Repository containing bioinformatic code for macro-scale host transcriptomic data processing
Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output, operation, topic
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
##Set up required softwares
Usage
#Clone the git repository in your terminal
git clone git@github.com:3d-omics/Bioinfo_Macro_Host_Transcriptomics.git
#Change directory to the one you cloned in the previous step
cd Bioinfo_Macro_Host_Transcriptomics
#Activate conda environment where you have snakemake
conda activte Snakemake
#run the pipeline with the test data, it will download all the necesary software through conda. It should take less than 5 minutes.
snakemake --use-conda --jobs 8 all
-
Run it with your own data:
-
Edit
config/samples.tsv
and add your samples and where are they located. Here is an example of the tsv table filled with the information -
Edit
config/features.yml
with information regarding the reference you are using like in this example. -
Edit
config/params.yml
to change the execution of the steps like in this example
-
Features
-
FASTQ processing with
fastp
-
Mapping with
STAR
-
SAM/BAM/CRAM processing with
samtools
-
Reports with
multiqc
andFastQC
DAG
References
Code Snippets
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | shell: """ fastp \ --in1 {input.forward_} \ --in2 {input.reverse_} \ --out1 {output.forward_} \ --out2 {output.reverse_} \ --unpaired1 {output.unpaired1} \ --unpaired2 {output.unpaired2} \ --html {output.html} \ --json {output.json} \ --compression 1 \ --verbose \ --trim_poly_g \ --trim_poly_x \ --adapter_sequence {params.adapter_forward} \ --adapter_sequence_r2 {params.adapter_reverse} \ --thread {threads} \ {params.extra} \ 2> {log} 1>&2 """ |
12 13 | shell: "fastqc --quiet {input} 2> {log} 1>&2" |
13 14 15 16 17 | shell: """ ln --symbolic $(readlink --canonicalize {input.forward_}) {output.forward_} ln --symbolic $(readlink --canonicalize {input.reverse_}) {output.reverse_} """ |
11 12 | shell: "pigz -dc {input.fa} > {output.fa} 2> {log}" |
25 26 | shell: "pigz -dc {input.gtf} > {output.gtf}" |
29 30 31 32 33 34 35 36 37 38 39 40 41 | shell: """ multiqc \ --title {params.library} \ --force \ --filename {params.library} \ --outdir {params.out_dir} \ --dirs \ --dirs-depth 1 \ --config {input.config} \ {input} \ 2> {log} 1>&2 """ |
12 13 14 15 16 | shell: """ echo "samtools_idxstats_xchr: {params.chromosome_x}" > {output} 2> {log} echo "samtools_idxstats_ychr: {params.chromosome_y}" >> {output} 2>> {log} """ |
32 33 34 35 36 37 38 39 40 41 42 | shell: """ multiqc \ --filename reads \ --title reads \ --force \ --outdir {params.dir} \ --config {input.config} \ {input} \ 2> {log} 1>&2 """ |
58 59 60 61 62 63 64 65 66 67 68 | shell: """ multiqc \ --title fastp \ --force \ --filename fastp \ --outdir {params.dir} \ --config {input.config} \ {input} \ 2> {log} 1>&2 """ |
84 85 86 87 88 89 90 91 92 93 94 | shell: """ multiqc \ --title star \ --force \ --filename star \ --outdir {params.dir} \ --config {input.config} \ {input} \ 2> {log} 1>&2 """ |
11 12 | shell: "samtools index {input} 2> {log} 1>&2" |
27 28 29 30 31 32 33 | shell: """ samtools stats \ --reference {input.reference} \ {input.cram} \ > {output.tsv} 2> {log} """ |
47 48 | shell: "samtools flagstats {input.cram} > {output.txt} 2> {log}" |
62 63 | shell: "samtools idxstats {input.cram} > {output.tsv} 2> {log}" |
18 19 20 21 22 23 24 25 26 27 28 | shell: """ STAR \ --runMode genomeGenerate \ --runThreadN {threads} \ --genomeDir {output.folder} \ --genomeFastaFiles {input.dna} \ --sjdbGTFfile {input.gtf} \ --sjdbOverhang {params.sjdbOverhang} \ 2> {log} 1>&2 """ |
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 | shell: """ ulimit -n 90000 2> {log} 1>&2 STAR \ --runMode alignReads \ --runThreadN {threads} \ --genomeDir {input.index} \ --readFilesIn {input.r1} {input.r2} \ --outFileNamePrefix {params.out_prefix} \ --outSAMtype BAM SortedByCoordinate \ --outSAMunmapped Within KeepPairs \ --readFilesCommand "gzip -cd" \ --quantMode GeneCounts \ 2>> {log} 1>&2 """ |
100 101 102 103 104 105 106 107 108 109 110 111 112 | shell: """ samtools sort \ -l 9 \ -m 1G \ -o {output.cram} \ --output-fmt CRAM \ --reference {input.reference} \ -@ {threads} \ -M \ {input.bam} \ 2> {log} 1>&2 """ |
136 137 138 139 140 141 142 | shell: """ Rscript workflow/scripts/join_star_table.R \ --input-folder {params.folder} \ --output-file {output.tsv} \ 2> {log} 1>&2 """ |
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 | library(tidyverse) library(argparse) read_star_counts <- function(filename) { # Read only the first two columns. The other two are for strand-specific data # Extract the file name, since we have to match the Illumina name with the # sample name star_column_names <- c( "gene_id", "unstranded", "stranded_forward", "stranded_reverse" ) filename %>% read_tsv( col_names = star_column_names, col_select = 1:2, skip = 4, show_col_types = FALSE ) %>% mutate( sample_id = filename %>% basename() %>% str_remove(".ReadsPerGene.out.tab") ) %>% select(sample_id, gene_id, counts = unstranded) } parser <- ArgumentParser() parser$add_argument( "-i", "--input-folder", type = "character", dest = "input_folder", help = paste( "Folder that contains the STAR counts. Will search recursively for ", "files ended in \".ReadsPerGene.out.tab\"." ) ) parser$add_argument( "-o", "--output-file", type = "character", dest = "output_file", help = paste( "Output file with all the table containing all the counts together" ) ) args <- parser$parse_args() files <- list.files( path = args$input_folder, pattern = "*.ReadsPerGene.out.tab", recursive = TRUE, full.names = TRUE ) counts_raw <- files %>% map(read_star_counts) %>% bind_rows() %>% pivot_wider(names_from = sample_id, values_from = counts) dir.create(dirname(args$output_file)) write_tsv(counts_raw, args$output_file) |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Created: 1yr ago
Updated: 1yr ago
Maitainers:
public
URL:
https://github.com/3d-omics/Bioinfo_Macro_Host_Transcriptomics
Name:
bioinfo_macro_host_transcriptomics
Version:
v0.0.1
Accessed: 2
Downloaded:
0
Copyright:
Public Domain
License:
None
- Future updates
Related Workflows

ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...

Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...

snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...

ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics

RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...

This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...