BridgeDb workflow: Gene HGNC name to Ensembl identifier
This tutorial explains how to use the BridgeDb identifier mapping service to translate HGNC names to Ensembl identifiers. This step is part of the OpenRiskNet use case to link Adverse Outcome Pathways to WikiPathways .
Code Snippets
2 3 4 5 6 7 8 9 10 11 | # Here are the packages imported in to the program. (be sure that the are installed). import requests import pandas import urllib import seaborn as sns import matplotlib.pyplot as plt from IPython.display import display, HTML from SPARQLWrapper import SPARQLWrapper, JSON |
15 16 17 18 | # Here are the three url's, of the web-page's that will be used, stored as variables.. chemidconvert = 'https://chemidconvert.cloud.douglasconnect.com/v1/' tggatesconvert = 'http://open-tggates-api.cloud.douglasconnect.com/v2/' bridgedb = "http://bridgedb.prod.openrisknet.org/Human/xrefs/X/" |
22 23 24 25 | """This set, contains the chemical names of the compound that are used in this notebook. To research different compounds, you need to change the names. """ compoundset = {'paracetamol', 'acetominophen', 'methapyrilene', 'phenylbutazone', 'simvastatin', 'valproic acid'} |
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | pandas.set_option('display.max_colwidth', -1) # Make the table. compounds = pandas.DataFrame(columns=['Compound name', 'Smiles', 'Image']) # Fill "compounds" with the "smiles" by the compound name. for compound in compoundset: smiles = requests.get(chemidconvert + 'name/to/smiles', params={'name': compound}).json()['smiles'] compounds = compounds.append({'Compound name': compound, 'Smiles': smiles, 'Image': smiles}, ignore_index=True) def smiles_to_image_html(smiles): # "smiles" shadows "smiles" from outer scope, use this function only in "to_html(). """Gets for each smile the image, in HTML. :param smiles: Takes the “smiles” form “compounds”. :return: The HTML code for the image of the given smiles. """ return '<img style="width:150px" src="' + chemidconvert+'asSvg?smiles='+urllib.parse.quote(smiles)+'"/>' # Return a HTML table of "compounds", after "compounds" is fill by "smiles_to_image_html". HTML(compounds.to_html(escape=False, formatters=dict(Image=smiles_to_image_html))) |
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 | # Get the names from "compoundset" and put a “|” between them for the "TGGATES". compounds_name = "|".join(compoundset) compounds_name # Get more information from the "TGGATES" about the compounds by "compounds_name". r2 = requests.get(tggatesconvert + 'samples', params={'limit': 10000, 'compoundNameFilter': compounds_name, 'organismFilter': 'Human', 'tissueFilter': 'Liver', 'cellTypeFilter': 'in vitro', 'repeatTypeFilter': 'Single', 'timepointHrFilter': '24.0', 'doseLevelFilter': 'High' }) # The "TGGATES" status code is printed and, verified if it is 200; and thereafter transform to a jason. # The "TGGATES" status code is printed, to show the user that it is "200" (or not). print("TGGATES Status code: " + str(r2.status_code)) samples = None if r2.status_code == 200: # It is checked whether the status code is "200". samples = r2.json() # the received data from "TGGATES" is stored in the variable "samples" as json format. # Print the 'samples' information of the "samples" as a data frame. print(pandas.DataFrame(samples['samples'])) else: print("samples has not been created, because the TGGATES status code was not 200. The code will now exit.") exit(1) |
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 | # Again contact is maid with "TGGATES" to get more information from the samples. # The important variable "foldchanges" (which will be used till the last coding block) is made. foldchanges = pandas.DataFrame for sample in samples["samples"]: sampleId = sample["sampleId"] sampleName = sample["compoundName"] + "\n" + sample["sampleId"] r3 = requests.get(tggatesconvert+'results', params={'limit': 'none', 'sampleIdFilter': sampleId, 'valueTypeFilter': 'log2fold', 'pValueMax': '0.1'}) # The query is execute. """The status code of the query is checked, and a temporarily data frame ("df") is created, to store the results of the query. """ df = None if r3.status_code == 200: data = r3.json() df = pandas.DataFrame(data['results']) df = df.filter(items=['assayId', 'value']) df.columns = ['ProbeSet', sampleName] else: print("samples has not been created, because the TGGATES Status code was not 200. The code will now exit.") exit(1) # Every Temporarily data frame is added to "foldchanges". if foldchanges.empty: foldchanges = df else: foldchanges = pandas.merge(foldchanges, df, how='outer', on=['ProbeSet']) |
113 114 115 116 117 118 119 120 121 122 | """The variable "high" is set to be "true", so that the "Bitwise Operator" "&" is true, as long as the foldchanges are not higher then 1 """ high = True # Compare the fold change of the "samples", and chose the highest. for sample in samples["samples"]: high = high & (foldchanges[sample["compoundName"] + "\n" + sample["sampleId"]] >= 1) foldchanges = foldchanges[high] |
131 | % matplotlib inline
|
135 136 137 138 139 140 | # Makes the heat map. for_vis = foldchanges.set_index('ProbeSet') plt.figure(figsize=(4, 4)) sns.set(font="Dejavu sans") sns_plot = sns.heatmap(for_vis) # type: object sns_plot |
144 145 146 147 | # Get the "Ensembl" and the "HGNC" in "foldchanges" as columns. da = "?dataSource=" # The final part part to finis the url. foldchanges['Ensembl'] = foldchanges.ProbeSet.apply(lambda url: requests.get(bridgedb+url+da+"En").text.split("\t")[0]) foldchanges['HGNC'] = foldchanges.ProbeSet.apply(lambda url: requests.get(bridgedb+url+da+"H").text.split("\t")[0]) |
155 156 | # SPARQLWrapper makes it possible to use sparql queries on the web-page. sparql = SPARQLWrapper("http://sparql.wikipathways.org") |
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 | # This is the creation of a data frame to store and represent data created in this coding block. pathways = pandas.DataFrame(columns=['Gene', 'Ensembl', 'Pathway', 'Pathway Res', 'Pathway Title']) genes = foldchanges['Ensembl'] # Here we continue with the "foldchanges". results = None for gene in genes: # Here the queries are made en the results are stored in "results". pathwayQuery = ''' SELECT DISTINCT ?ensembl ?pathwayRes (str(?wpid) as ?pathway) (str(?title) as ?pathwayTitle) WHERE {{ ?gene a wp:GeneProduct ; dcterms:identifier ?id ; dcterms:isPartOf ?pathwayRes ; wp:bdbEnsembl <http://identifiers.org/ensembl/{0}> . ?pathwayRes a wp:Pathway ; dcterms:identifier ?wpid ; dc:title ?title . BIND ( "{0}" AS ?ensembl ) }} '''.format(gene) sparql.setQuery(pathwayQuery) sparql.setReturnFormat(JSON) # Here the queries are made en the results are stored in "results". results = sparql.query().convert() for result in results["results"]["bindings"]: pathways = pathways.append({ 'Gene': foldchanges.loc[foldchanges['Ensembl'] == gene].iloc[0]["HGNC"], 'Ensembl': result["ensembl"]["value"], 'Pathway': result["pathway"]["value"], 'Pathway Res': result["pathwayRes"]["value"], 'Pathway Title': result["pathwayTitle"]["value"], }, ignore_index=True) |
6 | callUrl = 'https://webservice.bridgedb.org/Human/xrefs/H/MECP2' |
15 16 17 18 19 20 21 22 23 24 25 | lines = response.text.split("\n") mappings = {} for line in lines: if ('\t' in line): tuple = line.split('\t') identifier = tuple[0] database = tuple[1] if (database == "Ensembl"): mappings[identifier] = database print(mappings) |
29 30 31 | callUrl = 'https://webservice.bridgedb.org/Human/xrefs/H/MECP2?dataSource=En' response = requests.get(callUrl) response.text |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Created: 1yr ago
Updated: 1yr ago
Maitainers:
public
URL:
https://github.com/OpenRiskNet/notebooks.git
Name:
bridgedb-tutorial-gene-hgnc-name-to-ensembl-identi
Version:
master @ 0f98fd8
Downloaded:
0
Copyright:
Public Domain
License:
None
Keywords:
- Future updates
Related Workflows

ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...

Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...

snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...

ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics

RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...

This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...