Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output, operation
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
Quantitative shotgun MS proteomics as done in Lehtio lab
This pipeline is no longer being maintained
Please see nf-core/quantms for a more up to date pipeline that covers much of the same functionality.
Introduction
The pipeline is built using Nextflow , a workflow tool to run tasks across multiple compute infrastructures in a very portable manner. It comes with docker / singularity containers making installation trivial and results highly reproducible.
Documentation
The nf-core/ddamsproteomics pipeline comes with documentation about the pipeline, found in the
docs/
directory:
Code Snippets
235 236 237 238 239 240 241 242 243 244 245 246 | """ echo $workflow.manifest.version > v_pipeline.txt echo $workflow.nextflow.version > v_nextflow.txt msgf_plus | head -n1 > v_msgf.txt hardklor | head -n1 > v_hk.txt || true kronik | head -n2 > v_kr.txt percolator -h |& head -n1 > v_perco.txt || true msspsmtable --version > v_mss.txt source activate openms-2.4.0 IsobaricAnalyzer |& grep Version > v_openms.txt || true scrape_software_versions.py > software_versions_mqc.yaml """ |
313 314 315 316 317 318 319 320 | """ # Run hardklor on config file with added line for in/out files # then run kronik on hardklor and quant isobaric labels if necessary hardklor <(cat $hkconf <(echo "$infile" hardklor.out)) kronik -c 5 -d 3 -g 1 -m 8000 -n 600 -p 10 hardklor.out ${sample}.kr source activate openms-2.4.0 ${params.isobaric ? "IsobaricAnalyzer -type $params.isobaric -in $infile -out \"${infile}.consensusXML\" -extraction:select_activation \"$activationtype\" -extraction:reporter_mass_shift $massshift -extraction:min_precursor_intensity 1.0 -extraction:keep_unannotated_precursor true -quantification:isotope_correction true" : ''} """ |
343 344 345 | """ msslookup spectra -i ${mzmlfiles.join(' ')} --setnames ${setnames.join(' ')} """ |
397 398 399 400 401 402 | """ # SQLite lookup needs copying to not modify the input file which would mess up a rerun with -resume cat $lookup > db.sqlite msslookup ms1quant --dbfile db.sqlite -i ${krfns.join(' ')} --spectra ${mzmls.join(' ')} --quanttype kronik --mztol 20.0 --mztoltype ppm --rttol 5.0 msslookup isoquant --dbfile db.sqlite -i ${isofns.join(' ')} --spectra ${isosamples.collect{ x -> x + '.mzML' }.join(' ')} """ |
404 405 406 407 408 | """ # SQLite lookup needs copying to not modify the input file which would mess up a rerun with -resume cat $lookup > db.sqlite msslookup ms1quant --dbfile db.sqlite -i ${krfns.join(' ')} --spectra ${mzmls.join(' ')} --quanttype kronik --mztol 20.0 --mztoltype ppm --rttol 5.0 """ |
431 432 433 | """ sqlite3 $speclookup "SELECT mzmlfilename, COUNT(*) FROM mzml JOIN mzmlfiles USING(mzmlfile_id) JOIN biosets USING(set_id) GROUP BY mzmlfilename" > amount_spectra_files """ |
459 460 461 462 463 464 465 466 467 468 469 470 471 | """ #!/usr/bin/env python platesets = [\"${splates.join('", "')}\"] platescans = {p: 0 for p in platesets} fileplates = {fn: p for fn, p in zip([\"${mzmlfiles.join('", "')}\"], platesets)} with open('nr_spec_per_file') as fp: for line in fp: fn, scans = line.strip('\\n').split('|') platescans[fileplates[fn]] += int(scans) with open('scans_per_plate', 'w') as fp: for plate, scans in platescans.items(): fp.write('{}\\t{}\\n'.format(plate, scans)) """ |
492 493 494 495 | """ tryprev.py $tdb cat $tdb decoy_${tdb} > db.fa """ |
513 514 515 516 517 | """ msgf_plus -Xmx16G -d $db -s $x -o "${sample}.mzid" -thread 12 -mod $mods -tda 0 -t 10.0ppm -ti -1,2 -m 0 -inst ${msgfinstrument} -e 1 -protocol ${msgfprotocol} -ntt 2 -minLength 7 -maxLength 50 -minCharge 2 -maxCharge 6 -n 1 -addFeatures 1 msgf_plus -Xmx3500M edu.ucsd.msjava.ui.MzIDToTsv -i "${sample}.mzid" -o out.mzid.tsv rm ${db.baseName.replaceFirst(/\.fasta/, "")}.c* """ |
533 534 535 536 537 538 539 | """ echo $samples mkdir mzids count=1;for sam in ${samples.join(' ')}; do ln -s `pwd`/mzid\$count mzids/\${sam}.mzid; echo mzids/\${sam}.mzid >> metafile; ((count++));done msgf2pin -o percoin.xml -e trypsin -P "decoy_" metafile percolator -j percoin.xml -X perco.xml -N 500000 --decoy-xml-output -y """ |
559 560 561 | """ perco_to_tsv.py -p $perco --plates ${platenames.join(' ')} --fractions ${fractions.join(' ')} """ |
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 | """ msspsmtable merge -i psms* -o psms.txt msspsmtable conffilt -i psms.txt -o filtpsm --confidence-better lower --confidence-lvl 0.01 --confcolpattern 'PSM q-value' msspsmtable conffilt -i filtpsm -o filtpep --confidence-better lower --confidence-lvl 0.01 --confcolpattern 'peptide q-value' # SQLite lookup needs copying to not modify the input file which would mess up a rerun with -resume cat lookup > $psmlookup msslookup psms -i filtpep --dbfile $psmlookup ${params.onlypeptides ? '' : "--fasta ${td == 'target' ? tdb : "${ddb} --decoy"}"} ${params.martmap ? "--map ${martmap}" : ''} msspsmtable specdata -i filtpep --dbfile $psmlookup -o prepsms.txt ${!params.noquant ? "msspsmtable quant -i prepsms.txt -o qpsms.txt --dbfile $psmlookup --precursor ${params.isobaric && td=='target' ? '--isobaric' : ''}" : 'mv prepsms.txt qpsms.txt'} sed 's/\\#SpecFile/SpectraFile/' -i qpsms.txt ${!params.onlypeptides ? "msspsmtable genes -i qpsms.txt -o gpsms --dbfile $psmlookup" : ''} ${!params.onlypeptides ? "msslookup proteingroup -i qpsms.txt --dbfile $psmlookup" : ''} ${!params.onlypeptides ? "msspsmtable proteingroup -i gpsms -o ${params.hirief ? "pgpsms" : "$outpsms"} --dbfile $psmlookup" : 'mv qpsms.txt pgpsms'} ${params.hirief ? "peptide_pi_annotator.py -i $trainingpep -p pgpsms --o $outpsms --stripcolpattern Strip --pepcolpattern Peptide --fraccolpattern Fraction --strippatterns ${allstrips.join(' ')} --intercepts ${allstrips.collect() { params.strips[it].intercept}.join(' ')} --widths ${allstrips.collect() { params.strips[it].fr_width}.join(' ')} --ignoremods \'*\'" : ''} msspsmtable split -i ${outpsms} --bioset """ |
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 | """ # Create peptide table from PSM table, picking best scoring unique peptides msspeptable psm2pep -i psms -o peptides --scorecolpattern svm --spectracol 1 ${!params.noquant && params.isobaric && td == 'target' ? "--isobquantcolpattern plex" : "" } ${!params.noquant ? "--ms1quantcolpattern area" : ""} # Move peptide sequence to first column paste <( cut -f ${col} peptides) <( cut -f 1-${col-1},${col+1}-500 peptides) > peptide_table.txt # Create empty protein/gene/gene-symbol tables with only the identified accessions, will be filled later echo Protein accession |tee proteins genes symbols tail -n+2 psms|cut -f ${accolmap.proteins}|grep -v '\\;'|grep -v "^\$"|sort|uniq >> proteins tail -n+2 psms|cut -f ${accolmap.genes}|grep -v '\\;'|grep -v "^\$"|sort|uniq >> genes tail -n+2 psms|cut -f ${accolmap.assoc}|grep -v '\\;'|grep -v "^\$"|sort|uniq >> symbols # Do isobaric quantification if necessary ${normalize && td == 'target' ? "msspsmtable isoratio -i psms -o proteinratios --protcol ${accolmap.proteins} --targettable proteins --isobquantcolpattern plex --minint 0.1 --denompatterns ${setdenoms[setname].join(' ')}" : 'touch proteinratios'} ${isoquant ? "msspsmtable isoratio -i psms -o pepisoquant --targettable peptide_table.txt --protcol ${accolmap.peptides} --isobquantcolpattern plex --minint 0.1 --denompatterns ${setdenoms[setname].join(' ')} ${normalize ? '--normalize median --norm-ratios proteinratios' : ''} > normratiosused" : ''} ${isoquant ? "mv pepisoquant peptide_table.txt" : ''} # Create linear modeled q-values of peptides (modeled svm scores vs q-values) for more protein-FDR precision. msspeptable modelqvals -i peptide_table.txt -o ${setname}_linmod --scorecolpattern svm --fdrcolpattern '^q-value' """ |
716 717 718 719 720 | """ mssprottable ms1quant -i proteins -o protms1 --psmtable psms --protcol ${accolmap[acctype]} msspsmtable isoratio -i psms -o proteintable --protcol ${accolmap[acctype]} --targettable protms1 --isobquantcolpattern plex --minint 0.1 --denompatterns ${setdenoms[setname].join(' ')} ${normalize && td == 'target' ? '--norm-ratios pratios --normalize median': ''} mssprottable bestpeptide -i proteintable -o bestpeptides --peptable peplinmod --scorecolpattern ${acctype == 'proteins' ? '\'^q-value\'' : '\'linear model\''} --logscore --protcol ${accolmap[acctype] + 1} """ |
722 723 724 725 | """ ${td == 'target' && !params.noquant ? "mssprottable ms1quant -i proteins -o proteintable --psmtable psms --protcol ${accolmap[acctype]}" : 'mv proteins proteintable'} mssprottable bestpeptide -i proteintable -o bestpeptides --peptable peplinmod --scorecolpattern ${acctype == 'proteins' ? '\'^q-value\'' : '\'linear model\''} --logscore --protcol ${accolmap[acctype] + 1} """ |
748 749 750 | """ mssprottable pickedfdr --picktype fasta --targetfasta $tfasta --decoyfasta $dfasta ${params.fastadelim ? "--fastadelim \'${params.fastadelim}\' --genefield ${params.genefield}" : ''} -i tbestpep --decoyfn dbestpep -o ${setname}_protfdr """ |
752 753 754 | """ mssprottable ${acctype == 'proteins' ? 'protfdr' : 'pickedfdr --picktype result'} -i tbestpep --decoyfn dbestpep -o ${setname}_protfdr """ |
798 799 800 801 802 803 804 | """ # SQLite lookup needs copying to not modify the input file which would mess up a rerun with -resume cat $lookup > db.sqlite msslookup ${acctype == 'peptides' ? 'peptides --fdrcolpattern \'^q-value\' --peptidecol' : 'proteins --fdrcolpattern \'q-value\' --protcol'} 1 --dbfile db.sqlite -i ${tables.join(' ')} --setnames ${setnames.join(' ')} ${!params.noquant ? "--ms1quantcolpattern area" : ""} ${!params.noquant && params.isobaric ? '--psmnrcolpattern quanted --isobquantcolpattern plex' : ''} ${acctype in ['genes', 'assoc'] ? "--genecentric ${acctype}" : ''} ${acctype == 'peptides' ? 'msspeptable build' : 'mssprottable build --mergecutoff 0.01'} --dbfile db.sqlite -o proteintable ${!params.noquant && params.isobaric ? '--isobaric' : ''} ${!params.noquant ? "--precursor": ""} --fdr ${acctype in ['genes', 'assoc'] ? "--genecentric ${acctype}" : ''} ${params.onlypeptides ? "--noncentric" : ''} sed -i 's/\\#/Amount/g' proteintable """ |
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 | """ qc_psms.R ${setnames[0].size()} ${fractionation ? 'TRUE' : 'FALSE'} ${plates.join(' ')} echo "<html><body>" > psmqc.html for graph in psm-scans missing-tmt miscleav do [[ -e \$graph ]] && paste -d \\\\0 <(echo "<div class=\\"chunk\\" id=\\"\${graph}\\"><img src=\\"data:image/png;base64,") <(base64 -w 0 \$graph) <(echo '"></div>') >> psmqc.html done for graph in retentiontime precerror fryield msgfscore do for plateid in ${plates.join(' ')} do plate="PLATE___\${plateid}___\${graph}" [[ -e \$plate ]] && paste -d \\\\0 <(echo "<div class=\\"chunk \$plateid\\" id=\\"\${graph}\\"><img src=\\"data:image/png;base64,") <(base64 -w 0 \$plate) <(echo '"></div>') >> psmqc.html done done echo "</body></html>" >> psmqc.html """ |
867 868 869 870 871 872 873 874 875 876 | """ ${normalize ? "count=1;for setn in ${setnames.join(' ')}; do echo '' >> norm\${count} ; tail -n+2 norm\${count} | sed \$'s/ - /\t'\${setn}\$'\t/'; ((count++)); done >> normtable" : ''} qc_protein.R ${setnames.size()} ${acctype} $peptable ${normalize ? 'normtable' : ''} echo "<html><body>" > featqc.html for graph in featyield precursorarea coverage isobaric nrpsms nrpsmsoverlapping percentage_onepsm normfac ms1nrpeps; do [ -e \$graph ] && paste -d \\\\0 <(echo "<div class=\\"chunk\\" id=\\"\${graph}\\"><img src=\\"data:image/png;base64,") <(base64 -w 0 \$graph) <(echo '"></div>') >> featqc.html done echo "</body></html>" >> featqc.html """ |
898 899 900 901 | """ count=1; for ac in ${acctypes.join(' ')}; do mv feat\$count \$ac.html; ((count++)); done qc_collect.py $params.name ${params.hirief ? "hirief" : "nofrac"} ${plates.join(' ')} """ |
920 921 922 | """ markdown_to_html.r $output_docs results_description.html """ |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Created: 1yr ago
Updated: 1yr ago
Maitainers:
public
URL:
https://nf-co.re/ddamsproteomics
Name:
ddamsproteomics
Version:
dev
Downloaded:
0
Copyright:
Public Domain
License:
None
Keywords:
- Future updates
Related Workflows

ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...

Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...

snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...

ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics

RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...

This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...