ChIP-seq analysis pipeline used in Bragdon et. al. 2022.
Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output, operation, topic
- Lack of a description for a new keyword MACS2 .
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
Snakemake workflow used to analyze ChIP-seq data for the 2022 publication Cooperative assembly confers regulatory specificity and long-term genetic circui
Code Snippets
22 23 24 25 | shell: """ (sed 's/>/>{params.exp_name}_/g' {input.experimental} | \ cat - <(sed 's/>/>{params.si_name}_/g' {input.spikein}) > {output}) &> {log} """ |
39 40 41 | shell: """ (bowtie2-build {input} {params.idx_path}/{wildcards.basename}) &> {log} """ |
69 70 71 72 73 74 75 76 77 | shell: """ (bowtie2 --minins {params.min_fraglength} --maxins {params.max_fraglength} --fr --no-mixed --no-discordant --al-conc-gz fastq/aligned/{wildcards.sample}_{FACTOR}-chipseq-aligned.fastq.gz --un-conc-gz fastq/unaligned/{wildcards.sample}_{FACTOR}-chipseq-unaligned.fastq.gz -p {threads} -x {params.idx_path}/{basename} -1 {input.r1} -2 {input.r2} | \ samtools view -buh -q {params.minmapq} - | \ samtools sort -T .{wildcards.sample} -@ {threads} -o {output.bam} -) &> {output.log} mv fastq/aligned/{wildcards.sample}_{FACTOR}-chipseq-aligned.fastq.1.gz {output.aligned_r1} mv fastq/aligned/{wildcards.sample}_{FACTOR}-chipseq-aligned.fastq.2.gz {output.aligned_r2} mv fastq/unaligned/{wildcards.sample}_{FACTOR}-chipseq-unaligned.fastq.1.gz {output.unaligned_r1} mv fastq/unaligned/{wildcards.sample}_{FACTOR}-chipseq-unaligned.fastq.2.gz {output.unaligned_r2} """ |
91 92 93 94 95 96 | shell: """ (samtools collate -O -u --threads {threads} {input} | \ samtools fixmate -m -u --threads {threads} - - | \ samtools sort -u -T .remove_duplicates_sort_{wildcards.sample} -@ {threads} | \ samtools markdup -r -f {output.markdup_log} -d 100 -m t -T .remove_duplicates_markdup_{wildcards.sample} --threads {threads} --write-index - {output.bam}) &> {log} """ |
113 114 115 116 117 118 119 120 | shell: """ (samtools view -h -@ {threads} {input.bam} $(faidx {input.fasta} -i chromsizes | \ grep {params.prefix}_ | \ awk 'BEGIN{{FS="\t"; ORS=" "}}{{print $1}}') | \ grep -v -e 'SN:{params.filterprefix}_' | \ sed 's/{params.prefix}_//g' | \ samtools view -bh -@ {threads} --write-index -o {output.bam} -) &> {log} """ |
21 22 23 | shell: """ (cutadapt --cut={params.cut_5prime} -U {params.cut_5prime} --adapter=AGATCGGAAGAGCACACGTCTGAACTCCAGTCA -A AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT --trim-n --cores={threads} --nextseq-trim={params.qual_cutoff} --minimum-length=6 --output={output.r1} --paired-output={output.r2} {input.r1} {input.r2}) &> {output.log} """ |
29 30 31 32 33 34 35 | run: if FIGURES[wildcards.figure]["parameters"]["type"]=="absolute": shell("""(computeMatrix reference-point -R {input.annotation} -S {input.bw} --referencePoint {params.refpoint} -out {output.dtfile} --outFileNameMatrix {output.matrix} -b {params.upstream} -a {params.dnstream} {params.nan_afterend} --binSize {params.binsize} --averageTypeBins {params.binstat} -p {threads}) &> {log}""") else: shell("""(computeMatrix scale-regions -R {input.annotation} -S {input.bw} -out {output.dtfile} --outFileNameMatrix {output.matrix} -m {params.scaled_length} -b {params.upstream} -a {params.dnstream} --binSize {params.binsize} --averageTypeBins {params.binstat} -p {threads}) &> {log}""") melt_upstream = params.upstream-params.binsize shell("""(Rscript scripts/melt_matrix_chipseq.R -i {output.matrix} -r {params.refpoint} --group {params.group} -s {wildcards.sample} -t {wildcards.sampletype} -a {params.anno_label} -b {params.binsize} -u {melt_upstream} -o {output.melted}) &>> {log}""") |
47 48 49 | shell: """ (cat {input} > {output}) &> {log} """ |
95 96 | script: "../scripts/plot_chipseq_figures.R" |
14 15 16 17 18 | shell: """ bedtools makewindows -g <(faidx {input.fasta} -i chromsizes) -w {wildcards.windowsize} | \ awk 'BEGIN{{FS=OFS="\t"}}{{print $1, $2, $3, ".", 0, "."}}' | \ LC_COLLATE=C sort -k1,1 -k2,2n > {output} """ |
30 31 32 33 34 | shell: """ (cut -f1-6 {input.bed} | \ LC_COLLATE=C sort -k1,1 -k2,2n | \ bedtools map -a stdin -b {input.bg} -c 4 -o sum > {output}) &> {log} """ |
46 47 48 49 50 | shell: """ (paste {input} | \ cut -f$(paste -d, <(echo "1-6") <(seq -s, 7 7 {params.n})) | \ cat <(echo -e "chrom\tstart\tend\tname\tscore\tstrand\t{params.names}" ) - > {output}) &> {log} """ |
82 83 | script: "../scripts/differential_binding_chipseq.R" |
105 106 107 | shell: """ (python scripts/chipseq_diffbind_results_to_narrowpeak.py -i {input.condition_coverage} -j {input.control_coverage} -d {input.diffbind_results} -n {output.narrowpeak} -b {output.summit_bed}) &> {log} """ |
20 21 22 23 24 | shell: """ (mkdir -p qual_ctrl/fastqc/{wildcards.fqtype} fastqc --adapters <(echo -e "adapter\t{params.adapter}") --nogroup --noextract -t {threads} -o qual_ctrl/fastqc/{wildcards.fqtype} {input.fastq} unzip -p qual_ctrl/fastqc/{wildcards.fqtype}/{params.fname}_fastqc.zip {params.fname}_fastqc/fastqc_data.txt > {output}) &> {log} """ |
81 82 83 84 85 86 87 88 89 90 91 92 93 | run: shell("rm -f {output}") for fastqc_metric, out_path in output.items(): title = fastqc_dict[fastqc_metric]["title"] fields = fastqc_dict[fastqc_metric]["fields"] for read_status, read_status_data in input.items(): sample_id_list = ["_".join(x) for x in itertools.product((["unmatched"]if config["unmatched"]["r1"] and config["unmatched"]["r2"] else []) + list(SAMPLES.keys()), ["r1", "r2"])] if read_status=="raw" else ["_".join(x) for x in itertools.product(SAMPLES.keys(), ["r1", "r2"])] for sample_id, fastqc_data in zip(sample_id_list, read_status_data): if sample_id in ["unmatched_r1", "unmatched_r2"] and title=="Adapter Content": shell("""awk 'BEGIN{{FS=OFS="\t"}} /{title}/{{flag=1;next}}/>>END_MODULE/{{flag=0}} flag {{m=$2;for(i=2;i<=NF-2;i++)if($i>m)m=$i; print $1, m, "{sample_id}", "{read_status}"}}' {fastqc_data} | tail -n +2 >> {out_path}""") else: shell("""awk 'BEGIN{{FS=OFS="\t"}} /{title}/{{flag=1;next}}/>>END_MODULE/{{flag=0}} flag {{print $0, "{sample_id}", "{read_status}"}}' {fastqc_data} | tail -n +2 >> {out_path}""") shell("""sed -i "1i {fields}" {out_path}""") |
117 118 | script: "../scripts/fastqc_summary.R" |
19 20 21 22 23 | shell: """ rm -f .{wildcards.sample}_{wildcards.species}*.bam (samtools sort -n -T .get_fragments_{wildcards.sample}_{wildcards.species} -@ {threads} {input.bam} | \ bedtools bamtobed -bedpe -i stdin > {output}) &> {log} """ |
33 34 35 36 37 38 | shell: """ (awk 'BEGIN{{FS=OFS="\t"}} {{width=$6-$2}} {{(width % 2 != 0) ? (mid=(width+1)/2+$2) : ((rand()<0.5)? (mid=width/2+$2) : (mid=width/2+$2+1))}} width>0 {{print $1, mid, mid+1, $7}}' {input.bedpe} | \ sort -k1,1 -k2,2n | \ bedtools genomecov -i stdin -g <(faidx {input.fasta} -i chromsizes) -bga | \ LC_COLLATE=C sort -k1,1 -k2,2n > {output}) &> {log} """ |
47 48 49 50 | shell: """ (bedtools genomecov -ibam {input.bam} -bga -pc | \ LC_COLLATE=C sort -k1,1 -k2,2n > {output}) &> {log} """ |
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 | run: if wildcards.norm=="libsizenorm" or wildcards.sample in INPUTS: shell(""" (awk -v norm_factor=$(samtools view -c {input.bam_experimental} | \ paste -d "" - <(echo "/1000000") | bc -l) \ 'BEGIN{{FS=OFS="\t"}}{{$4=$4/norm_factor; print $0}}' {input.counts} > {output.normalized}) &> {log} """) else: shell(""" (awk -v norm_factor=$(paste -d "" \ <(samtools view -c {input.bam_spikein}) <(echo "*") \ <(samtools view -c {input.input_bam_experimental}) <(echo "/") \ <(samtools view -c {input.input_bam_spikein}) <(echo "/1000000") | bc -l) \ 'BEGIN{{FS=OFS="\t"}}{{$4=$4/norm_factor; print $0}}' {input.counts} > {output.normalized}) &> {log} """) |
93 94 95 | shell: """ (python scripts/smooth_midpoint_coverage.py -b {params.bandwidth} -i {input} -o {output}) &> {log} """ |
108 109 110 | shell: """ (python scripts/make_ratio_bigwig.py -c {input.ip_sample} -i {input.input_sample} -o {output}) &> {log} """ |
120 121 122 | shell: """ (bedGraphToBigWig {input.bedgraph} <(faidx {input.fasta} -i chromsizes) {output}) &> {log} """ |
18 19 20 21 22 23 | run: bam = input[0] shell("""samtools view {bam} | cut -f9 | sed 's/-//g' | sort -k1,1n -S 80% --parallel {threads} | uniq -c | awk 'BEGIN{{OFS="\t"}}{{print $2, $1}}' > {output}""") for bam in input[1:]: shell("""join -1 1 -2 2 -t $'\t' -e 0 -a 1 -a 2 --nocheck-order {output} <(samtools view {bam} | cut -f9 | sed 's/-//g' | sort -k1,1n -S 80% --parallel {threads} | uniq -c | awk 'BEGIN{{OFS="\t"}}{{print $1, $2}}') > qual_ctrl/fragment_length_distributions/.frag_length.temp; mv qual_ctrl/fragment_length_distributions/.frag_length.temp {output}""") shell("""sed -i "1i {params.header}" {output}""") |
32 33 | script: "../scripts/paired_end_fragment_length.R" |
44 45 46 47 48 49 50 51 52 53 | run: shell("""(echo -e "sample\traw\tcleaned\tmapped\tunique_map\tno_dups" > {output}) &> {log}""") for sample, adapter, align, markdup in zip(SAMPLES.keys(), input.adapter, input.align, input.markdup): shell(""" (grep -e "Total read pairs processed:" -e "Pairs written" {adapter} | cut -d: -f2 | sed 's/,//g' | awk 'BEGIN{{ORS="\t"; print "{sample}"}}{{print $1}}' >> {output} grep -e "1 time" {align} | awk 'BEGIN{{sum=0; ORS="\t"}} {{sum+=$1}} END{{print sum}}' >> {output} grep -e "READ:" -e "WRITTEN:" {markdup} | cut -d ' ' -f2 | awk 'BEGIN{{ORS="\t"}} {{print $1/2}} END{{ORS="\\n"; print ""}}' >> {output}) &>> {log} """) # grep -e "exactly 1 time" {align} | awk 'BEGIN{{sum=0; ORS="\t"}} {{sum+=$1}} END{{print sum}}' >> {output} # grep -e "concordantly exactly 1 time" {align} | awk '{{print $1}}' >> {output}) &> {log} |
64 65 | script: "../scripts/processing_summary.R" |
79 80 81 82 83 84 85 86 87 88 89 90 | run: shell("""(echo -e "sample\tgroup\ttotal_counts_input\texperimental_counts_input\tspikein_counts_input\ttotal_counts_IP\texperimental_counts_IP\tspikein_counts_IP" > {output}) &> {log} """) for sample, group, input_exp, input_si ,ip_exp, ip_si in zip(get_samples(spikein=True, paired=True).keys(), params.groups, input.input_bam_experimental, input.input_bam_spikein, input.ip_bam_experimental, input.ip_bam_spikein): shell("""(paste <(echo -e "{sample}\t{group}\t") \ <(samtools view -c {input_exp}) \ <(samtools view -c {input_si}) \ <(echo "") \ <(samtools view -c {ip_exp}) \ <(samtools view -c {ip_si}) | \ awk 'BEGIN{{FS=OFS="\t"}} {{$3=$4+$5; $6=$7+$8; print $0}}'>> {output}) &>> {log} """) |
104 105 | script: "../scripts/spikein_abundance_chipseq.R" |
18 19 20 21 22 23 24 25 26 27 | shell: """ (bedtools slop -b {params.search_dist} -i {input.peaks} -g <(faidx {input.fasta} -i chromsizes) | \ sort -k1,1 -k2,2n | \ bedtools cluster -d 0 -i stdin | \ bedtools groupby -g 7 -c 5 -o max -full -i stdin | \ sort -k4,4V | \ bedtools getfasta -name+ -fi {input.fasta} -bed stdin | \ awk 'BEGIN{{FS=":|-"}} {{if ($1 ~ />/) {{print $1"::"$3":"$4+1"-"$5+1}} else {{print $0}}}}' \ > {output}) &> {log} """ |
42 43 44 | shell: """ (meme-chip -oc motifs/{wildcards.annotation}/{wildcards.condition}-v-{wildcards.control}/{wildcards.norm}/{wildcards.condition}-v-{wildcards.control}_{wildcards.factor}-chipseq-{wildcards.norm}-{wildcards.annotation}-diffbind-results-{wildcards.direction}-meme_chip {params.db_command} {input.dbs} -bfile <(fasta-get-markov {input.genome_fasta} -m 1) -order 1 -meme-mod {params.meme_mode} -meme-nmotifs {params.meme_nmotifs} -meme-p 1 -meme-norand -centrimo-local {input.seq}) &> {log} """ |
24 25 26 27 28 | shell: """ (macs2 callpeak --treatment {input.chip_bam} --control {input.input_bam} --format BAMPE --name peakcalling/sample_peaks/{wildcards.sample}_{wildcards.species}-{wildcards.factor}-chipseq --SPMR --gsize $(faidx {input.fasta} -i chromsizes | awk '{{sum += $2}} END {{print sum}}') --slocal {params.slocal} --llocal {params.llocal} --keep-dup auto --bdg --call-summits --max-gap {params.maxgap} -q 1) &> {log} (sed -i -e 's/peakcalling\/sample_peaks\///g' {output.peaks}) &>> {log} (sed -i -e 's/peakcalling\/sample_peaks\///g' {output.summits}) &>> {log} """ |
46 47 48 49 50 51 52 53 54 | shell: """ (idr -s {input} --input-file-type narrowPeak --rank q.value -o {output.allpeaks} -l {log} --plot --peak-merge-method max) &> {log} (awk '$5>{params.idr} || $9=="inf"' {output.allpeaks} | \ LC_COLLATE=C sort -k1,1 -k2,2n | \ tee {output.filtered} | \ awk 'BEGIN{{FS=OFS="\t"}}{{print $1, $2, $3, $4, $5, $6, $7, $11, $12, $10}}' | \ tee {output.narrowpeak} | \ awk 'BEGIN{{FS=OFS="\t"}}{{start=$2+$10; print $1, start, start+1, $4, $5, $6}}' > {output.summits}) &>> {log} """ |
64 65 66 67 68 69 | shell: """ (bedtools multiinter -i {input} | \ bedtools merge -i stdin | \ awk 'BEGIN{{FS=OFS="\t"}}{{print $1, $2, $3, ".", 0, "."}}' | \ sort -k1,1 -k2,2n > {output}) &> {log} """ |
11 12 13 14 15 | shell: """ (bedtools makewindows -g <(faidx {input.fasta} -i chromsizes) -w {wildcards.windowsize} | \ LC_COLLATE=C sort -k1,1 -k2,2n | \ bedtools map -a stdin -b {input.bg} -c 4 -o sum > {output}) &> {log} """ |
26 27 28 | shell: """ (bedtools unionbedg -i {input} -header -names {params.names} | bash scripts/cleanUnionbedg.sh | pigz -f > {output}) &> {log} """ |
43 44 | script: "../scripts/plot_scatter_plots.R" |
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 | import argparse import numpy as np import pandas as pd import pyBigWig as pybw #given paths to bigwig files representing replicates, #return a dictionary where keys are chromosome names and #values are the average coverage across replicates def average_bigwigs(coverage_paths): coverage = {} for index, path in enumerate(coverage_paths): bw = pybw.open(path) chroms = bw.chroms() for chrom in chroms: if index==0: coverage[chrom] = bw.values(chrom, 0, chroms[chrom], numpy=True) else: coverage[chrom] = np.add(bw.values(chrom, 0, chroms[chrom], numpy=True), coverage[chrom]) if index==len(coverage_paths): coverage[chrom] = np.divide(coverage[chrom], index) bw.close() return coverage #given "unstranded" chromosome coordinates, #return 0-based offset of summit position from start. #If multiple positions have the same max signal, return the mean position def get_summit(row, coverage): local_coverage = coverage[row['chrom']][row['start']:row['end']] if not np.any(np.isfinite(local_coverage)): return int(len(local_coverage) / 2) return int(np.mean(np.argwhere(local_coverage==np.amax(local_coverage[np.isfinite(local_coverage)])))) def main(condition_paths, control_paths, diffexp_path, narrowpeak_out, bed_out): #condition and control coverage are imported separately and #averaged across replicates in case the number of samples #in each group is different condition_coverage = average_bigwigs(condition_paths) coverage = average_bigwigs(control_paths) for chrom in coverage: coverage[chrom] = np.add(coverage[chrom], condition_coverage[chrom]) #we only need to perform operations using start and end as integers, #so everything else can be treated as an object to avoid reformatting diffexp_df = pd.read_csv(diffexp_path, sep="\t", dtype={'chrom':str, 'start':np.uint32, 'end':np.uint32, 'name':str, 'score':str, 'strand':str, 'log2FC_enrichment':str, 'lfc_SE':str, 'stat':str, 'log10_pval':str, 'log10_padj':str, 'mean_counts':str, 'condition_enrichment':str, 'condition_enrichment_SE':str, 'control_enrichment':str, 'control_enrichment_SE':str}) if diffexp_df.shape[0] > 0: diffexp_df['summit'] = diffexp_df.apply(get_summit, coverage=coverage, axis=1) diffexp_df = diffexp_df.assign(summit_start = diffexp_df['start'] + diffexp_df['summit']) diffexp_df = diffexp_df.assign(summit_end = diffexp_df['summit_start'] + 1) #NOTE: we convert NAs (found in pvalue and score columns) to zero for narrowpeak compatibility diffexp_df.to_csv(narrowpeak_out, sep="\t", columns=(['chrom', 'start', 'end', 'name', 'score', 'strand', 'log2FC_enrichment', 'log10_pval', 'log10_padj', 'summit'] if diffexp_df.shape[0] > 0 else []), header=False, index=False, float_format="%.3f", encoding='utf-8', na_rep="0") diffexp_df.to_csv(bed_out, sep="\t", columns=(['chrom', 'summit_start', 'summit_end', 'name', 'score', 'strand'] if diffexp_df.shape[0] > 0 else []), header=False, index=False, float_format="%.3f", encoding='utf-8', na_rep="0") if __name__ == '__main__': parser = argparse.ArgumentParser(description='Add back summit information to ChIP-seq differential binding results.') parser.add_argument('-i', dest = 'condition_paths', type=str, nargs='+', help='BigWigs for all condition samples') parser.add_argument('-j', dest = 'control_paths', type=str, nargs='+', help='BigWigs for all control samples') parser.add_argument('-d', dest = 'diffexp_path', type=str, help='differential binding results file') parser.add_argument('-n', dest = 'narrowpeak_out', type=str, help='output path for narrowPeak file') parser.add_argument('-b', dest = 'bed_out', type=str, help='output path for BED file of summit positions') args = parser.parse_args() main(args.condition_paths, args.control_paths, args.diffexp_path, args.narrowpeak_out, args.bed_out) |
3 | awk 'BEGIN{FS=OFS="\t"} NR==1{ORS="\t"; print "name"; for(k=4;k<NF;k++) print $k; ORS="\n"; print $NF} {ORS="\t"; sum=0; for(i=4;i<=NF;i++) sum+=$i} sum>0{print $1"-"$2"-"$3; for(j=4;j<NF;j++) print $j; ORS="\n"; print $NF}' |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 | library(tidyverse) library(magrittr) library(DESeq2) library(gridExtra) get_countdata = function(path, samples){ df = read_tsv(path) %>% select(samples) %>% rowid_to_column(var="index") %>% column_to_rownames(var="index") %>% as.data.frame() df = df[rowSums(df)>1,] return(df) } initialize_dds = function(data_path, samples, conditions, sample_type, condition_id, control_id){ dds = DESeqDataSetFromMatrix(countData = get_countdata(data_path, samples), colData = data.frame(condition = factor(conditions, levels = c(control_id, condition_id)), sample_type = factor(sample_type, levels = c("input", "ChIP")), row.names = samples), design = ~ sample_type + condition + sample_type:condition) return(dds) } extract_normalized_counts = function(dds){ dds %>% counts(normalized=TRUE) %>% as.data.frame() %>% rownames_to_column(var="index") %>% as_tibble() %>% return() } extract_rlog_counts = function(dds){ dds %>% rlog(blind=FALSE) %>% assay() %>% as.data.frame() %>% rownames_to_column(var="index") %>% as_tibble() %>% return() } build_mean_sd_df_pre = function(dds){ dds %>% normTransform() %>% assay() %>% as_tibble() %>% rowid_to_column(var="index") %>% gather(sample, signal, -index) %>% group_by(index) %>% summarise(mean = mean(signal), sd = sd(signal)) %>% mutate(rank = min_rank(dplyr::desc(mean))) %>% return() } build_mean_sd_df_post = function(counts){ counts %>% gather(sample, signal, -index) %>% group_by(index) %>% summarise(mean = mean(signal), sd = sd(signal)) %>% mutate(rank = min_rank(dplyr::desc(mean))) %>% return() } reverselog_trans <- function(base = exp(1)) { trans <- function(x) -log(x, base) inv <- function(x) base^(-x) scales::trans_new(paste0("reverselog-", format(base)), trans, inv, scales::log_breaks(base = base), domain = c(1e-100, Inf)) } mean_sd_plot = function(df, ymax, title){ ggplot(data = df, aes(x=rank, y=sd)) + geom_hex(aes(fill=..count.., color=..count..), bins=100, size=0) + geom_smooth(color="#4292c6") + scale_fill_viridis_c(option="inferno", name=expression(log[10](count)), guide=FALSE) + scale_color_viridis_c(option="inferno", guide=FALSE) + scale_x_continuous(trans = reverselog_trans(10), name="rank(mean enrichment)", expand = c(0,0)) + scale_y_continuous(limits = c(NA, ymax), name = "SD") + theme_light() + ggtitle(title) + theme(text = element_text(size=8)) } extract_deseq_results = function(dds, annotations, alpha, lfc){ control_enrichment = results(dds, contrast=c(0,1,0,0), tidy=TRUE) %>% as_tibble() %>% select(row, control_enrichment = log2FoldChange, control_enrichment_SE = lfcSE) condition_enrichment = results(dds, contrast=c(0,1,0,1), tidy=TRUE) %>% as_tibble() %>% select(row, condition_enrichment = log2FoldChange, condition_enrichment_SE = lfcSE) results(dds, alpha=alpha, lfcThreshold=lfc, altHypothesis="greaterAbs", tidy=TRUE) %>% as_tibble() %>% left_join(control_enrichment, by="row") %>% left_join(condition_enrichment, by="row") %>% left_join(annotations, ., by=c("index"="row")) %>% arrange(padj) %>% mutate(name = if_else(name==".", paste0("peak_", row_number()), name), score = as.integer(pmin(-125*log2(padj), 1000))) %>% mutate_at(vars(pvalue, padj), ~(-log10(.))) %>% mutate_if(is.double, round, 3) %>% select(index, chrom, start, end, name, score, strand, log2FC_enrichment=log2FoldChange, lfc_SE=lfcSE, stat, log10_pval=pvalue, log10_padj=padj, mean_counts=baseMean, condition_enrichment, condition_enrichment_SE, control_enrichment, control_enrichment_SE) %>% return() } write_counts_table = function(results_df, annotations, counts_df, output_path){ results_df %>% select(1:7) %>% right_join(annotations %>% select(-c(name, score)), by = c("index", "chrom", "start", "end", "strand")) %>% left_join(counts_df, by="index") %>% select(-index) %>% write_tsv(output_path) %>% return() } plot_ma = function(df_sig = results_df_filtered_significant, df_nonsig = results_df_filtered_nonsignificant, xvar = mean_expr, yvar = log2_enrichment, lfc, condition, control){ xvar = enquo(xvar) yvar = enquo(yvar) ggplot() + geom_hline(yintercept = 0, color="black", linetype="dashed") + geom_hline(yintercept = c(-lfc, lfc), color="grey70", linetype="dashed") + stat_bin_hex(data = df_nonsig, geom="point", aes(x=!!xvar, y=!!yvar, alpha=..count..), binwidth = c(.01, 0.01), color="black", stroke=0, size=0.7) + stat_bin_hex(data = df_sig, geom="point", aes(x=!!xvar, y=!!yvar, alpha=..count..), binwidth = c(.01, 0.01), color="red", stroke=0, size=0.7) + scale_x_log10(name="mean of normalized counts") + scale_alpha_continuous(range = c(0.5, 1)) + ylab(bquote(log[2]~frac("enrichment in" ~ .(condition), "enrichment in" ~ .(control)))) + theme_light() + theme(text = element_text(size=8, color="black"), axis.text = element_text(color = "black"), axis.title.y = element_text(angle=0, hjust=1, vjust=0.5), legend.position = "none") } plot_volcano = function(df = results_df_filtered, xvar = log2_enrichment, yvar = log10_padj, lfc, alpha, condition, control){ xvar = enquo(xvar) yvar = enquo(yvar) ggplot() + geom_vline(xintercept = 0, color="black", linetype="dashed") + geom_vline(xintercept = c(-lfc, lfc), color="grey70", linetype="dashed") + stat_bin_hex(data = df, geom = "point", aes(x = !!xvar, y = !!yvar, color=log10(..count..)), binwidth = c(0.01, 0.1), alpha=0.8, stroke=0, size=0.7) + geom_hline(yintercept = -log10(alpha), color="red", linetype="dashed") + xlab(bquote(log[2] ~ frac("enrichment in" ~ .(condition), "enrichment in" ~ .(control)))) + ylab(expression(-log[10] ~ FDR)) + scale_color_viridis_c(option="inferno") + theme_light() + theme(text = element_text(size=8), axis.title.y = element_text(angle=0, hjust=1, vjust=0.5), legend.position = "none") } main = function(exp_table="depleted-v-non-depleted_allsamples-experimental-Rpb1-chipseq-counts-verified-coding-genes.tsv.gz", spike_table="depleted-v-non-depleted_allsamples-spikein-Rpb1-chipseq-counts-peaks.tsv.gz", samples=read_tsv(exp_table) %>% select(-c(1:6)) %>% names(), conditions=rep(c(rep("non-depleted",4), rep("depleted",4)), 2), sample_type=c(rep("input",8), rep("ChIP", 8)), # batches = rep(c(rep(1,2), rep(2,2)), 4), norm="spikenorm", condition="depleted", control="non-depleted", alpha=0.1, lfc=0, counts_norm_out="counts_norm.tsv", counts_rlog_out="counts_rlog.tsv", results_all_out="results_all.tsv", results_up_out="results_up.tsv", results_down_out="results_down.tsv", results_unchanged_out="results_unch.tsv", # bed_all_out="all.bed", # bed_up_out="up.bed", # bed_down_out="down.bed", # bed_unchanged_out="nonsignificant.bed", qc_plots_out="qcplots.png"){ annotations = read_tsv(exp_table) %>% select(1:6) %>% rownames_to_column(var="index") %>% mutate(chrom = str_replace(chrom, "-minus$|-plus$", "")) dds = initialize_dds(data_path = exp_table, samples = samples, conditions = conditions, sample_type = sample_type, condition_id = condition, control_id = control) if (norm=="spikenorm"){ dds_spike = initialize_dds(data_path = spike_table, samples = samples, conditions = conditions, sample_type = sample_type, condition_id = condition, control_id = control) %>% estimateSizeFactors() sizeFactors(dds) = sizeFactors(dds_spike) } else { dds %<>% estimateSizeFactors() } dds %<>% estimateDispersions() %>% nbinomWaldTest() #extract normalized counts and write to file counts_norm = extract_normalized_counts(dds = dds) counts_rlog = extract_rlog_counts(dds = dds) mean_sd_df_pre = build_mean_sd_df_pre(dds) mean_sd_df_post = build_mean_sd_df_post(counts_rlog) sd_max = max(c(mean_sd_df_pre[["sd"]], mean_sd_df_post[["sd"]]), na.rm=TRUE)*1.01 mean_sd_plot_pre = mean_sd_plot(df = mean_sd_df_pre, ymax = sd_max, title = expression(log[2] ~ "counts," ~ "pre-shrinkage")) mean_sd_plot_post = mean_sd_plot(df = mean_sd_df_post, ymax = sd_max, title = expression(regularized ~ log[2] ~ "counts")) results_df = extract_deseq_results(dds = dds, annotations = annotations, alpha = alpha, lfc = lfc) %>% mutate(chrom = str_replace(chrom, "-minus$|-plus$", "")) write_counts_table(results_df = results_df, annotations = annotations, counts_df = counts_norm, output_path = counts_norm_out) write_counts_table(results_df = results_df, annotations = annotations, counts_df = counts_rlog, output_path = counts_rlog_out) results_df %<>% select(-index) %>% write_tsv(results_all_out) # results_df %>% # select(1:6) %>% # write_tsv(bed_all_out, col_names=FALSE) results_df_significant = results_df %>% filter(log10_padj > -log10(alpha)) results_df_nonsignificant = results_df %>% filter(log10_padj <= -log10(alpha)) %>% write_tsv(results_unchanged_out) # results_df_nonsignificant %>% # select(1:6) %>% # write_tsv(bed_unchanged_out, col_names=FALSE) results_df_significant %>% filter(log2FC_enrichment >= 0) %>% write_tsv(results_up_out) # write_tsv(results_up_out) %>% # select(1:6) %>% # write_tsv(bed_up_out, col_names=FALSE) results_df_significant %>% filter(log2FC_enrichment < 0) %>% write_tsv(results_down_out) # write_tsv(results_down_out) %>% # select(1:6) %>% # write_tsv(bed_down_out, col_names=FALSE) maplot = plot_ma(df_sig = results_df_significant, df_nonsig = results_df_nonsignificant, xvar = mean_counts, yvar = log2FC_enrichment, lfc = lfc, condition = condition, control = control) volcano = plot_volcano(df = results_df, xvar = log2FC_enrichment, yvar = log10_padj, lfc = lfc, alpha = alpha, condition = condition, control = control) qc_plots = arrangeGrob(mean_sd_plot_pre, mean_sd_plot_post, maplot, volcano, ncol=2) ggsave(qc_plots_out, plot = qc_plots, width = 16*1.5, height = 9*1.5, units="cm") } main(exp_table = snakemake@input[["exp_counts"]], spike_table = snakemake@input[["spike_counts"]], samples = snakemake@params[["samples"]], conditions = snakemake@params[["conditions"]], sample_type = snakemake@params[["sampletypes"]], norm = snakemake@wildcards[["norm"]], condition = snakemake@wildcards[["condition"]], control = snakemake@wildcards[["control"]], alpha = snakemake@params[["alpha"]], lfc = snakemake@params[["lfc"]], counts_norm_out = snakemake@output[["counts_norm"]], counts_rlog_out = snakemake@output[["counts_rlog"]], results_all_out = snakemake@output[["results_all"]], results_up_out = snakemake@output[["results_up"]], results_down_out = snakemake@output[["results_down"]], results_unchanged_out = snakemake@output[["results_nonsig"]], # bed_all_out = snakemake@output[["bed_all"]], # bed_up_out = snakemake@output[["bed_up"]], # bed_down_out = snakemake@output[["bed_down"]], # bed_unchanged_out = snakemake@output[["bed_nonsig"]], qc_plots_out = snakemake@output[["qc_plots"]]) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 | library(tidyverse) library(forcats) library(viridis) library(ggthemes) library(ggrepel) import = function(path){ read_tsv(path) %>% mutate_at(vars(sample, status), funs(fct_inorder(., ordered=TRUE))) %>% return() } main = function(seq_len_dist_in, per_tile_in, per_base_qual_in, per_base_seq_in, per_base_n_in, per_seq_gc_in, per_seq_qual_in, adapter_content_in, seq_dup_in, seq_len_dist_out, per_tile_out, per_base_qual_out, per_base_seq_out, per_seq_gc_out, per_seq_qual_out, adapter_content_out, seq_dup_out){ #damnit fastqc...why bin some of the data and then output in this shite format... length_distribution = import(seq_len_dist_in) %>% separate(length, into=c('a','b'), sep="-", fill="right", convert=TRUE) %>% mutate_at(vars(count), funs(if_else(is.na(b), ., ./2))) %>% gather(key, length, c(a,b)) %>% filter(!is.na(length)) %>% select(-key) nsamples = n_distinct(length_distribution$sample) per_tile_quality = import(per_tile_in) %>% mutate_at(vars(tile), funs(fct_inorder(as.character(.), ordered=TRUE))) per_base_qual = import(per_base_qual_in) %>% left_join(length_distribution, by=c("base"="length", "sample", "status")) %>% group_by(sample, status) %>% mutate_at(vars(count), funs(if_else(is.na(.), 0, .))) %>% mutate(n = lag(sum(count)-cumsum(count), default=sum(count))) %>% mutate_at(vars(n), funs(./max(n))) adapter_content = import(adapter_content_in) per_base_seq = import(per_base_seq_in) %>% left_join(import(per_base_n_in), by=c("base", "sample","status")) %>% rename(position=base, n=n_count) %>% gather(base, pct, -c(position, sample, status)) %>% mutate_at(vars(base), funs(toupper(.))) %>% mutate_at(vars(base), funs(fct_inorder(., ordered=TRUE))) per_seq_gc = import(per_seq_gc_in) %>% filter(count > 0) %>% group_by(sample, status) %>% mutate(norm_count = count/sum(count)) per_seq_qual = import(per_seq_qual_in) %>% filter(count > 0) %>% group_by(sample, status) %>% mutate(norm_count = count/sum(count)) duplication_levels = import(seq_dup_in) %>% mutate_at(vars(duplication_level), funs(fct_inorder(., ordered=TRUE))) #kmer_content = import(kmer_in) theme_standard = theme_light() + theme(text = element_text(size=12, color="black", face="bold"), axis.text = element_text(size=12, color="black"), axis.title = element_text(size=12, color="black", face="bold"), strip.placement = "outside", strip.background = element_blank(), strip.text = element_text(size=12, color="black", face="bold"), strip.text.y = element_text(angle=-180, hjust=1)) length_dist_plot = ggplot(data = length_distribution %>% group_by(sample, status) %>% mutate(normcount = count/max(count)), aes(x=length, y=normcount)) + geom_col(fill="#114477") + scale_x_continuous(breaks=scales::pretty_breaks(n=6), name="read length (nt)") + scale_y_continuous(breaks=scales::pretty_breaks(n=2), name="normalized counts") + facet_grid(sample~status, scales="free_y", switch="y") + ggtitle("read length distributions") + theme_standard + theme(axis.text.y = element_text(size=10, face="plain")) ggsave(seq_len_dist_out, plot=length_dist_plot, width=26, height=2+2*nsamples, units="cm", limitsize=FALSE) tile_quality_plot = ggplot(data = per_tile_quality %>% filter(status=="raw"), aes(x=base, y=tile, fill=mean)) + geom_raster() + scale_fill_viridis(direction=-1, guide=guide_colorbar(title="mean\nquality\nscore", barheight=10)) + scale_x_continuous(expand=c(0,0), name="cycle number", breaks=scales::pretty_breaks(n=6)) + ylab("flow cell tile") + ggtitle("per tile sequencing quality") + facet_grid(sample~status, scales="free_y", switch="y") + theme_standard + theme(axis.text.y = element_blank(), axis.ticks.y = element_blank(), panel.grid.major.y = element_blank(), strip.text.x = element_blank()) ggsave(per_tile_out, plot=tile_quality_plot, width=24, height=2+2*nsamples, units="cm", limitsize=FALSE) per_base_qual_plot = ggplot(data=per_base_qual, aes(x=base, y=fct_rev(sample), height=n, fill=mean, color=mean)) + geom_tile() + scale_color_viridis(guide=FALSE, direction=-1) + scale_fill_viridis(guide=guide_colorbar(title="mean quality", barwidth=12, barheight=1, title.position = "top", title.hjust=0.5), direction=-1) + scale_x_continuous(expand=c(0,0), name="read length (nt)", breaks=scales::pretty_breaks(n=6)) + facet_grid(sample~status, scales="free_y", switch="y") + ggtitle("per base sequencing quality", subtitle = expression("bar height " %prop% " fraction of reads")) + theme_standard + theme(axis.text.y = element_blank(), axis.title.y = element_blank(), plot.subtitle = element_text(size=12), legend.position="top", legend.margin = margin(0,0,0,0)) ggsave(per_base_qual_out, plot=per_base_qual_plot, width=26, height=2.5+1.25*nsamples, units="cm", limitsize=FALSE) adapter_plot = ggplot(data = adapter_content, aes(x=position, y=0, fill=pct, color=pct)) + geom_raster() + scale_color_viridis(guide=FALSE) + scale_fill_viridis(guide=guide_colorbar(title="% reads with adapter", barwidth=12, barheight=1, title.position = "top", title.hjust=0.5)) + scale_x_continuous(expand=c(0,0), name="read length (nt)") + scale_y_continuous(expand=c(0,0), name=NULL, breaks=0, labels=NULL) + facet_grid(sample~status, switch="y") + ggtitle("adapter content") + theme_standard + theme(legend.position="top", legend.margin = margin(0,0,0,0)) ggsave(adapter_content_out, plot=adapter_plot, width=32, height=2+1.25*nsamples, units="cm", limitsize=FALSE) per_base_seq_plot = ggplot(data = per_base_seq, aes(x=position, y=pct, color=base)) + geom_line() + scale_color_ptol(guide=guide_legend(label.position="top", label.hjust=0.5, keyheight=0.2)) + scale_x_continuous(expand=c(0,1), name="position in read", breaks=scales::pretty_breaks(n=6)) + scale_y_continuous(name="% of reads", breaks=scales::pretty_breaks(n=2)) + facet_grid(sample~status, switch="y") + ggtitle("per base sequence content") + theme_standard + theme(legend.position="top", legend.title = element_blank(), legend.margin = margin(0,0,0,0), legend.key.size = unit(1, "cm"), legend.text = element_text(size=12, face="bold"), axis.text.y = element_text(size=10, face="plain")) ggsave(per_base_seq_out, plot=per_base_seq_plot, width=32, height=2+2.25*nsamples, units="cm", limitsize=FALSE) per_seq_gc_plot = ggplot(data = per_seq_gc, aes(x=gc_content, y=norm_count)) + geom_line(color="#114477") + scale_x_continuous(expand=c(0,0), name="GC%") + #xlab("GC%") + scale_y_continuous(breaks=scales::pretty_breaks(n=2), name="normalized counts") + facet_grid(sample~status, switch="y") + ggtitle("per sequence GC content") + theme_standard + theme(axis.text.y = element_text(size=10, face="plain"), panel.spacing.x = unit(1, "cm"), plot.margin = margin(5.5, 12, 5.5, 5.5, unit="pt")) ggsave(per_seq_gc_out, plot=per_seq_gc_plot, width=26, height=2+2*nsamples, units="cm", limitsize=FALSE) per_seq_qual_plot = ggplot(data = per_seq_qual, aes(x=quality, y=norm_count)) + geom_col(fill="#114477") + scale_x_continuous(breaks=scales::pretty_breaks(n=5), name="quality score") + scale_y_continuous(breaks=scales::pretty_breaks(n=2), name="normalized counts") + facet_grid(sample~status, switch="y") + ggtitle("per sequence quality scores") + theme_standard + theme(axis.text.y = element_text(size=10, face="plain")) ggsave(per_seq_qual_out, plot=per_seq_qual_plot, width=26, height=2+1.5*nsamples, units="cm", limitsize=FALSE) dup_level_plot = ggplot(data = duplication_levels, aes(x=duplication_level, y=pct_of_total)) + geom_col(fill="#114477") + xlab("duplication level") + ylab("% of total reads") + facet_grid(sample~status, switch="y") + ggtitle("sequence duplication levels") + theme_standard + theme(axis.text.x = element_text(size=10, face="plain", angle=60, hjust=1), axis.text.y = element_text(size=10, face="plain")) ggsave(seq_dup_out, plot=dup_level_plot, width=26, height=2+1.5*nsamples, units="cm", limitsize=FALSE) ##ermmm...no obvious way to make this one look nice, but then it doesn't really need to #kmer_content_plot = ggplot(data = kmer_content, aes(x=max_position, y=log2(obs_over_exp_max), label=sequence)) + # geom_point(shape=16, stroke=0, size=1, alpha=0.5) + # geom_label_repel(size=2, label.size=unit(0.05, "pt"), label.padding=unit(0.1, "pt"), label.r=unit(0,"pt"), segment.size=0.1, # box.padding=unit(0.05,"pt"), segment.alpha=0.4) + # xlab("position in read") + # ylab(expression(bold(log[2]~ frac("observed", "expected")))) + # ggtitle("k-mer content", # subtitle = "top 20 overrepresented k-mers") + # facet_grid(sample~status, switch="y", scales="free_y") + # theme_standard + theme(plot.subtitle = element_text(size=12, face="plain")) # #ggsave(kmer_out, plot=kmer_content_plot, width=35, height=2+5*nsamples, units="cm", limitsize=FALSE) } main(seq_len_dist_in = snakemake@input[["seq_length_dist"]], per_tile_in = snakemake@input[["per_tile_qual"]], per_base_qual_in = snakemake@input[["per_base_qual"]], per_base_seq_in = snakemake@input[["per_base_seq_content"]], per_base_n_in = snakemake@input[["per_base_n"]], per_seq_gc_in = snakemake@input[["per_seq_gc"]], per_seq_qual_in = snakemake@input[["per_seq_qual"]], adapter_content_in = snakemake@input[["adapter_content"]], seq_dup_in = snakemake@input[["seq_duplication"]], #kmer_in = snakemake@input[["kmer"]], seq_len_dist_out = snakemake@output[["seq_length_dist"]], per_tile_out = snakemake@output[["per_tile_qual"]], per_base_qual_out = snakemake@output[["per_base_qual"]], per_base_seq_out = snakemake@output[["per_base_seq_content"]], per_seq_gc_out = snakemake@output[["per_seq_gc"]], per_seq_qual_out = snakemake@output[["per_seq_qual"]], adapter_content_out = snakemake@output[["adapter_content"]], seq_dup_out = snakemake@output[["seq_duplication"]]) #kmer_out = snakemake@output[["kmer"]]) |
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | import argparse import numpy as np import pyBigWig as pybw def main(chip_in="non-depleted-Rpb1-IP-3_Rpb1-chipseq-spikenorm-midpoints_smoothed.bw", input_in="non-depleted-untagged-input-3_Rpb1-chipseq-spikenorm-midpoints_smoothed.bw", ratio_out="ratio.bw"): chip = pybw.open(chip_in) input = pybw.open(input_in) ratio = pybw.open(ratio_out, "w") assert chip.chroms() == input.chroms(), "ChIP and input bigWig chromosomes don't match." ratio.addHeader(list(chip.chroms().items())) for chrom in chip.chroms(): chip_values = chip.values(chrom, 0, chip.chroms(chrom), numpy=True) input_values = input.values(chrom, 0, chip.chroms(chrom), numpy=True) ratio.addEntries(chrom, 0, values=np.log2(np.divide(chip_values, input_values)), span=1, step=1) chip.close() input.close() ratio.close() if __name__ == "__main__": parser = argparse.ArgumentParser(description='Given two bigWig coverage files, generate a coverage file of their log2 ratio.') parser.add_argument('-c', dest='chip_in', type=str, help='Path to numerator (ChIP) bigWig.') parser.add_argument('-i', dest='input_in', type=str, help='Path to denominator (input) bigWig.') parser.add_argument('-o', dest='ratio_out', type=str, help='Path to output bigWig.') args = parser.parse_args() main(chip_in=args.chip_in, input_in=args.input_in, ratio_out=args.ratio_out) |
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | library(argparse) library(tidyverse) library(magrittr) parser = ArgumentParser() parser$add_argument('-i', '--input', type='character') parser$add_argument('-r', '--refpt', type='character', nargs="+") parser$add_argument('-g', '--group', type='character', nargs="+") parser$add_argument('-s', '--sample', type='character', nargs="+") parser$add_argument('-t', '--sampletype', type='character', nargs=1) parser$add_argument('-a', '--annotation', type='character', nargs="+") parser$add_argument('-b', '--binsize', type='integer') parser$add_argument('-u', '--upstream', type='integer') parser$add_argument('-o', '--output', type='character') args = parser$parse_args() melt = function(inmatrix, refpt, group, sample, sampletype, annotation, binsize, upstream, outpath){ raw = read_tsv(inmatrix, skip=3, col_names=FALSE) names(raw) = seq(ncol(raw)) df = raw %>% rownames_to_column(var="index") %>% gather(key = variable, value=value, -index, convert=TRUE) %>% filter(!is.na(value)) %>% transmute(group = group, sample = sample, sampletype = sampletype, annotation = annotation, index = as.integer(index), position = variable, cpm = as.numeric(value)) if(binsize>1){ df %<>% mutate(position = (as.numeric(position)*binsize-(upstream+1.5*binsize))/1000) } else if (refpt=="TES"){ df %<>% mutate(position = (as.numeric(position)-(1+upstream))/1000) } else { df %<>% mutate(position = (as.numeric(position)-(2+upstream))/1000) } write_tsv(df, path=outpath, col_names=FALSE) return(df) } melt(inmatrix = args$input, refpt = args$refpt, group = paste(args$group, collapse=" "), sample = paste(args$sample, collapse=" "), sampletype = args$sampletype, annotation = paste(args$annotation, collapse=" "), binsize = args$binsize, upstream = args$upstream, outpath = args$output) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | library(tidyverse) library(forcats) main = function(in_table, out_path){ df = read_tsv(in_table) %>% gather(key=sample, value=count, -fragsize) %>% mutate(sample = fct_inorder(sample, ordered=TRUE)) %>% group_by(sample) %>% mutate(density = count/sum(count, na.rm=TRUE)) plot = ggplot(data = df, aes(x=fragsize, y=density)) + geom_area(fill="#114477", color="black") + facet_grid(sample~., switch="y") + scale_y_continuous(breaks = scales::pretty_breaks(n=2)) + xlab("fragment size (bp)") + theme_light() + theme(text = element_text(size=12, color="black", face="bold"), axis.text = element_text(color="black"), axis.text.x = element_text(size=12), axis.text.y = element_text(face="plain"), strip.background = element_blank(), strip.text = element_text(color="black", size=12), strip.placement = "outside", strip.text.y = element_text(angle=-180, hjust=1)) ggsave(out_path, plot=plot, width=24, height=2+1.5*n_distinct(df[["sample"]]), units="cm", limitsize=FALSE) } main(in_table = snakemake@input[["table"]], out_path = snakemake@output[["plot"]]) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 | library(tidyverse) library(magrittr) library(viridis) library(psych) library(seriation) library(ggthemes) library(gtable) hmap_ybreaks = function(limits){ if (max(limits)-min(limits) >= 2000){ return(seq(min(limits)+500, max(limits)-500, 500)) } else if (between(max(limits)-min(limits), 200, 1999)){ return(seq(min(limits)+100, max(limits)-100, 100)) } else { return(round((max(limits)-min(limits))/2)) } } main = function(in_path, samplelist, anno_paths, ptype, readtype, upstream, dnstream, scaled_length, pct_cutoff, log_transform, pcount, trim_pct, factorlabel, spread_type, refptlabel, endlabel, cmap, sortmethod, cluster_scale, cluster_samples, cluster_five, cluster_three, k, assay, heatmap_sample_out, heatmap_group_out, meta_sample_out, meta_sample_overlay_out, meta_group_out, meta_sampleanno_out, meta_groupanno_out, meta_sampleclust_out, meta_groupclust_out, anno_out, cluster_out){ hmap = function(df, flimit, readtype="midpoint", logtxn=log_transform){ heatmap_base = ggplot(data = df) + geom_vline(xintercept = 0, size=1.5) if (ptype=="scaled"){ heatmap_base = heatmap_base + geom_vline(xintercept = scaled_length/1000, size=1.5) } if (logtxn){ heatmap_base = heatmap_base + geom_raster(aes(x=position, y=new_index, fill=log2(cpm+pcount)), interpolate=FALSE) + scale_fill_viridis(option = cmap, name = bquote(log[2] ~ .(factorlabel) ~ "ChIP-seq" ~ .(readtype)), limits = c(NA, flimit), oob=scales::squish, guide=guide_colorbar(title.position="top", barwidth=20, barheight=1, title.hjust=0.5)) } else { heatmap_base = heatmap_base + geom_raster(aes(x=position, y=new_index, fill=cpm), interpolate=FALSE) + scale_fill_viridis(option = cmap, name = paste(factorlabel, "ChIP-seq", readtype), limits = c(NA, flimit), oob=scales::squish, guide=guide_colorbar(title.position="top", barwidth=20, barheight=1, title.hjust=0.5)) } heatmap_base = heatmap_base + scale_y_reverse(expand=c(0.005,5), breaks=hmap_ybreaks) + theme_minimal() + theme(text = element_text(size=16, face="plain", color="black"), legend.position = "top", legend.title = element_text(size=16, face="plain", color="black"), legend.text = element_text(size=12, face="plain"), legend.margin = margin(0,0,0,0), legend.box.margin = margin(0,0,0,0), strip.text.x = element_text(size=16, face="plain", color="black"), axis.ticks.length = unit(0.125, "cm"), axis.ticks = element_line(size=1.5), axis.ticks.y = element_blank(), axis.text.y = element_blank(), axis.text.x = element_text(size=16, face="plain", color="black", margin = unit(c(3,0,0,0),"pt")), axis.title.x = element_text(size=12, face="plain"), axis.title.y = element_blank(), panel.grid.major.x = element_line(color="black", size=1.5), panel.grid.minor.x = element_line(color="black"), panel.grid.major.y = element_line(color="black"), panel.grid.minor.y = element_blank(), panel.spacing.x = unit(.8, "cm")) if (ptype=="absolute"){ heatmap_base = heatmap_base + scale_x_continuous(breaks=scales::pretty_breaks(n=3), labels= function(x){if_else(x==0, refptlabel, if(upstream>500 | dnstream>500){as.character(x)} else {as.character(x*1000)})}, name=paste("distance from", refptlabel, if(upstream>500 | dnstream>500){"(kb)"} else {"(nt)"}), limits = c(-upstream/1000, dnstream/1000), expand=c(0,0.025)) } else { heatmap_base = heatmap_base + scale_x_continuous(breaks=c(0, (scaled_length/2)/1000, scaled_length/1000), labels=c(refptlabel, "", endlabel), name="scaled distance", limits = c(-upstream/1000, (scaled_length+dnstream)/1000), expand=c(0,0.025)) } return(heatmap_base) } meta = function(df, groupvar="sample", strand="protection"){ if (groupvar=="sample"){ metagene = ggplot(data = df, aes(x=position, group=interaction(sample, sampletype), color=group, fill=group)) } else if (groupvar=="group"){ metagene = ggplot(data = df, aes(x=position, group=interaction(group, sampletype), color=group, fill=group)) } else if (groupvar=="sampleclust"){ metagene = ggplot(data = df, aes(x=position, group=interaction(sample, sampletype, cluster), color=factor(cluster), fill=factor(cluster))) } else if (groupvar=="groupclust"){ metagene = ggplot(data = df, aes(x=position, group=interaction(group, sampletype, cluster), color=factor(cluster), fill=factor(cluster))) } else if (groupvar=="sampleanno"){ metagene = ggplot(data = df, aes(x=position, group=interaction(sample, sampletype, annotation, cluster), color=interaction(annotation, cluster), fill=interaction(annotation, cluster))) } else if (groupvar=="groupanno"){ metagene = ggplot(data = df %>% mutate(coloring = interaction(annotation, cluster)), aes(x=position, color=coloring, fill=coloring)) } metagene = metagene + geom_vline(xintercept = 0, size=1, color="grey65") if (ptype=="scaled"){ metagene = metagene + geom_vline(xintercept = scaled_length/1000, size=1, color="grey65") } if (readtype=="enrichment"){ metagene = metagene + geom_ribbon(aes(ymin=low, ymax=high), size=0, alpha=0.2) + geom_line(aes(y=mid)) } else { metagene = metagene + geom_ribbon(aes(ymin=low, ymax=high, alpha=sampletype), size=0) + geom_line(aes(y=mid, linetype=sampletype)) + scale_linetype_manual(values = c("dashed", "solid"), guide=guide_legend(label.position=ifelse(groupvar %in% c("sampleanno", "groupanno"), "right", "top"), label.hjust=ifelse(groupvar %in% c("sampleanno", "groupanno"), 0, 0.5))) + scale_alpha_manual(values=c(0.05, 0.2), guide=guide_legend(label.position=ifelse(groupvar %in% c("sampleanno", "groupanno"), "right", "top"), label.hjust=ifelse(groupvar %in% c("sampleanno", "groupanno"), 0, 0.5))) } metagene = metagene + scale_y_continuous(limits = c(NA, NA), name=ifelse(readtype=="enrichment", expression(textstyle(frac("IP", "input"))), "normalized counts")) + # scale_color_manual(values=rep(ptol_pal()(min(n_groups, 12)), ceiling(n_groups/12)), scale_color_ptol(guide=guide_legend(label.position=ifelse(groupvar %in% c("sampleanno", "groupanno"), "right", "top"), label.hjust=ifelse(groupvar %in% c("sampleanno", "groupanno"), 0, 0.5))) + # scale_fill_manual(values=rep(ptol_pal()(min(n_groups, 12)), ceiling(n_groups/12))) + scale_fill_ptol() + ggtitle(paste(factorlabel, "ChIP-seq", readtype)) + theme_light() + theme(text = element_text(size=12, color="black", face="plain"), axis.text = element_text(size=12, color="black"), axis.text.y = element_text(size=10, face="plain"), axis.title = element_text(size=10, face="plain"), strip.placement="outside", strip.background = element_blank(), strip.text = element_text(size=12, color="black", face="plain"), legend.text = element_text(size=12), legend.title = element_blank(), legend.position = ifelse(groupvar %in% c("sampleanno", "groupanno"), "bottom", "top"), legend.key.width = unit(3, "cm"), plot.title = element_text(size=12), plot.subtitle = element_text(size=10, face="plain"), panel.spacing.x = unit(0.8, "cm")) if (ptype=="absolute"){ metagene = metagene + scale_x_continuous(breaks=scales::pretty_breaks(n=3), labels= function(x){if_else(x==0, refptlabel, if(upstream>500 | dnstream>500){as.character(x)} else {as.character(x*1000)})}, name=paste("distance from", refptlabel, if(upstream>500 | dnstream>500){"(kb)"} else {"(nt)"}), limits = c(-upstream/1000, dnstream/1000), expand=c(0,0)) } else { metagene = metagene + scale_x_continuous(breaks=c(0, (scaled_length/2)/1000, scaled_length/1000), labels=c(refptlabel, "", endlabel), name="scaled distance", limits = c(-upstream/1000, (scaled_length+dnstream)/1000), expand=c(0,0)) } if (groupvar %in% c("sampleclust", "groupclust")){ metagene = metagene + scale_color_colorblind(guide=guide_legend(label.position="top", label.hjust=0.5)) + scale_fill_colorblind() } return(metagene) } nest_right_facets = function(ggp, level=2, outer="replicate", inner="annotation"){ og_grob = ggplotGrob(ggp) strip_loc = grep("strip-r", og_grob[["layout"]][["name"]]) strip = gtable_filter(og_grob, "strip-r", trim=FALSE) strip_heights = gtable_filter(og_grob, "strip-r")[["heights"]] strip_top = min(strip[["layout"]][["t"]]) strip_bot = max(strip[["layout"]][["b"]]) strip_x = strip[["layout"]][["r"]][1] mat = matrix(vector("list", length=(length(strip)*2-1)*level), ncol=level) mat[] = list(zeroGrob()) facet_grob = gtable_matrix("rightcol", grobs=mat, widths=unit(rep(1,level), "null"), heights=strip_heights) if(level==3){ rep_grob_indices = seq(1, length(strip_loc), sum(k)) for (rep_idx in 1:max_reps){ #add replicate facet label facet_grob %<>% gtable_add_grob(grobs = og_grob$grobs[[strip_loc[rep_grob_indices[rep_idx]]]]$grobs[[level]], t = ((sum(k)*2))*(rep_idx-1)+1, b = ((sum(k)*2))*(rep_idx)-1, l = level, r = level) #for each annotation within each replicate for (anno_idx in 1:n_anno){ t = ((sum(k)*2))*(rep_idx-1)+1+sum(k[1:anno_idx])-k[1]+2*(anno_idx-1) b = t + k[anno_idx] facet_grob %<>% gtable_add_grob(grobs = og_grob$grobs[[strip_loc[rep_grob_indices[rep_idx]]+ sum(k[1:anno_idx])-k[1]]]$grobs[[2]], t = t, b = b, l = 2, r = 2) } } } else if(level==2){ if (outer=="annotation"){ outer_grob_indices = 1+lag(k, default=0) n_outer = n_anno } else if (outer=="replicate"){ outer_grob_indices = seq(1, length(strip_loc), sum(k)) n_outer = max_reps } for (idx in 1:n_outer){ if (outer=="annotation"){ t=((k[idx]*2))*(idx-1)+1 b=((k[idx]*2))*(idx)-1 } else if (outer=="replicate"){ if (inner=="cluster"){ t=((k*2))*(idx-1)+1 b=((k*2))*(idx)-1 } else { t = (n_anno*2)*(idx-1)+1 b = (n_anno*2)*(idx)-1 } } facet_grob %<>% gtable_add_grob(grobs = og_grob$grobs[[strip_loc[outer_grob_indices[idx]]]]$grobs[[2]], t=t, b=b, l=2, r=2) } } new_grob = gtable_add_grob(og_grob, facet_grob, t=strip_top, r=strip_x, l=strip_x, b=strip_bot, name='rstrip') return(new_grob) } nest_top_facets = function(ggp, level=2, inner="cluster", intype="gg"){ if (intype=="gg"){ og_grob = ggplotGrob(ggp) } else if (intype=="gtable"){ og_grob = ggp } strip_loc = grep("strip-t", og_grob[["layout"]][["name"]]) strip = gtable_filter(og_grob, "strip-t", trim=FALSE) strip_widths = gtable_filter(og_grob, "strip-t")[["widths"]] strip_l = min(strip[["layout"]][["l"]]) strip_r = max(strip[["layout"]][["r"]]) strip_y = strip[["layout"]][["t"]][1] mat = matrix(vector("list", length=(length(strip)*2-1)*level), nrow=level) mat[] = list(zeroGrob()) facet_grob = gtable_matrix("toprow", grobs=mat, heights=unit(rep(1,level), "null"), widths=strip_widths) if (inner=="cluster"){ outer_grob_indices = 1+lag(k, default=0) n_outer = n_anno } else if (inner=="strand"){ outer_grob_indices = seq(1, n_groups*2, 2) n_outer = n_groups } for (idx in 1:n_outer){ if (inner=="cluster"){ l=((k[idx]*2))*(idx-1)+1 r=((k[idx]*2))*(idx)-1 } else if (inner=="strand"){ l=4*(idx-1)+1 r=4*(idx)-1 } facet_grob %<>% gtable_add_grob(grobs = og_grob$grobs[[strip_loc[outer_grob_indices[idx]]]]$grobs[[1]], l=l, r=r, t=1, b=1) } new_grob = gtable_add_grob(og_grob, facet_grob, t=strip_y, r=strip_r, l=strip_l, b=strip_y, name='rstrip') return(new_grob) } df = read_tsv(in_path, col_names = c("group", "sample", "sampletype", "annotation", "index", "position", "cpm")) %>% filter((sample %in% samplelist | sample %in% cluster_samples) & !is.na(cpm)) %>% group_by(annotation) %>% mutate(annotation_labeled = paste(n_distinct(index), annotation), sampletype = ordered(sampletype, levels=c("input", "ChIP"))) %>% ungroup() %>% mutate(annotation = annotation_labeled) %>% select(-annotation_labeled)%>% mutate_at(vars(group, sample, annotation), ~(fct_inorder(., ordered=TRUE))) #get replicate info for sample facetting repl_df = df %>% select(group, sample) %>% distinct() %>% group_by(group) %>% mutate(replicate=row_number()) %>% ungroup() %>% select(-group) max_reps = max(repl_df[["replicate"]]) df %<>% left_join(repl_df, by="sample") n_anno = n_distinct(df[["annotation"]]) #import annotation information annotations = df %>% distinct(annotation) %>% pull(annotation) bed = tibble() for (i in 1:n_anno){ bed = read_tsv(anno_paths[i], col_names=c('chrom','start','end','name','score','strand')) %>% mutate(annotation=annotations[i]) %>% rowid_to_column(var="index") %>% bind_rows(bed, .) } n_samples = length(samplelist) n_groups = n_distinct(df[["group"]]) #clustering, length sorting, or no sorting if (sortmethod=="cluster"){ reorder = tibble() #cluster for each annotation for (i in 1:length(annotations)){ # filter samples and positions to cluster on, # using mean of samples in a group rr = df %>% filter(annotation==annotations[i] & sample %in% cluster_samples & between(position, cluster_five/1000, cluster_three/1000)) %>% group_by(group, sampletype, annotation, index, position) %>% summarise(cpm=mean(cpm)) # if specified, rescale data for each index 0 to 1 if (cluster_scale){ rr %<>% group_by(group, annotation, index) %>% mutate(cpm = scales::rescale(cpm)) } rr %<>% ungroup() %>% select(-annotation) %>% unite(cid, c(group, sampletype, position), sep="~") %>% spread(cid, cpm, fill=0) %>% select(-index) d = dist(rr, method="euclidean") l = kmeans(d, k[i])[["cluster"]] pdf(file=cluster_out[i], width=6, height=6) unsorted = dissplot(d, method=NA, newpage=TRUE, main=paste0(annotations[i], "\nEuclidean distances, unsorted"), options=list(silhouettes=FALSE, col=viridis(100, direction=-1))) if (k[i] > 1) { seriated = dissplot(d, labels=l, method="OLO", newpage=TRUE, main=paste0(annotations[i], "\nEuclidean distances, ", k[i], "-means clustered,\nOLO inter- and intracluster sorting"), options=list(silhouettes=TRUE, col=viridis(100, direction=-1))) dev.off() sub_reorder = tibble(annotation = annotations[i], cluster = seriated[["labels"]], og_index = seriated[["order"]]) %>% mutate(new_index = row_number()) } else if (k[i]==1) { seriated = seriate(d, method="OLO") dev.off() sub_reorder = tibble(annotation = annotations[i], cluster = as.integer(1), og_index = get_order(seriated)) %>% mutate(new_index = row_number()) } reorder %<>% bind_rows(sub_reorder) sorted = sub_reorder %>% left_join(bed, by=c("annotation", "og_index"="index")) %>% select(-c(annotation, og_index, new_index)) for (j in 1:k[i]){ sorted %>% filter(cluster==j) %>% select(-cluster) %>% write_tsv(anno_out[sum(k[0:(i-1)])+j], col_names=FALSE) } } df %<>% left_join(reorder, by=c("annotation", "index"="og_index")) %>% group_by(annotation, cluster) %>% mutate(new_index = as.integer(new_index+1-min(new_index))) %>% ungroup() %>% arrange(annotation, cluster, new_index) } else if (sortmethod=="length"){ sorted = bed %>% group_by(annotation) %>% arrange(end-start, .by_group=TRUE) %>% rowid_to_column(var= "new_index") %>% mutate(new_index = as.integer(new_index+1-min(new_index))) %>% ungroup() for (i in 1:n_anno){ sorted %>% filter(annotation==annotations[i]) %>% select(-c(new_index, index, annotation)) %>% write_tsv(path=anno_out[i], col_names=FALSE) } df = sorted %>% select(index, new_index, annotation) %>% right_join(df, by=c("annotation", "index")) %>% mutate(cluster=as.integer(1)) } else { df %<>% mutate(new_index = index, cluster = as.integer(1)) for (i in 1:n_anno){ bed %>% filter(annotation==annotations[i]) %>% select(-c(index, annotation)) %>% write_tsv(path=anno_out[i], col_names=FALSE) } } df_sample = df %>% mutate(replicate = fct_inorder(paste("replicate", replicate), ordered=TRUE), cluster = fct_inorder(paste("cluster", cluster), ordered=TRUE)) sample_cutoff = df_sample %>% filter(cpm > 0) %>% pull(cpm) %>% quantile(probs=pct_cutoff, na.rm=TRUE) df_group = df %>% group_by(group, annotation, position, cluster, new_index, sampletype) %>% summarise(cpm = mean(cpm)) %>% ungroup() %>% mutate(cluster = fct_inorder(paste("cluster", cluster), ordered=TRUE)) group_cutoff = df_group %>% filter(cpm > 0) %>% pull(cpm) %>% quantile(probs=pct_cutoff, na.rm=TRUE) # if the sortmethod isn't length, fill missing data with minimum signal # (only for heatmaps, don't want to influence metagene values) if (sortmethod != "length"){ df_sample %<>% group_by(group, sample, annotation, sampletype, replicate, cluster) %>% complete(new_index, position, fill=list(cpm=min(df_sample[["cpm"]]))) %>% ungroup() df_group %<>% group_by(group, annotation, cluster, sampletype) %>% complete(new_index, position, fill=list(cpm=min(df_group[["cpm"]]))) %>% ungroup() } heatmap_sample = hmap(df_sample, sample_cutoff, readtype=readtype, logtxn=log_transform) heatmap_group = hmap(df_group, group_cutoff, readtype=readtype, logtxn=log_transform) if (n_anno==1 && max(k)==1){ heatmap_sample = heatmap_sample + ylab(annotations[1]) + theme(axis.title.y = element_text(size=16, face="plain", color="black", angle=90), strip.text.y = element_text(size=16, face="plain", color="black"), strip.background = element_rect(fill="white", size=0)) heatmap_group = heatmap_group + ylab(annotations[1]) + theme(axis.title.y = element_text(size=16, face="plain", color="black", angle=90), strip.background = element_rect(fill="white", size=0)) if (readtype=="enrichment"){ heatmap_sample = heatmap_sample + facet_grid(replicate ~ group, scales="free_y", space="free_y") heatmap_group = heatmap_group + facet_grid(. ~ group) } else { heatmap_sample = heatmap_sample + facet_grid(replicate ~ group + sampletype, scales="free_y", space="free_y") heatmap_sample %<>% nest_top_facets(inner="strand") heatmap_group = heatmap_group + facet_grid(. ~ group + sampletype) heatmap_group %<>% nest_top_facets(inner="strand") } } else if (n_anno==1 && max(k)>1){ heatmap_sample = heatmap_sample + ylab(annotations[1]) + theme(axis.title.y = element_text(size=16, face="plain", color="black", angle=90), strip.text.y = element_text(size=12, face="plain", color="black"), strip.background = element_rect(fill="white", size=0)) heatmap_group = heatmap_group + ylab(annotations[1]) + theme(axis.title.y = element_text(size=16, face="plain", color="black", angle=90), strip.background = element_rect(fill="white", size=0)) if (readtype=="enrichment"){ heatmap_sample = heatmap_sample + facet_grid(replicate + cluster ~ group, scales="free_y", space="free_y") heatmap_sample %<>% nest_right_facets(level=2, outer="replicate", inner="cluster") heatmap_group = heatmap_group + facet_grid(cluster ~ group, scales="free_y", space="free_y") } else { heatmap_sample = heatmap_sample + facet_grid(replicate + cluster ~ group + sampletype, scales="free_y", space="free_y") heatmap_sample %<>% nest_right_facets(level=2, outer="replicate", inner="cluster") %>% nest_top_facets(inner="strand", intype="gtable") heatmap_group = heatmap_group + facet_grid(cluster ~ group + sampletype, scales="free_y", space="free_y") heatmap_group %<>% nest_top_facets(inner="strand") } } else if (n_anno>1 && max(k)==1){ heatmap_sample = heatmap_sample + theme(strip.text.y = element_text(size=12, face="plain", color="black"), strip.background = element_rect(fill="white", size=0)) heatmap_group = heatmap_group + theme(strip.background = element_rect(fill="white", size=0)) if (readtype=="enrichment"){ heatmap_sample = heatmap_sample + facet_grid(replicate + annotation ~ group, scales="free_y", space="free_y") heatmap_sample %<>% nest_right_facets(level=2, outer="replicate") heatmap_group = heatmap_group + facet_grid(annotation ~ group, scales="free_y", space="free_y") } else { heatmap_sample = heatmap_sample + facet_grid(replicate + annotation ~ group + sampletype, scales="free_y", space="free_y") heatmap_sample %<>% nest_right_facets(level=2, outer="replicate") %>% nest_top_facets(inner="strand", intype="gtable") heatmap_group = heatmap_group + facet_grid(annotation ~ group + sampletype, scales="free_y", space="free_y") heatmap_group %<>% nest_top_facets(inner="strand") } } else if (n_anno>1 && max(k)>1){ heatmap_sample = heatmap_sample + theme(strip.text.y = element_text(size=12, face="plain", color="black"), strip.background = element_rect(fill="white", size=0)) heatmap_group = heatmap_group + theme(strip.text.y = element_text(size=16, face="plain", color="black"), strip.background = element_rect(fill="white", size=0)) if (readtype=="enrichment"){ heatmap_sample = heatmap_sample + facet_grid(replicate + annotation + cluster ~ group, scales="free_y", space="free_y") heatmap_sample %<>% nest_right_facets(level=3) heatmap_group = heatmap_group + facet_grid(annotation + cluster ~ group + strand, scales="free_y", space="free_y") heatmap_group %<>% nest_right_facets(level=2, outer="annotation") } else { heatmap_sample = heatmap_sample + facet_grid(replicate + annotation + cluster ~ group + sampletype, scales="free_y", space="free_y") heatmap_sample %<>% nest_right_facets(level=3) %>% nest_top_facets(inner="strand", intype="gtable") heatmap_group = heatmap_group + facet_grid(annotation + cluster ~ group, scales="free_y", space="free_y") heatmap_group %<>% nest_right_facets(level=2, outer="annotation") %>% nest_top_facets(inner="strand", intype="gtable") } } ggsave(heatmap_sample_out, plot=heatmap_sample, width=2+18*n_groups, height=10+10*max_reps, units="cm", limitsize=FALSE) ggsave(heatmap_group_out, plot=heatmap_group, width=2+18*n_groups, height=30, units="cm", limitsize=FALSE) metadf_sample = df %>% group_by(group, sample, sampletype, annotation, position, cluster, replicate) if (spread_type=="conf_int"){ metadf_sample %<>% summarise(mid = winsor.mean(cpm, trim=trim_pct), sd = winsor.sd(cpm, trim=trim_pct)) %>% mutate(low = mid-sd, high = mid+sd) #with SD correction for small sample sizes (Gurland and Tripathi 1971) metadf_group = metadf_sample %>% group_by(group, sampletype, annotation, position, cluster) %>% summarise(sd = sd(mid), n = n_distinct(replicate), mid = mean(mid)) %>% mutate(sem = sqrt((n-1)/2)*gamma((n-1)/2)/gamma(n/2)*sd/sqrt(n)) } else if (spread_type=="quantile") { metadf_sample %<>% summarise(mid = median(cpm), low = quantile(cpm, probs=trim_pct), high = quantile(cpm, probs=(1-trim_pct))) metadf_group = df %>% group_by(group, sampletype, annotation, position, cluster) %>% summarise(mid = median(cpm), low = quantile(cpm, probs=trim_pct), high = quantile(cpm, probs=(1-trim_pct))) } metadf_sample %<>% ungroup() %>% arrange(replicate) %>% mutate(replicate = fct_inorder(paste("replicate", replicate), ordered=TRUE)) %>% arrange(cluster) %>% mutate(cluster = fct_inorder(paste("cluster", cluster), ordered=TRUE)) metadf_group %<>% ungroup() %>% arrange(cluster) %>% mutate(cluster = fct_inorder(paste("cluster", cluster), ordered=TRUE)) meta_sample = meta(metadf_sample, strand=readtype) meta_group = meta(metadf_group, groupvar="group", strand=readtype) meta_sampleclust = meta(metadf_sample, groupvar="sampleclust", strand=readtype) meta_groupclust = meta(metadf_group, groupvar="groupclust", strand=readtype) if(max(k) > 1 | n_anno > 1){ meta_sampleanno = meta(metadf_sample, groupvar="sampleanno", strand=readtype) meta_groupanno = meta(metadf_group, groupvar="groupanno", strand=readtype) } if (n_anno==1 && max(k)==1){ meta_sample = meta_sample + scale_color_manual(values=rep("#4477AA", 100)) + scale_fill_manual(values=rep("#4477AA", 100)) + facet_grid(replicate~group) + ggtitle(paste(factorlabel, "ChIP-seq", readtype), subtitle = annotations[1]) + theme(legend.position="none") meta_sample_overlay = meta(metadf_sample) + ggtitle(paste(factorlabel, "ChIP-seq", readtype), subtitle = annotations[1]) + theme(legend.position="right", legend.key.width=unit(0.8, "cm")) meta_group = meta_group + ggtitle(paste(factorlabel, "ChIP-seq", readtype), subtitle = annotations[1]) + theme(legend.position="right", legend.key.width=unit(0.8, "cm")) meta_sampleclust = meta_sampleclust + facet_grid(. ~ group) + ggtitle(paste(factorlabel, "ChIP-seq", readtype), subtitle = annotations[1]) + theme(legend.position="right", legend.key.width=unit(1, "cm")) meta_groupclust = meta_groupclust + facet_grid(. ~ group) + ggtitle(paste(factorlabel, "ChIP-seq", readtype), subtitle = annotations[1]) + theme(legend.position="right", legend.key.width=unit(1, "cm")) ggsave(meta_sample_out, plot = meta_sample, width=3+7*n_groups, height=2+5*max_reps, units="cm", limitsize=FALSE) ggsave(meta_sample_overlay_out, plot = meta_sample_overlay, width=16, height=9, units="cm", limitsize=FALSE) ggsave(meta_sampleanno_out, plot = meta_sample_overlay, width=16, height=9, units="cm", limitsize=FALSE) ggsave(meta_group_out, plot = meta_group, width=16, height=9, units="cm", limitsize=FALSE) ggsave(meta_groupanno_out, plot = meta_group, width=16, height=9, units="cm", limitsize=FALSE) ggsave(meta_sampleclust_out, plot = meta_sampleclust, width=6+7*n_groups, height=10, units="cm", limitsize=FALSE) ggsave(meta_groupclust_out, plot = meta_groupclust, width=6+7*n_groups, height=10, units="cm", limitsize=FALSE) } else if (n_anno>1 && max(k)==1){ meta_sample = meta_sample + facet_grid(replicate ~ annotation) meta_sample_overlay = meta_sample + facet_grid(.~annotation) meta_group = meta_group + facet_grid(.~annotation) meta_sampleanno = meta_sampleanno + facet_grid(.~group) + theme(legend.direction="vertical") meta_groupanno = meta_groupanno + facet_grid(.~group) + theme(legend.direction="vertical") meta_sampleclust = meta_sampleclust + facet_grid(annotation ~ group) meta_groupclust = meta_groupclust + facet_grid(annotation ~ group) } else if (max(k)>1){ meta_sample = meta_sample + facet_grid(replicate ~ annotation + cluster) + theme(strip.background = element_rect(fill="white", size=0)) meta_sample %<>% nest_top_facets(level=2) meta_sample_overlay = meta(metadf_sample) + facet_grid(cluster ~ annotation) meta_group = meta_group + facet_grid(cluster ~ annotation) meta_sampleanno = meta_sampleanno + facet_grid(.~group) + theme(legend.direction="vertical") meta_groupanno = meta_groupanno + facet_grid(.~group) + theme(legend.direction="vertical") meta_sampleclust = meta_sampleclust + facet_grid(annotation ~ group) + theme(legend.key.width=unit(2, "cm")) meta_groupclust = meta_groupclust + facet_grid(annotation ~ group) + theme(legend.key.width=unit(2, "cm")) } if (!(n_anno==1 && max(k)==1)){ ggsave(meta_sample_out, plot = meta_sample, width=3+6*sum(k), height=2+5*max_reps, units="cm", limitsize=FALSE) ggsave(meta_sample_overlay_out, plot = meta_sample_overlay, width=3+7*n_anno, height=2+5*max(k), units="cm", limitsize=FALSE) ggsave(meta_group_out, plot = meta_group, width=3+7*n_anno, height=2+5*max(k), units="cm", limitsize=FALSE) ggsave(meta_sampleanno_out, plot = meta_sampleanno, width=3+7*n_groups, height=9+.75*sum(k), units="cm", limitsize=FALSE) ggsave(meta_groupanno_out, plot = meta_groupanno, width=3+7*n_groups, height=9+.75*sum(k), units="cm", limitsize=FALSE) ggsave(meta_sampleclust_out, plot = meta_sampleclust, width=3+7*n_groups, height=3+6*n_anno, units="cm", limitsize=FALSE) ggsave(meta_groupclust_out, plot = meta_groupclust, width=3+7*n_groups, height=3+6*n_anno, units="cm", limitsize=FALSE) } } main(in_path = snakemake@input[["matrix"]], samplelist = snakemake@params[["samplelist"]], anno_paths = snakemake@input[["annotations"]], ptype = snakemake@params[["plottype"]], readtype = snakemake@params[["readtype"]], upstream = snakemake@params[["upstream"]], dnstream = snakemake@params[["dnstream"]], scaled_length = snakemake@params[["scaled_length"]], pct_cutoff = snakemake@params[["pct_cutoff"]], log_transform = snakemake@params[["log_transform"]], pcount = snakemake@params[["pcount"]], spread_type = snakemake@params[["spread_type"]], trim_pct = snakemake@params[["trim_pct"]], factorlabel = snakemake@wildcards[["factor"]], refptlabel = snakemake@params[["refpointlabel"]], endlabel = snakemake@params[["endlabel"]], cmap = snakemake@params[["cmap"]], sortmethod = snakemake@params[["sortmethod"]], cluster_scale = snakemake@params[["cluster_scale"]], cluster_samples = snakemake@params[["cluster_samples"]], cluster_five = snakemake@params[["cluster_five"]], cluster_three = snakemake@params[["cluster_three"]], k = snakemake@params[["k"]], heatmap_sample_out = snakemake@output[["heatmap_sample"]], heatmap_group_out = snakemake@output[["heatmap_group"]], meta_sample_out = snakemake@output[["meta_sample"]], meta_sample_overlay_out = snakemake@output[["meta_sample_overlay"]], meta_sampleanno_out = snakemake@output[["meta_sampleanno"]], meta_groupanno_out = snakemake@output[["meta_groupanno"]], meta_group_out = snakemake@output[["meta_group"]], meta_sampleclust_out = snakemake@output[["meta_sampleclust"]], meta_groupclust_out = snakemake@output[["meta_groupclust"]], anno_out = snakemake@params[["annotations_out"]], cluster_out = snakemake@params[["clusters_out"]]) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 | library(tidyverse) library(GGally) library(viridis) main = function(intable, factor, binsize, pcount, samplelist, outpath){ df = intable %>% read_tsv() %>% gather(key=sample, value=signal, -name) %>% filter(sample %in% samplelist) %>% mutate_at(vars(sample), ~(fct_inorder(., ordered=TRUE))) %>% spread(sample, signal) %>% select(-name) df = df[which(rowSums(df)>0),] cor_matrix = df %>% na_if(0) %>% log10() %>% cor(method="pearson", use="pairwise.complete.obs") maxsignal = max(df) + pcount mincor = min(cor_matrix) * 0.98 plots = list() #for each row for (i in 1:ncol(df)){ #for each column for (j in 1:ncol(df)){ idx = ncol(df)*(i-1)+j if (i < j){ #upper right (correlation) cor_value = cor_matrix[i,j] plot = ggplot(data = tibble(x=c(0,1), y=c(0,1), corr=cor_value)) + geom_rect(aes(fill=corr), xmin=0, ymin=0, xmax=1, ymax=1) + annotate("text", x=0.5, y=0.5, label=sprintf("%.2f",round(cor_value,2)), size=10*abs(cor_value)) + scale_x_continuous(breaks=NULL) + scale_y_continuous(breaks=NULL) + scale_fill_distiller(palette="Blues", limits = c(mincor,1), direction=1) plots[[idx]] = plot } else if (i == j){ #top left to bot right diag (density) subdf = df %>% select(i) %>% gather(sample, value) plot = ggplot(data = subdf, aes(x=(value+pcount))) + geom_density(aes(y=..scaled..), fill="#114477", size=0.8) + scale_y_continuous(breaks=c(0,.5,1)) + scale_x_log10(limit = c(pcount, maxsignal)) + annotate("text", x=.90*maxsignal, y=0.5, hjust=1, label=unique(subdf$sample), size=2, fontface="bold") plots[[idx]] = plot } else { #bottom left (scatter) #filtering is an optional hack to avoid the (0,0) bin taking up #all of the colorspace subdf = df %>% select(i,j) %>% gather(xsample, xvalue, -1) %>% gather(ysample, yvalue, -c(2:3)) #%>% # filter(!(xvalue < 6*pcount & yvalue < 6*pcount)) plot = ggplot(data = subdf, aes(x=xvalue+pcount, y=yvalue+pcount)) + geom_abline(intercept = 0, slope=1, color="grey80", size=.5) + stat_bin_hex(geom="point", aes(color=log10(..count..)), binwidth=c(.04,.04), size=.5, shape=16, stroke=0) + scale_fill_viridis(option="inferno") + scale_color_viridis(option="inferno") + scale_x_log10(limit = c(pcount, maxsignal)) + scale_y_log10(limit = c(pcount, maxsignal)) plots[[idx]] = plot } } } mat = ggmatrix(plots, nrow=ncol(df), ncol=ncol(df), title = paste0(factor, " ChIP-seq signal, ", binsize, "bp bins"), xAxisLabels = names(df), yAxisLabels = names(df), switch="both") + theme_light() + theme(plot.title = element_text(size=12, color="black", face="bold"), axis.text = element_text(size=9), strip.background = element_blank(), strip.text = element_text(size=12, color="black", face="bold"), strip.text.x = element_text(angle=15, hjust=1, vjust=1, size=8), strip.text.y = element_text(angle=180, hjust=1), strip.placement="outside", strip.switch.pad.grid = unit(0, "points"), strip.switch.pad.wrap = unit(0, "points")) w = 3+ncol(df)*4.5 h = 9/16*w+0.5 ggsave(outpath, mat, width=w, height=h, units="cm", limitsize=FALSE) print(warnings()) } main(intable = snakemake@input[[1]], factor = snakemake@wildcards[["factor"]], binsize = snakemake@wildcards[["windowsize"]], pcount = snakemake@params[["pcount"]], samplelist = snakemake@params[["samplelist"]], outpath = snakemake@output[[1]]) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 | library(tidyverse) library(forcats) library(viridis) survival_plot = function(df, scalefactor, ylabel){ plot = ggplot(data = df, aes(x=step, y=count/scalefactor, group=sample)) + # geom_hline(aes(yintercept=count/scalefactor), color="grey50", size=0.2) + geom_step(direction="vh", position=position_nudge(x=0.5), color="#114477", size=0.8) + scale_x_continuous(expand=c(0,0), breaks=2:6, name=NULL, labels=c("raw reads", "reads cleaned", "aligned", "uniquely mapping", "no duplicates")) + scale_y_continuous(sec.axis=dup_axis(), name=ylabel) + facet_grid(sample~., switch="y") + theme_light() + theme(strip.placement="outside", strip.background = element_blank(), text = element_text(size=12, color="black", face="bold"), strip.text.y = element_text(size=12, angle=-180, color="black", hjust=1), axis.text.x = element_text(size=12, color="black", face="bold", angle=30, hjust=0.95), axis.text.y = element_text(size=10, color="black", face="plain"), axis.title.y.right = element_blank(), panel.grid.major.x = element_line(color="grey40"), # panel.grid.major.y = element_blank(), # panel.grid.minor.y = element_blank(), plot.subtitle = element_text(size=12, face="plain")) return(plot) } main = function(in_table, surv_abs_out, surv_rel_out, loss_out){ df = read_tsv(in_table) %>% mutate(sample=fct_inorder(sample, ordered=TRUE)) nsamples = nrow(df) loss = df %>% gather(step, count, -sample, factor_key=TRUE) %>% group_by(sample) %>% mutate(og_count = lag(count)) %>% filter(step != "raw") %>% mutate(loss = (og_count-count)/og_count*100) #some hacking to get a survival-curve like thing #TODO: make the color fill the AUC? survival = df %>% mutate(dummy=raw) %>% select(sample, dummy, 2:6) %>% gather(step, count, -sample, factor_key=TRUE) %>% mutate_at(vars(step), as.numeric) surv_abs = survival_plot(survival, scalefactor = 1e6, ylabel = "library size (M reads)") + ggtitle("read processing summary", subtitle = "absolute library size") surv_rel = survival_plot(survival %>% group_by(sample) %>% mutate(count=count/max(count)), scalefactor = .01, ylabel = "% of raw reads") + ggtitle("read processing summary", subtitle = "relative to library size") ggsave(surv_abs_out, plot=surv_abs, width=20, height=2+2.5*nsamples, units="cm") ggsave(surv_rel_out, plot=surv_rel, width=20, height=2+2.5*nsamples, units="cm") loss_plot = ggplot(data = loss, aes(x=step, y=0, fill=loss)) + geom_raster() + geom_text(aes(label=round(loss, 2)), size=4) + scale_fill_viridis(name="% loss", guide=guide_colorbar(barheight = 10, barwidth=1)) + scale_color_viridis(guide=FALSE) + scale_x_discrete(labels = c("reads cleaned", "aligned", "uniquely mapping", "no duplicates"), expand=c(0,0), name=NULL) + scale_y_continuous(breaks=0, expand=c(0,0), name=NULL) + facet_grid(sample~., switch="y") + ggtitle("read processing percent loss") + theme_light() + theme(strip.placement="outside", strip.background = element_blank(), text = element_text(size=12, color="black", face="bold"), strip.text.y = element_text(size=12, angle=-180, color="black", hjust=1), axis.text.x = element_text(size=12, color="black", face="bold", angle=30, hjust=0.95), axis.text.y = element_blank(), axis.title.y.right = element_blank(), plot.subtitle = element_text(size=12, face="plain"), panel.border = element_blank()) ggsave(loss_out, plot=loss_plot, width=20, height=2+1.5*nsamples, units="cm") } main(in_table = snakemake@input[[1]], surv_abs_out = snakemake@output[["surv_abs_out"]], surv_rel_out = snakemake@output[["surv_rel_out"]], loss_out = snakemake@output[["loss_out"]]) |
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | import argparse import numpy as np from scipy.ndimage.filters import gaussian_filter1d as gsmooth import pyBigWig as pybw parser = argparse.ArgumentParser(description='Smooth bigwig file with Gaussian kernel of given bandwidth.') parser.add_argument('-b', dest = 'bandwidth', type=int, default = 20, help='Gaussian kernel bandwidth (standard deviation)') parser.add_argument('-i', dest = 'infile', type=str, help='path to input BigWig') parser.add_argument('-o', dest = 'outfile', type=str, help='path to smoothed output BigWig') args = parser.parse_args() inbw = pybw.open(args.infile) outbw = pybw.open(args.outfile, "w") outbw.addHeader(list(inbw.chroms().items())) for chrom in inbw.chroms(): raw = inbw.values(chrom, 0, inbw.chroms(chrom), numpy=True) smoothed = gsmooth(raw, sigma=args.bandwidth, order=0, mode='mirror') outbw.addEntries(chrom, 0, values=smoothed, span=1, step=1) inbw.close() outbw.close() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 | library(tidyverse) library(gridExtra) library(ggthemes) main = function(in_path, sample_list, controls, conditions, plot_out, stats_out){ df = read_tsv(in_path) %>% filter(sample %in% sample_list) %>% mutate(abundance = (experimental_counts_IP / spikein_counts_IP ) * (spikein_counts_input / experimental_counts_input)) %>% mutate_at(vars(sample, group), ~(fct_inorder(., ordered=TRUE))) %>% group_by(group) %>% mutate(outlier= ifelse(abundance > 2.5*quantile(abundance, .75) - 1.5*quantile(abundance, .25) | abundance < -2.5*quantile(abundance, .25) - 1.5*quantile(abundance, .75), TRUE, FALSE)) n_samples = nrow(df) n_groups = df %>% pull(group) %>% n_distinct() barplot = ggplot(data=df, aes(x=sample, fill=group, y=abundance)) + geom_col() + geom_text(aes(label=round(abundance, 2)), size=12/75*25.4, position=position_stack(vjust=0.9)) + scale_fill_ptol(guide=FALSE) + ylab("spike-in normalized\nabundance vs. input") + theme_light() + theme(axis.text = element_text(size=10, color="black"), axis.text.x = element_text(angle=30, hjust=0.9), axis.title.x = element_blank(), axis.title.y = element_text(size=10, color="black", angle=0, vjust=0.5, hjust=1)) boxplot = ggplot(data = df, aes(x=group, y=abundance, fill=group)) + geom_boxplot(outlier.shape=16, outlier.size=1.5, outlier.color="red", outlier.stroke=0) + geom_point(shape=16, size=1, stroke=0) + scale_fill_ptol(guide=FALSE) + scale_y_continuous(name = "spike-in normalized\nabundance vs. input", limits = c(0, NA)) + theme_light() + theme(axis.text = element_text(size=10, color="black"), axis.text.x = element_text(angle=30, hjust=0.9), axis.title.x = element_blank(), axis.title.y = element_text(size=10, color="black")) stats_table = df %>% add_count(group, name="n") %>% group_by(group) %>% mutate(median = median(abundance)) %>% ungroup() %>% filter(!outlier) %>% add_count(group, name="nn") %>% group_by(group) %>% summarise(n = first(n), median = first(median), n_no_outlier = first(nn), mean_no_outlier = mean(abundance), sd_no_outlier = sd(abundance)) %>% write_tsv(path = stats_out, col_names=TRUE) #set width wl = 1+1.6*n_samples wr = 1+1.8*n_groups th = 0 if (!(is.null(conditions) || is.null(controls))){ levels_df = tibble(condition=conditions, control=controls) %>% left_join(stats_table %>% select(group, mean_no_outlier), by=c("condition"="group")) %>% rename(condition_abundance=mean_no_outlier) %>% left_join(stats_table %>% select(group, mean_no_outlier), by=c("control"="group")) %>% rename(control_abundance=mean_no_outlier) %>% mutate(levels = condition_abundance/control_abundance) levels_table = levels_df %>% select(condition, control, levels) %>% mutate_at("levels", ~(round(., digits=3))) levels_draw = tableGrob(levels_table, rows=NULL, cols=c("condition","control","relative levels"), ttheme_minimal(base_size=10)) th = 1+length(conditions)/2 page = arrangeGrob(barplot, boxplot, levels_draw, layout_matrix=rbind(c(1,2),c(3,3)), widths=unit(c(wl, wr), "cm"), heights=unit(c(9,th),"cm")) } else { page = arrangeGrob(barplot, boxplot, widths=unit(c(wl, wr), "cm"), heights=unit(c(9,th),"cm")) } ggsave(plot_out, page, width = wl+wr, height=9+th+.5, units = "cm") } main(in_path = snakemake@input[[1]], sample_list = snakemake@params[["samplelist"]], controls = snakemake@params[["controls"]], conditions = snakemake@params[["conditions"]], plot_out = snakemake@output[["plot"]], stats_out = snakemake@output[["stats"]]) |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Created: 1yr ago
Updated: 1yr ago
Maitainers:
public
URL:
https://github.com/khalillab/coop-TF-chipseq
Name:
coop-tf-chipseq
Version:
v1
Downloaded:
0
Copyright:
Public Domain
License:
None
Keywords:
- Future updates
Related Workflows

ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...

Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...

snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...

ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics

RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...

This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...