Genetic pipeline to detect variants from a genome of reference
Genetic pipeline inspired by Google's DeepVariant in order to detect cancer-causing alleles.
Snakemake workflow, CNN with Keras and Contenairisation with Docker and Singularity
Example of a read:
Our pipeline :
See the bellow documents :
Code Snippets
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | import sys import os from transcription import * from util_CNN import * #warning are not printed os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' root_dir = os.getcwd() res_dir = os.path.join(root_dir,"result") test_path = sys.argv[1] if len(sys.argv) > 1 else "" BATCH_SIZE = int(sys.argv[2]) if len(sys.argv) > 2 else 32 vcf_dir = sys.argv[3] #créer le dossier ou on va stocker les données de performance de notre réseau if not os.path.exists(res_dir): os.makedirs(res_dir) trLabel,predLabel,dico = testModel(test_path,BATCH_SIZE) evaluateVariant(trLabel,predLabel) for k in dico.keys(): print(k,dico[k]) result_tab(dico,vcf_dir) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 | import sys import os from util_CNN import * sys.path.append("/Neat/anaconda/envs/py/lib/python3.6/site-packages") from rename import renameFiles from splitData import splitFolder #warning are not printed os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' input_folder = sys.argv[1] if input_folder.endswith("/images"): input_folder = input_folder[:-len("/images")] output_folder = input_folder + "Divided" root_dir = os.getcwd() train_dir = os.path.join(root_dir, output_folder + "/train/images") valid_dir = os.path.join(root_dir, output_folder + "/val/images") test_dir = os.path.join(root_dir, output_folder + "/test/images") print(train_dir) #enlever le "_paternal" et "_maternal" des noms des images renameFiles(input_folder+"/images") #partage le data en 3 dossiers train (80%), val(10%) et test(10%) #le folder input doit contenir un dossier qui contient toutes les images splitFolder(input_folder,output_folder) #CNN num_samplesTrain = len(getSamples(train_dir)) num_samplesValid = len(getSamples(valid_dir)) print("nb images d'entrainement : ",num_samplesTrain) print("nb images de validation : ",num_samplesValid) # creating TFRecords output folder if not os.path.exists(tfrecords_dir): os.makedirs(tfrecords_dir) convertDataToTfrecord(train_dir,"train") convertDataToTfrecord(valid_dir,"valid") #Retourne une liste de fichiers qui match le pattern donné en paramètres train_filenames = tf.io.gfile.glob(f"{tfrecords_dir}/train.tfrec") valid_filenames = tf.io.gfile.glob(f"{tfrecords_dir}/valid.tfrec") #gradient descent is an iterative learning algorithm that uses a training dataset to update the weights a model. It minimizes the loss (difference between predicted label and true label) #The batch size is a hyperparameter of gradient descent that controls the number of training samples to work through before the model’s internal parameters are updated. #The number of epochs is a hyperparameter of gradient descent that controls the number of complete passes through the training dataset #si les arguments n'ont pas été précisées, on met la valeur par défaut dans le else BATCH_SIZE = int(sys.argv[2]) if len(sys.argv) > 2 else 32 #nombre de images données au CNN en 1 seule fois EPOCHS = int(sys.argv[3]) if len(sys.argv) > 3 else 10 # nombre de cycles durant lesquelles on va entrainer le CNN avec toutes les données print("batch_size : ",BATCH_SIZE) print("epochs : ",EPOCHS) print() #get your datatensors for training imageTrain, labelTrain = create_dataset(train_filenames,BATCH_SIZE) imageTrain = tf.image.resize(imageTrain, size=(299, 299)) imageTrain = tf.image.convert_image_dtype(imageTrain, tf.float32) imageTrain = tf.keras.applications.inception_v3.preprocess_input(imageTrain) #get your datatensors for validation imageValid, labelValid = create_dataset(valid_filenames,BATCH_SIZE) imageValid = tf.image.resize(imageValid, size=(299, 299)) imageValid = tf.image.convert_image_dtype(imageValid, tf.float32) imageValid = tf.keras.applications.inception_v3.preprocess_input(imageValid) #get model model = getModel(imageTrain,labelTrain) #l'entrainement s'arrete plus tot si le loss atteint un pallier et ne diminue plus #évite l'overfitting early = tf.keras.callbacks.EarlyStopping( patience=10, min_delta=0.001, restore_best_weights=True) #train model history = model.fit( x=imageTrain, y=labelTrain, epochs=EPOCHS, verbose=1, callbacks=[early], validation_data=(imageValid,labelValid), shuffle=False, ) #afficher les performances de notre réseau plotAccuracy(history) plotLoss(history) #évaluer notre modèle score = model.evaluate(imageValid, labelValid, verbose=0) print('\nValidation loss:', score[0]) print('Validation accuracy:', score[1]) #sauvegarder dans un dossier, les weights suite à l'entrainement de notre modèle model.save("my_model") |
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | import sys sys.path.append("/Neat/anaconda/envs/py/lib/python3.6/site-packages") from img_util import * ######variables/constantes###### example_path = "" LABELS_CONST = {"RB":"(read_base)","BQ":"(base_quality)","MQ":"(mapping_quality)","S":"(strand)","RSV":"(read_support variant)","BDFR":"(base_differs_from ref)"} liste_channels = list(LABELS_CONST.values()) if (len(sys.argv) != 3): exit() #si le nombre d'arguments n'est pas respecté. TF_path = str(sys.argv[1]) RES_path = remove_slash(str(sys.argv[2])) + "/dv_images/images" print(TF_path," ",RES_path) img_extract(TF_path,RES_path,False) |
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 | shell: "/Neat/varsim/varsim.py --id simu " "--reference {input} " "--simulator_executable /Neat/art_src_MountRainier_Linux/art_illumina " "--total_coverage {config[cover]} " "--vc_in_vcf {config[vcf]} " "--sv_insert_seq work/refs/insert_seq.txt " "--out_dir {config[out]} --log_dir {config[log]} " "--work_dir {config[work]} --nlanes {config[lanes]} " "--read_length 200 " "--disable_rand_dgv " "--vc_num_ins {config[ins]} " "--vc_num_snp {config[snp]} " "--vc_num_del {config[del]} " "--art_options '\-sam' {config[add]}" |
73 74 | shell: "samtools view -S -b {input} > {output}" |
81 82 | shell: "samtools sort {input} -o {output}" |
91 92 | shell: "samtools index {input}" |
99 100 | shell: "samtools faidx {input}" |
115 116 117 118 119 120 121 122 123 124 | shell: "singularity run -B /usr/lib/locale/:/usr/lib/locale/ docker://google/deepvariant:\"1.3.0\" /opt/deepvariant/bin/run_deepvariant " "--model_type=WGS " "--ref={input.b} " "--reads={input.a} " "--regions \"{config[regions]}\" " "--output_vcf={config[out]}/dv_sur_simu/output.vcf.gz " "--output_gvcf={config[out]}/dv_sur_simu/output.g.vcf.gz " "--intermediate_results_dir {config[out]}/dv_sur_simu/intermediate_results_dir " "--num_shards={config[coeurs]} " |
129 130 | shell: "sudo gunzip -k {input}" |
137 138 | shell: "python img_extract.py {input} {config[out]}" |
148 149 | shell: "python CNN/trainCNN.py {input.a} {config[batch]} {config[epoch]}" |
154 155 | shell: "python CNN/testCNN.py {input} {config[batch]} {config[rvcf]}" |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Created: 1yr ago
Updated: 1yr ago
Maitainers:
public
URL:
https://github.com/denliA/BioinformaticPipelineCNN
Name:
bioinformaticpipelinecnn
Version:
1
Downloaded:
0
Copyright:
Public Domain
License:
None
Keywords:
- Future updates
Related Workflows

ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...

Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...

snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...

ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics

RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...

This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...