Snakemake workflow for CITE-seq analaysis with alevin-fry and seurat
This workflow is untested and work in progress. It is based on this tutorial .
Code Snippets
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | __author__ = "Johannes Köster" __copyright__ = "Copyright 2019, Johannes Köster" __email__ = "johannes.koester@uni-due.de" __license__ = "MIT" import subprocess import sys from snakemake.shell import shell species = snakemake.params.species.lower() release = int(snakemake.params.release) fmt = snakemake.params.fmt build = snakemake.params.build flavor = snakemake.params.get("flavor", "") branch = "" if release >= 81 and build == "GRCh37": # use the special grch37 branch for new releases branch = "grch37/" if flavor: flavor += "." log = snakemake.log_fmt_shell(stdout=False, stderr=True) suffix = "" if fmt == "gtf": suffix = "gtf.gz" elif fmt == "gff3": suffix = "gff3.gz" url = "ftp://ftp.ensembl.org/pub/{branch}release-{release}/{fmt}/{species}/{species_cap}.{build}.{release}.{flavor}{suffix}".format( release=release, build=build, species=species, fmt=fmt, species_cap=species.capitalize(), suffix=suffix, flavor=flavor, branch=branch, ) try: shell("(curl -L {url} | gzip -d > {snakemake.output[0]}) {log}") except subprocess.CalledProcessError as e: if snakemake.log: sys.stderr = open(snakemake.log[0], "a") print( "Unable to download annotation data from Ensembl. " "Did you check that this combination of species, build, and release is actually provided?", file=sys.stderr, ) exit(1) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 | __author__ = "Johannes Köster" __copyright__ = "Copyright 2019, Johannes Köster" __email__ = "johannes.koester@uni-due.de" __license__ = "MIT" import subprocess as sp import sys from itertools import product from snakemake.shell import shell species = snakemake.params.species.lower() release = int(snakemake.params.release) build = snakemake.params.build branch = "" if release >= 81 and build == "GRCh37": # use the special grch37 branch for new releases branch = "grch37/" log = snakemake.log_fmt_shell(stdout=False, stderr=True) spec = ("{build}" if int(release) > 75 else "{build}.{release}").format( build=build, release=release ) suffixes = "" datatype = snakemake.params.get("datatype", "") chromosome = snakemake.params.get("chromosome", "") if datatype == "dna": if chromosome: suffixes = ["dna.chromosome.{}.fa.gz".format(chromosome)] else: suffixes = ["dna.primary_assembly.fa.gz", "dna.toplevel.fa.gz"] elif datatype == "cdna": suffixes = ["cdna.all.fa.gz"] elif datatype == "cds": suffixes = ["cds.all.fa.gz"] elif datatype == "ncrna": suffixes = ["ncrna.fa.gz"] elif datatype == "pep": suffixes = ["pep.all.fa.gz"] else: raise ValueError("invalid datatype, must be one of dna, cdna, cds, ncrna, pep") if chromosome: if not datatype == "dna": raise ValueError( "invalid datatype, to select a single chromosome the datatype must be dna" ) success = False for suffix in suffixes: url = "ftp://ftp.ensembl.org/pub/{branch}release-{release}/fasta/{species}/{datatype}/{species_cap}.{spec}.{suffix}".format( release=release, species=species, datatype=datatype, spec=spec.format(build=build, release=release), suffix=suffix, species_cap=species.capitalize(), branch=branch, ) try: shell("curl -sSf {url} > /dev/null 2> /dev/null") except sp.CalledProcessError: continue shell("(curl -L {url} | gzip -d > {snakemake.output[0]}) {log}") success = True break if not success: print( "Unable to download requested sequence data from Ensembl. " "Did you check that this combination of species, build, and release is actually provided?", file=sys.stderr, ) exit(1) |
3 4 5 6 7 8 9 10 11 12 13 14 15 16 | __author__ = "Tessa Pierce" __copyright__ = "Copyright 2018, Tessa Pierce" __email__ = "ntpierce@gmail.com" __license__ = "MIT" from snakemake.shell import shell log = snakemake.log_fmt_shell(stdout=True, stderr=True) extra = snakemake.params.get("extra", "") shell( "salmon index -t {snakemake.input} -i {snakemake.output} " " --threads {snakemake.threads} {extra} {log}" ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | __author__ = "Johannes Köster, Derek Croote" __copyright__ = "Copyright 2020, Johannes Köster" __email__ = "johannes.koester@uni-due.de" __license__ = "MIT" import os import tempfile from snakemake.shell import shell log = snakemake.log_fmt_shell(stdout=True, stderr=True) outdir = os.path.dirname(snakemake.output[0]) if outdir: outdir = "--outdir {}".format(outdir) extra = snakemake.params.get("extra", "") with tempfile.TemporaryDirectory() as tmp: shell( "fasterq-dump --temp {tmp} --threads {snakemake.threads} " "{extra} {outdir} {snakemake.wildcards.accession} {log}" ) |
13 14 | script: "../scripts/seurat.r" |
26 27 | script: "../scripts/plot-hto-counts.r" |
41 42 | script: "../scripts/filter-normalize-demux.r" |
55 56 | script: "../scripts/plot-counts-hto-filtered.r" |
68 69 | script: "../scripts/filter-negatives.r" |
82 83 | script: "../scripts/plot-umap-singlets-doublets.r" |
94 95 | script: "../scripts/filter-to-singlets.r" |
11 12 | wrapper: "0.74.0/bio/salmon/index" |
28 29 30 31 32 33 | shell: "salmon alevin --threads {threads} " "-l ISR -i {input.index} -1 {input.fq1} -2 {input.fq2} " "--read-geometry {params.sample[geometry][reads]} --bc-geometry {params.sample[geometry][barcodes]} " "--umi-geometry {params.sample[geometry][umis]} -o {output} --sketch -p 16 " "2> {log}" |
46 47 48 49 | shell: "(alevin-fry generate-permit-list -d fw -i {input} -o {output} -k &&" " alevin-fry collate -r {input} -i {output} -t {threads})" " 2> {log}" |
63 64 65 | shell: "alevin-fry quant -m {input.t2g} -i {input.rad} " "-o {output} -r cr-like -t {threads} --use-mtx 2> {log}" |
12 13 | wrapper: "0.74.0/bio/reference/ensembl-sequence" |
28 29 | wrapper: "0.74.0/bio/reference/ensembl-annotation" |
39 40 | script: "../scripts/get-geneid2name.py" |
69 70 | shell: "awk '{{print $1\"\\t\"$1;}}' {input} > {output} 2> {log}" |
7 8 | wrapper: "0.74.0/bio/sra-tools/fasterq-dump" |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | log <- file(snakemake@log[[1]], open = "wt") sink(log) sink(log, type = "message") suppressPackageStartupMessages({ library(devtools) library(ggplot2) library(SingleCellExperiment) library(Seurat) }) object <- readRDS(snakemake@input[[1]]) # remove the negatives object <- subset(object, idents = "Negative", invert = TRUE) saveRDS(object, snakemake@output[[1]]) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | log <- file(snakemake@log[[1]], open = "wt") sink(log) sink(log, type = "message") suppressPackageStartupMessages({ library(devtools) library(ggplot2) library(SingleCellExperiment) library(Seurat) }) object <- readRDS(snakemake@input[[1]]) # subsetting the data to Singlets object <- subset(object, idents = "Singlet") pdf(file = snakemake@output[["pdf"]]) VlnPlot(object, features = c("nCount_ADT"), pt.size = 0.1) dev.off() saveRDS(object, file = snakemake@output[["rds"]]) |
1 2 3 4 5 6 7 8 9 10 11 12 13 | import sys sys.stderr = open(snakemake.log[0], "w") from pybiomart import Dataset prefix, suffix = snakemake.config["reference"]["species"].split("_", 1) species = prefix[1] + suffix dataset = Dataset(name=f"{species}_gene_ensembl", host="http://www.ensembl.org") dataset.query(attributes=["ensembl_gene_id", "external_gene_name"]).to_csv( snakemake.output[0], sep="\t" ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | log <- file(snakemake@log[[1]], open = "wt") sink(log) sink(log, type = "message") suppressPackageStartupMessages({ library(devtools) library(ggplot2) library(SingleCellExperiment) library(Seurat) }) object <- readRDS(snakemake@input[[1]]) pdf(file = snakemake@output[[1]]) VlnPlot(object, features = "nCount_HTO", pt.size = 0.1, log = TRUE) dev.off() pdf(file = snakemake@output[[1]]) VlnPlot(object, features = "nCount_RNA", pt.size = 0.1, log = TRUE) dev.off() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | log <- file(snakemake@log[[1]], open = "wt") sink(log) sink(log, type = "message") suppressPackageStartupMessages({ library(devtools) library(ggplot2) library(SingleCellExperiment) library(Seurat) }) seurat_object <- readRDS(snakemake@input[[1]]) pdf(file = snakemake@output[[1]]) VlnPlot(seurat_object, features = c("nCount_HTO"), log = TRUE) dev.off() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | log <- file(snakemake@log[[1]], open = "wt") sink(log) sink(log, type = "message") suppressPackageStartupMessages({ library(devtools) library(ggplot2) library(SingleCellExperiment) library(Seurat) }) object <- readRDS(snakemake@input[[1]]) # perform PCA and generate UMAP emdeddings object <- RunPCA(object, reduction.name = "hto.pca", reduction.key = "HPC_", verbose = F, approx=FALSE) object <- RunUMAP(object, reduction = "hto.pca", dims = 1:9, reduction.name = "hto.umap", reduction.key = "HUMAP_", umap.method = 'umap-learn', metric='correlation', verbose = F) pdf(file = snakemake@output[["by_xlet"]]) DimPlot(object, reduction = "hto.umap", label = F) dev.off() pdf(file = snakemake@output[["by_hashtag"]]) DimPlot(object, reduction = "hto.umap", label = T, group.by = "hash.ID" ) dev.off() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 | log <- file(snakemake@log[[1]], open = "wt") sink(log) sink(log, type = "message") suppressPackageStartupMessages({ library(devtools) library(ggplot2) library(SingleCellExperiment) library(Seurat) }) # set the seed set.seed(271828) #' Read alevin-fry quantifications into a SingleCellExperiment object load_fry <- function(frydir, which_counts = c('S', 'A'), verbose = FALSE) { suppressPackageStartupMessages({ library(rjson) library(Matrix) library(SingleCellExperiment) }) # read in metadata meta_info <- fromJSON(file = file.path(frydir, "meta_info.json")) ng <- meta_info$num_genes usa_mode <- meta_info$usa_mode if (usa_mode) { if (length(which_counts) == 0) { stop("Please at least provide one status in 'U' 'S' 'A' ") } if (verbose) { message("processing input in USA mode, will return ", paste(which_counts, collapse = '+')) } } else if (verbose) { message("processing input in standard mode, will return spliced count") } # read in count matrix af_raw <- readMM(file = file.path(frydir, "alevin", "quants_mat.mtx")) # if usa mode, each gene gets 3 rows, so the actual number of genes is ng/3 if (usa_mode) { if (ng %% 3 != 0) { stop("The number of quantified targets is not a multiple of 3") } ng <- as.integer(ng/3) } # read in gene name file and cell barcode file afg <- read.csv(file.path(frydir, "alevin", "quants_mat_cols.txt"), strip.white = TRUE, header = FALSE, nrows = ng, col.names = c("gene_ids"), row.names = 1) afc <- read.csv(file.path(frydir, "alevin", "quants_mat_rows.txt"), strip.white = TRUE, header = FALSE, col.names = c("barcodes"), row.names = 1) # if in usa_mode, sum up counts in different status according to which_counts if (usa_mode) { rd <- list("S" = seq(1, ng), "U" = seq(ng + 1, 2 * ng), "A" = seq(2 * ng + 1, 3 * ng)) o <- af_raw[, rd[[which_counts[1]]], drop = FALSE] for (wc in which_counts[-1]) { o <- o + af_raw[, rd[[wc]], drop = FALSE] } } else { o <- af_raw } # create SingleCellExperiment object sce <- SingleCellExperiment(list(counts = t(o)), colData = afc, rowData = afg ) sce } hto_q <- load_fry(snakemake@input[["hto"]], verbose = TRUE) adt_q <- load_fry(snakemake@input[["adt"]], verbose = TRUE) rna_q <- load_fry(snakemake@input[["rna"]], verbose = TRUE) common.cells <- intersect(colnames(rna_q), colnames(adt_q)) common.cells <- intersect(common.cells , colnames(hto_q)) gid_to_gname <- read.table(snakemake@input[["geneid2name"]]) rownames(rna_q) <- gid_to_gname$V2[match(rownames(rna_q), gid_to_gname$V1)] # seurat seurat_object <- CreateSeuratObject(counts(rna_q)[, which(colnames(rna_q) %in% common.cells)]) seurat_object[["ADT"]] <- CreateAssayObject(counts = counts(adt_q)[, which(colnames(adt_q) %in% common.cells)]) seurat_object[["HTO"]] <- CreateAssayObject(counts = counts(hto_q)[, which(colnames(hto_q) %in% common.cells)]) saveRDS(seurat_object, snakemake@output[[1]]) |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Created: 1yr ago
Updated: 1yr ago
Maitainers:
public
URL:
https://github.com/snakemake-workflows/cite-seq-alevin-fry-seurat
Name:
cite-seq-alevin-fry-seurat
Version:
1
Downloaded:
0
Copyright:
Public Domain
License:
None
Keywords:
- Future updates
Related Workflows

ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...

Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...

snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...

ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics

RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...

This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...