CoVigator pipeline: variant detection pipeline for Sars-CoV-2 (and other viruses...)

Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
The Covigator pipeline transforms SARS-CoV-2 FASTQ or FASTA files into annotated and normalized VCF files for analysis. It also uses pangolin to classify samples into lineages. The pipeline is built on the Nextflow architecture (Di Tommaso, 2017), and it may be utilized independently of the CoVigator dashboard and knowledge base. Although it is set up by default to analyze SARS-CoV-2, it can also be used to analyze other microbiological organisms if the necessary references are provided. The process produces one or more annotated VCFs with a list of SNVs and indels ready for analysis.
Code Snippets
24 25 26 27 28 29 30 | """ mkdir -p reference cp ${reference} reference/sequences.fa bwa-mem2 index reference/sequences.fa samtools faidx reference/sequences.fa gatk CreateSequenceDictionary --REFERENCE reference/sequences.fa """ |
52 53 54 55 56 57 58 59 | """ mkdir -p snpeff/${snpeff_organism} echo ${snpeff_organism}.genome : ${snpeff_organism} > snpeff/snpEff.config cp ${reference} snpeff/${snpeff_organism}/sequences.fa cp ${gff} snpeff/${snpeff_organism}/genes.gff cd snpeff snpEff build -gff3 -v ${snpeff_organism} -dataDir . """ |
22 23 24 25 26 27 28 29 30 31 | """ # --input_files needs to be forced, otherwise it is inherited from profile in tests fastp \ --in1 ${fastq1} \ --in2 ${fastq2} \ --out1 ${fastq1.baseName}.trimmed.fq.gz \ --out2 ${fastq2.baseName}.trimmed.fq.gz \ --json ${name}.fastp_stats.json \ --html ${name}.fastp_stats.html """ |
50 51 52 53 54 55 56 57 | """ # --input_files needs to be forced, otherwise it is inherited from profile in tests fastp \ --in1 ${fastq1} \ --out1 ${fastq1.baseName}.trimmed.fq.gz \ --json ${name}.fastp_stats.json \ --html ${name}.fastp_stats.html """ |
19 20 21 22 23 | """ bwa-mem2 mem -t ${task.cpus} ${reference} ${fastq1} ${fastq2} | \ samtools view -uS - | \ samtools sort - > ${name}.bam """ |
40 41 42 43 44 | """ bwa-mem2 mem -t ${task.cpus} ${reference} ${fastq1} | \ samtools view -uS - | \ samtools sort - > ${name}.bam """ |
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 | """ mkdir tmp gatk CleanSam \ --java-options '-Xmx${params.memory} -Djava.io.tmpdir=./tmp' \ --INPUT ${bam} \ --OUTPUT /dev/stdout | \ gatk AddOrReplaceReadGroups \ --java-options '-Xmx${params.memory} -Djava.io.tmpdir=./tmp' \ --VALIDATION_STRINGENCY SILENT \ --INPUT /dev/stdin \ --OUTPUT ${name}.prepared.bam \ --REFERENCE_SEQUENCE ${reference} \ --RGPU 1 \ --RGID 1 \ --RGSM ${name} \ --RGLB 1 \ --RGPL ILLUMINA # removes duplicates (sorted from the alignment process) sambamba markdup \ -r \ -t ${task.cpus} \ --tmpdir=./tmp \ ${name}.prepared.bam ${name}.preprocessed.bam # removes intermediate BAM files rm -f ${name}.prepared.bam # indexes the output BAM file sambamba index \ -t ${task.cpus} \ ${name}.preprocessed.bam ${name}.preprocessed.bai """ |
78 79 80 81 82 83 84 85 86 87 88 89 90 91 | """ ivar trim \ -i ${bam} \ -b ${primers} \ -p ${bam.baseName}.trimmed gatk SortSam \ --java-options '-Xmx${params.memory} -Djava.io.tmpdir=./tmp' \ --INPUT ${bam.baseName}.trimmed.bam \ --OUTPUT ${bam.baseName}.trimmed.sorted.bam \ --SORT_ORDER coordinate gatk BuildBamIndex --INPUT ${bam.baseName}.trimmed.sorted.bam """ |
111 112 113 114 | """ samtools coverage ${bam} > ${name}.coverage.tsv samtools depth -s -d 0 -H ${bam} > ${name}.depth.tsv """ |
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | """ bcftools mpileup ${params.args_bcftools_mpileup} \ --redo-BAQ \ --max-depth 0 \ --min-BQ ${params.min_base_quality} \ --min-MQ ${params.min_mapping_quality} \ --count-orphans \ --fasta-ref ${reference} \ --annotate AD ${bam} | \ bcftools call ${params.args_bcftools_call} \ --multiallelic-caller \ --variants-only \ --ploidy 1 \ --output-type b - > ${name}.bcftools.bcf """ |
71 72 73 74 75 76 77 78 79 80 81 82 83 | """ lofreq call ${params.args_lofreq} \ --min-bq ${params.min_base_quality} \ --min-alt-bq ${params.min_base_quality} \ --min-mq ${params.min_mapping_quality} \ --ref ${reference} \ --call-indels \ <( lofreq indelqual --dindel --ref ${reference} ${bam} ) | bgzip > ${name}.lofreq.vcf.gz # NOTE: adding the tabix index is a dirty fix to deal with LoFreq VCF missing the chromosome in the header bcftools index ${name}.lofreq.vcf.gz bcftools view --output-type b ${name}.lofreq.vcf.gz > ${name}.lofreq.bcf """ |
103 104 105 106 107 108 109 110 111 112 113 114 115 116 | """ mkdir tmp gatk HaplotypeCaller ${params.args_gatk} \ --java-options '-Xmx${params.memory} -Djava.io.tmpdir=tmp' \ --input $bam \ --output ${name}.gatk.vcf \ --reference ${reference} \ --ploidy 1 \ --min-base-quality-score ${params.min_base_quality} \ --minimum-mapping-quality ${params.min_mapping_quality} \ --annotation AlleleFraction bcftools view --output-type b ${name}.gatk.vcf > ${name}.gatk.bcf """ |
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 | """ samtools mpileup ${params.args_ivar_samtools} \ -aa \ --count-orphans \ --max-depth 0 \ --redo-BAQ \ --min-BQ ${params.min_base_quality} \ --min-MQ ${params.min_mapping_quality} \ --fasta-ref ${reference} \ ${bam} | \ ivar variants ${params.args_ivar} \ -p ${name}.ivar \ -q ${params.min_base_quality} \ -t 0.03 \ -r ${reference} \ -g ${gff} """ |
172 173 174 175 176 177 178 179 | """ ivar2vcf.py \ --fasta ${reference} \ --ivar ${tsv} \ --output-vcf ${name}.ivar.vcf bcftools view --output-type b ${name}.ivar.vcf > ${name}.ivar.bcf """ |
200 201 202 203 204 205 206 207 208 209 | """ assembly_variant_caller.py \ --fasta ${fasta} \ --reference ${reference} \ --output-vcf ${name}.${caller}.vcf \ --match-score $params.match_score \ --mismatch-score $params.mismatch_score \ --open-gap-score $params.open_gap_score \ --extend-gap-score $params.extend_gap_score """ |
25 26 27 28 29 30 31 32 33 34 35 | """ # initial sort of the VCF bcftools sort ${vcf} | \ # checks reference genome, decompose multiallelics, trim and left align indels bcftools norm --multiallelics -any --check-ref e --fasta-ref ${reference} \ --old-rec-tag OLD_CLUMPED - | \ # remove duplicates after normalisation bcftools norm --rm-dup exact -o ${name}.${caller}.normalized.vcf - """ |
57 58 59 60 61 62 63 | """ phasing.py \ --fasta ${fasta} \ --gtf ${gtf} \ --input-vcf ${vcf} \ --output-vcf ${name}.${caller}.phased.vcf """ |
39 40 41 42 43 44 45 46 47 48 | """ # for some reason the snpEff.config file needs to be in the folder where snpeff runs... cp ${snpeff_config} . snpEff eff -Xmx${memory} -dataDir ${snpeff_data} \ -noStats -no-downstream -no-upstream -no-intergenic -no-intron -onlyProtein -hgvs1LetterAa -noShiftHgvs \ ${snpeff_organism} ${vcf} | bgzip -c > ${name}.${caller}.vcf.gz tabix -p vcf ${name}.${caller}.vcf.gz """ |
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 | """ bgzip -c ${vcf} > ${name}.vcf.gz tabix -p vcf ${name}.vcf.gz # annotates low frequency and subclonal variants bcftools view -Ob ${name}.vcf.gz | \ bcftools filter \ --exclude 'INFO/vafator_af < ${params.low_frequency_variant_threshold}' \ --soft-filter LOW_FREQUENCY - | \ bcftools filter \ --exclude 'INFO/vafator_af >= ${params.low_frequency_variant_threshold} && INFO/vafator_af < ${params.subclonal_variant_threshold}' \ --soft-filter SUBCLONAL \ --output-type v - | \ bcftools filter \ --exclude 'INFO/vafator_af >= ${params.subclonal_variant_threshold} && INFO/vafator_af < ${params.lq_clonal_variant_threshold}' \ --soft-filter LOW_QUALITY_CLONAL \ --output-type v - > ${name}.${caller}.vcf """ |
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 | """ bcftools annotate \ --annotations ${params.conservation_sarscov2} \ --header-lines ${params.conservation_sarscov2_header} \ -c CHROM,FROM,TO,CONS_HMM_SARS_COV_2 \ --output-type z ${vcf} | \ bcftools annotate \ --annotations ${params.conservation_sarbecovirus} \ --header-lines ${params.conservation_sarbecovirus_header} \ -c CHROM,FROM,TO,CONS_HMM_SARBECOVIRUS \ --output-type z - | \ bcftools annotate \ --annotations ${params.conservation_vertebrate} \ --header-lines ${params.conservation_vertebrate_header} \ -c CHROM,FROM,TO,CONS_HMM_VERTEBRATE_COV \ --output-type z - | \ bcftools annotate \ --annotations ${params.pfam_names} \ --header-lines ${params.pfam_names_header} \ -c CHROM,FROM,TO,PFAM_NAME \ --output-type z - | \ bcftools annotate \ --annotations ${params.pfam_descriptions} \ --header-lines ${params.pfam_descriptions_header} \ -c CHROM,FROM,TO,PFAM_DESCRIPTION - | \ bcftools filter \ --exclude 'POS <= 55 | POS >= 29804' \ --output-type z - > annotated_sarscov2.vcf.gz tabix -p vcf annotated_sarscov2.vcf.gz bcftools annotate \ --annotations ${params.problematic_sites} \ --columns INFO/problematic:=FILTER annotated_sarscov2.vcf.gz > ${name}.${caller}.annotated_sarscov2.vcf """ |
165 166 167 168 169 170 | """ vafator \ --input-vcf ${vcf} \ --output-vcf ${name}.${caller}.vaf.vcf \ --bam vafator ${bam} ${mq_param} ${bq_param} """ |
25 26 27 28 29 30 31 32 33 34 | """ mkdir tmp #--decompress-model pangolin \ ${fasta} \ --outfile ${name}.${caller}.pangolin.csv \ --tempdir ./tmp \ --threads ${params.cpus} """ |
53 54 55 56 57 58 59 60 61 62 | """ bcftools view -O b -o ${name}.bcf ${vcf} bcftools index ${name}.bcf # GATK results have all FILTER="." bcftools consensus --fasta-ref ${reference} \ --include 'FILTER="PASS" | FILTER="."' \ --output ${name}.${caller}.fasta \ ${name}.bcf """ |
24 25 26 27 | """ bgzip -c ${vcf} > ${name}.${caller}.vcf.gz tabix -p vcf ${name}.${caller}.vcf.gz """ |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Created: 1yr ago
Updated: 1yr ago
Maitainers:
public
URL:
https://github.com/TRON-Bioinformatics/covigator-ngs-pipeline
Name:
covigator
Version:
v0.17.0
Downloaded:
0
Copyright:
Public Domain
License:
MIT License
Keywords:
- Future updates
Related Workflows

ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...

Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...

snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...

ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics

RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...

This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...