Bulk RNA-seq Analysis Pipeline for Differentially Expressed Genes (DEGs)
Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output, operation
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
Simple workflow to quantify gene-level RNA abundance and detect differentially expressed genes (DEGs) from bulk RNAseq samples. The pipeline uses
kallisto
or
salmon
to quantify transcript level abundance and
DESeq2
Code Snippets
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | __author__ = "Julian de Ruiter" __copyright__ = "Copyright 2017, Julian de Ruiter" __email__ = "julianderuiter@gmail.com" __license__ = "MIT" from os import path from snakemake.shell import shell input_dirs = set(path.dirname(fp) for fp in snakemake.input) output_dir = path.dirname(snakemake.output[0]) output_name = path.basename(snakemake.output[0]) log = snakemake.log_fmt_shell(stdout=True, stderr=True) shell( "multiqc" " {snakemake.params}" " --force" " -o {output_dir}" " -n {output_name}" " {input_dirs}" " {log}" ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 | log <- file(snakemake@log[[1]], open="wt") sink(log) sink(log, type="message") # Handle readr tzdata bug when using singularity mambaforge container Sys.setenv("TZDIR"=paste0(Sys.getenv("CONDA_PREFIX"), "/share/zoneinfo")) library(tximeta) library(DESeq2) library(readr) library(stringr) library(org.Hs.eg.db) res_dirs <- snakemake@input[['cts']] samples_fp <- snakemake@input[['samples']] quant_program <- snakemake@params[['aligner']] design_formula <- snakemake@params[['formula']] if (snakemake@threads > 1) { library("BiocParallel") parallel <- TRUE register(MulticoreParam(snakemake@threads)) } else { parallel <- FALSE } if (quant_program == 'salmon') { files <- file.path(res_dirs, "quant.sf") } else{ print("quant_program wasn't Salmon!") stop() } names(files) <- basename(dirname(files)) samples <- read.csv(samples_fp) samples$id <- paste(samples$patient, "-", samples$condition, sep = "") print("First") print(samples) # Reorder rows so they match files order samples <- samples[match(names(files), samples$id),] print("Second") print(files) print(samples) # Check that matching worked samples$names <- names(files) samples$files <- files stopifnot(all(samples$id == samples$names)) stopifnot(all(samples$names == basename(dirname(samples$files)))) print(samples) # Save SummarizedExperiment with tx-level data for future use se <- tximeta(samples) se <- addIds(se, "SYMBOL", gene = T) saveRDS(se, snakemake@output[['se_tx']]) # Collapse to gene-level for DE analysis gse <- summarizeToGene(se) gse <- addIds(gse, "SYMBOL", gene = T) f <- as.formula(design_formula) # No longer need se object - remove from memory rm(se); gc() ## Gene-level print("Building DESeq object for gene-level features") dds <- DESeqDataSet(gse, design = f) print("Old ordering for condition") print(colData(dds)$condition) ## Ensure factor ordering based on config specifications vars <- snakemake@params[['levels']] var_levels <- str_split(vars, ';', simplify=T) for (var in var_levels) { print(paste("Variable:", var)) s <- str_split(var, '=|,', simplify=T) col <- s[1, 1] level_order = s[1, 2:dim(s)[2]] colData(dds)[, col] <- factor(colData(dds)[, col], level_order) print(paste("Ordering for", col)) print(levels(colData(dds)[, col])) } dds <- DESeq(dds, parallel=parallel) print(dds) vst_cts <- vst(dds, blind=FALSE) print(vst_cts) saveRDS(dds, file=snakemake@output[['deseq']]) saveRDS(vst_cts, file=snakemake@output[['cts']]) |
R
stringr
Salmon
org.Hs.eg.db
readr
Singularity Hub
BiocParallel
tximeta
From
line
1
of
scripts/deseq2.R
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 | log <- file(snakemake@log[[1]], open="wt") sink(log) sink(log, type="message") # Handle readr tzdata bug when using singularity mambaforge container Sys.setenv("TZDIR"=paste0(Sys.getenv("CONDA_PREFIX"), "/share/zoneinfo")) library(DESeq2) library(IHW) library(ggplot2) library(dplyr) library(stringr) if (snakemake@threads > 1) { library("BiocParallel") parallel <- TRUE register(MulticoreParam(snakemake@threads)) } else { parallel <- FALSE } dds <- readRDS(snakemake@input[[1]]) print(dds) # Grab last variable at end of formula for contrasts design_formula <- snakemake@params[['formula']] s <- str_remove_all(design_formula, " |~") s <- str_split(s, "\\+") vars <- s[[1]] var <- vars[length(vars)] print(snakemake@params[['contrast']]) print("Creating results for the following variable:") print(var) print(resultsNames(dds)) contrast_coef <- paste(c(var, snakemake@params[['contrast']][1], "vs", snakemake@params[['contrast']][2]), collapse="_") de_contrast <- c(var, snakemake@params[['contrast']][1], snakemake@params[['contrast']][2]) mle_res <- results(dds, contrast=de_contrast, filterFun=ihw, alpha = .05, parallel = parallel) map_res <- lfcShrink(dds, coef=contrast_coef, type = "apeglm", parallel = parallel) # Add gene symbols from rowData print("res and dds ensgenes match?") stopifnot(all(rownames(mle_res) == rownames(rowData(dds)))) stopifnot(all(rownames(map_res) == rownames(rowData(dds)))) print("Ensgenes match. Adding symbols to results dataframes") mle_res$symbol <- rowData(dds)$SYMBOL map_res$symbol <- rowData(dds)$SYMBOL print("MLE LFC:") print(mle_res) print(summary(mle_res)) print("MAP LFC:") print(map_res) print(summary(map_res)) mle_df <- mle_res %>% data.frame() %>% tibble::rownames_to_column(var = "ensgene") %>% as_tibble() %>% dplyr::select(symbol, ensgene, everything()) %>% dplyr::arrange(padj) map_df <- map_res %>% data.frame() %>% tibble::rownames_to_column(var = "ensgene") %>% as_tibble() %>% dplyr::select(symbol, ensgene, everything()) %>% dplyr::arrange(padj) print("MLE dataframe") print(mle_df) print("MAP dataframe") print(map_df) mleplot <- mle_df %>% dplyr::mutate( significant = ifelse(padj < .05, "padj < .05", "padj >= .05"), direction = ifelse(log2FoldChange > 0, "Upregulated", "Downregulated") ) %>% ggplot(aes(log10(baseMean),log2FoldChange)) + geom_point(aes(color = significant, shape = direction)) + geom_hline(yintercept = 0, linetype = "dashed", color = "red") + labs(x = "log10 Expression", y = "MLE Log2FoldChange") + theme_bw() mapplot <- map_df %>% dplyr::mutate( significant = ifelse(padj < .05, "padj < .05", "padj >= .05"), direction = ifelse(log2FoldChange > 0, "Upregulated", "Downregulated") ) %>% ggplot(aes(log10(baseMean),log2FoldChange)) + geom_point(aes(color = significant, shape = direction)) + geom_hline(yintercept = 0, linetype = "dashed", color = "red") + labs(x = "log10 Expression", y = "MAP Log2FoldChange") + theme_bw() readr::write_csv(mle_df, snakemake@output[['mleres']]) readr::write_csv(map_df, snakemake@output[['mapres']]) ggsave(snakemake@output[['mlema']], plot = mleplot, width = 10, height = 7) ggsave(snakemake@output[['mapma']], plot = mapplot, width = 10, height = 7) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | log <- file(snakemake@log[[1]], open="wt") sink(log) sink(log, type="message") library(DESeq2) library(ggplot2) library(stringr) vsd <- readRDS(snakemake@input[[1]]) print(vsd) label_vars <- str_split(snakemake@params[['label_vars']], ',', simplify=T)[1, ] pcaplot <- plotPCA(vsd, intgroup=label_vars) ggsave(snakemake@output[[1]], pcaplot) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | import os import pandas as pd def check_validation(fp): sampleid = os.path.basename(fp) sampleid = sampleid.replace(".txt", "") with open(fp, 'r') as f: line = f.readline() while line: if 'Error found' in line: return sampleid, 'Failed' elif 'no errors found' in line: return sampleid, 'Passed' line = f.readline() return sampleid, 'No log data found in file' def main(): files = snakemake.input results = [check_validation(f) for f in files] df = pd.DataFrame.from_dict({'patient' : [t[0] for t in results], 'result' : [t[1] for t in results]}) print(df) df.to_csv(snakemake.output[0], index = False) if __name__ == '__main__': main() |
158 159 160 161 | shell: """ salmon quant -i {input.idx} -l A {params.fqs} -p {threads} -o {output} {params.reps} """ |
179 180 | script: "scripts/deseq2.R" |
197 198 | script: "scripts/diffexp.R" |
208 209 | wrapper: "0.50.4/bio/multiqc" |
221 222 | script: "scripts/plot_pca.R" |
232 233 234 235 236 237 238 239 | shell: """ tmpdir=qc/fastqc/.{wildcards.sample_id}.tmp mkdir $tmpdir mkdir {output} fastqc {input} -o {output} &> >(tee {log}) -d $tmpdir rm -r $tmpdir """ |
250 251 252 253 | shell: """ biopet-validatefastq {params} 2>&1 | tee {output} """ |
260 261 | script: "scripts/summarize_fastqValidation.py" |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Created: 1yr ago
Updated: 1yr ago
Maitainers:
public
URL:
https://github.com/sveizades/bulk-rnaseq
Name:
bulk-rnaseq
Version:
2
Downloaded:
0
Copyright:
Public Domain
License:
None
Keywords:
- Future updates
Related Workflows

ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...

Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...

snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...

ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics

RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...

This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...