene = sorted(list(GOI))[0] try: assert len(GOI) == len(gene_len_dict) except: print ('Your gene names dont match those in fastGEAR!!!! fastGEAR = ', str(len(gene_len_dict)), 'example gene = ',gene,'ur input = ', str(len(GOI)), 'example gene = ', input_gene) print ('Number of genes is', len(gene_len_dict)) print ('Max number of samples in an alignment is', max(number_of_samples)) global cumulativeLen #BW declare global cumulativeLen variable so that it can be used for the heatmap Y-axis cumulativeLen = 0 #LM - does it need to be global? #write with open('order_and_length_of_genes.txt', 'w') as fout: for gene in gene_len_dict: cumulativeLen = cumulativeLen + gene_len_dict.get(gene) #BW fout.write(gene + '\t' + str(gene_len_dict.get(gene)) +'\t' + str(cumulativeLen) + '\n') #BW added cumulativeLen return gene_len_dict def get_coords(args, gene_len_dict, gene, total_length): ''' Get x coordinates ''' gene_len = gene_len_dict.get(gene) gene_len_percent = gene_len/total_length total_length_so_far = 0 x = 0.0 gene_len = gene_len_dict.get(gene) total_length = sum(list(gene_len_dict.values())) for previous_gene in gene_len_dict: if previous_gene == gene: break previous_gene_len = gene_len_dict.get(previous_gene) previous_gene_len_percent = previous_gene_len/total_length total_length_so_far += previous_gene_len x += previous_gene_len_percent return x, total_length_so_far, gene_len_percent def count_recombinations(tuple_of_args): args, gene, recent_or_ancestral, order = tuple_of_args #get recombination counts (start end are same) if args.b: SOI = parse_list(args.b) recombinations_dict = defaultdict(int)#this mays well be a set - never use teh count... if os.path.isfile(args.i + '/' + gene + '/output/recombinations_' + recent_or_ancestral + '.txt'): with open(args.i + '/' + gene + '/output/recombinations_' + recent_or_ancestral + '.txt', 'r') as fin: fin.readline()#RECOMBINATIONS IN LINEAGES fin.readline()#Start End Lineage1 Lineage2 log(BF) for line in fin: bits = line.strip().split() if bits == []: continue if recent_or_ancestral == 'recent': start, end, donor_lineage, recipient_strain, _, strain_name = bits[:6] strain_name = get_sample(strain_name, order, gene) if args.b: if strain_name in SOI: recombinations_dict[start + ':' + end] += 1 else: recombinations_dict[start + ':' + end] += 1 if recent_or_ancestral == 'ancestral':#is there a way to filter this by SOI? if not then using SOI with ancestral isn't great start, end, l1, l2, _ = bits recombinations_dict[start + ':' + end] += 1 return (gene, recombinations_dict) def bits(line, recombinations_dict, order, gene): start, end, donor_lineage, recipient_strain, _, strain_name = line.strip().split()[:6] sample = get_sample(strain_name, order, gene) recombinations_dict[sample][start + ':' + end]['start'] = float(start) recombinations_dict[sample][start + ':' + end]['end'] = float(end) recombinations_dict[sample][start + ':' + end]['donor_lineage'] = int(donor_lineage) recombinations_dict[sample][start + ':' + end]['recipient_strain'] = recipient_strain return recombinations_dict def get_recombinations(args, gene, age, order): ''' from Pekka The way I draw the recombinations: 1) For each ancestral recombination: identify the strains in the recipient lineage (this is assumed to be lineage 2, as it is the smaller one). Draw a segment in each of these strains, using the color of the donor lineage (Lineage 1). 2) For each recent recombination: draw a segment in the recipient, using the color of the donor lineage. Note that the recent recombinations should be on top of the ancestral ones. (Of course one could draw just one or the other) ''' #get recombinations if args.b: SOI = parse_list(args.b) if os.path.isfile(args.i + '/' + gene + '/output/recombinations_' + age + '.txt'): with open(args.i + '/' + gene + '/output/recombinations_' + age + '.txt', 'r') as fin: fin.readline() fin.readline()#Start End DonorLineage RecipientStrain log(BF) StrainName if age == 'recent': recombinations_dict = defaultdict(lambda: defaultdict(lambda: defaultdict(str))) for line in fin: start, end, donor_lineage, recipient_strain, _, strain_name = line.strip().split()[:6] sample = get_sample(strain_name, order, gene) if args.b: if sample in SOI: recombinations_dict = bits(line, recombinations_dict, order, gene) else: recombinations_dict = bits(line, recombinations_dict, order, gene) if age == 'ancestral': recombinations_dict = defaultdict(lambda: defaultdict(str)) for line in fin: start, end, l1, l2, _ = line.strip().split() recombinations_dict[start + ':' + end]['start'] = float(start) recombinations_dict[start + ':' + end]['end'] = float(end) recombinations_dict[start + ':' + end]['lineage1'] = int(l1)#donor recombinations_dict[start + ':' + end]['lineage2'] = int(l2)#recipient return recombinations_dict def get_sample(name, order, gene): sample = '_'.join(name.split('.')[0].split('_')[:-1]) #Removes any suffix. And contig number if 'MGAS5005' in name: sample = 'LD_MGAS5005_M1' if sample not in order: sample = name.split('.')[0] #try: assert sample in order #need a better way to test #except: print (name, 'is in the alignemnt for gene ',gene,' but not in -p input !') return sample def base_lineage(args, gene, order): #get base lineage lineages = defaultdict(int) most_common = defaultdict(int) if os.path.isfile(args.i + '/' + gene + '/output/lineage_information.txt'): with open(args.i + '/' + gene + '/output/lineage_information.txt', 'r') as fin: fin.readline() #'StrainIndex', 'Lineage', 'Cluster', 'Name' for line in fin: strain_index, lineage, cluster, name = line.strip().split()[:4] sample = get_sample(name, order, gene) lineages[sample] = int(lineage) most_common[lineage] += 1 else: print (gene +' has no base lineage_information.txt') count = 0 for lineage in most_common: if most_common.get(lineage) > count: biggest = lineage count = most_common.get(lineage) return lineages, biggest #Functions added by BW - to relabel axes def format_fn(tick_val, tick_pos): if int(tick_val) in xs: return labels[int(tick_val)] else: return '' def frange(start, stop, step): i = start while i < stop: yield int(i) #BW used int(i) to get rounded numbers i += step if __name__ == "__main__": main() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | import pandas as pd import os from Bio import Phylo import sys allDated_meta = pd.read_csv(str(sys.argv[1])) dict_key= allDated_meta.columns[int(sys.argv[4])] dict_list=[] items_list=str(sys.argv[3]).split(",") for item in items_list: temp_dict=allDated_meta.loc[:,[dict_key,item]].set_index(dict_key).to_dict()[item] dict_list.append(temp_dict) tree = Phylo.read(str(sys.argv[2]),"newick") for taxa in tree.get_terminals(): newname=str(taxa) for d in range(len(dict_list)): newname=newname + "|"+ str(dict_list[d][str(taxa)]) tree.find_any(taxa).name = newname Phylo.write(tree,str(sys.argv[5]),"newick") |
Support
- Future updates
Related Workflows





