Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output, operation
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
Pipeline for QC, GWAS and gene-based collapsing within the DeCOI WGS cohort (1220 individuals). Rules for ROH-analysis and gene-set based analyses are also included. This repository is for documentary purposes and the pipeline will not run out of the box - e.g. adjustments are needed for the local compute environment and not all inpute files (e.g. genotype files, phenotype files, annotation sources) are provided.
Setup
This pipeline was run on a compute cluster running Linux (CentOS Linux 7) and slurm 22.05.6. Miniconda3 was manually installed (https://docs.conda.io/en/latest/miniconda.html). The setup is quiet complex, due to the use of the slurm scheduler and the use of Apache Spark. The setup was done in the following way:
Two conda environments were manually created:
- an environment running snakemake-7.3.7:
conda create --name snakemake7 -c bioconda snakemake=7.3.7 # for letting snakemake submit jobs to slurm a profile file with the default settings for snakemake was used. # for documentation you can find the file I used in "config/snakemake_slurm_profile/config.yaml" # you would need to modify it to have e.g. the correct default partition and account. Then you would move it to snakemakes config directory: mkdir -p ~/.config/snakemake/slurm cp config/snakemake_slurm_profile/config.yaml ~/.config/snakemake/slurm # afterwards you should be able to execute "snakemake --profile slurm"; then each rule that is executed should be submitted as an individual slurm job. Resource requirements can be specified in each snakemake-rule (see file workflow/Snakefile).
- an environment for running hail / Apache Spark: Note that this environment is being created to be able to set up a Apache Spark cluster on top of slurm which can then be used by hail. This will probably need some testing. If running hail on a single node is enough, you could simply install hail via conda (e.g. just run the first two commands from below and then run "conda install -c bioconda hail"). You could then set the variable cluster to "no" in config/config.yaml.
conda env update --file env/spark_from_history.yaml conda activate spark mkdir -p ~/scratch/spark cd ~/scratch/spark wget https://archive.apache.org/dist/spark/spark-3.1.1/spark-3.1.1-bin-hadoop3.2.tgz tar zxvf spark-3.1.1-bin-hadoop3.2.tgz git clone https://github.com/hail-is/hail.git cd hail/hail make install-on-cluster HAIL_COMPILE_NATIVES=1 SCALA_VERSION=2.12.13 SPARK_VERSION=3.1.1 pip install pyspark==3.1.1 # now manually modify the file "workflow/scripts/spark_submit_command.sh" as indicated within the file. # also adjust the last 5 variables within config/config.yaml
The pipeline could now be tested by running
conda activate snakemake7
snakemake -np
The whole pipeline was executing by using the file "run.sh"; this file would also need adjustments (as indicated in the file):
conda activate snakemake7
sbatch run.sh
Here are the DAGs of some analyses that were conducted - the names of the rules are indicated.
Population-PCA:
GWAS:
RVAS:
Inputs
Not all input files that were used for the pipeline are included in this repository due to privacy issues or file-size. The following files are missing:
-
genotype data / cohort bcf, which was produced by glnexus. The path ("input_vcf") can be set in the file config/config.yaml.
-
fasta file of the reference genome (here hg38). The path ("fasta") can be set in the file config/config.yaml.
-
Data of the 1000 genomes project; You only need to provide a folder; there is a snakemake-rule ("download_1000G_genotypes") to download the data. The path ("location_1000G") can be set in the file config/config.yaml.
-
Phenotype files are not included due to privacy issues; see resources folder for a short description of those files (for reference only).
-
several annotation sources for VEP are not included, which were placed in the folder indicated under the variable "database_dir" in the config file:
"gnomad.exomes.r2.1.1.sites.liftover_grch38.vcf.bgz" source: https://gnomad.broadinstitute.org/downloads#v2-liftover ,
"dbNSFP4.1a_hg38.gz" source: https://sites.google.com/site/jpopgen/dbNSFP - the prepared for VEP/the dbNSFP plugin of VEP as described in https://github.com/Ensembl/VEP_plugins/blob/release/102/dbNSFP.pm
"spliceai_scores_sorted.hg38.vcf.gz" source: downloaded from https://basespace.illumina.com/s/otSPW8hnhaZR , then sorted by chrom:pos and bgziped/indexed
Code Snippets
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | library(tidyverse) cov_path<-"results/var_sets/EURs_unrel/B2/cov.cov" prs_path<-"results/PRS/scores.profile" cov_out_path<-"results/var_sets/EURs_unrel/B2/cov.cov" cov_path<-snakemake@input[[1]] prs_path<-snakemake@input[[2]] cov_out_path<-snakemake@output[[1]] COV<-read_tsv(file=cov_path, col_names=TRUE) PRS<-read.table(file = prs_path, header = TRUE) print("Percentage of individuals in the COV file that also got a PRS calculated:") mean(COV$IID %in% PRS$IID) PRS_red<-PRS %>% select(IID, SCORESUM) COV<-COV %>% left_join(PRS_red, by="IID") write_tsv(x=COV, file=cov_out_path, col_names = TRUE) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 | library(tidyverse) library(readxl) args=c("config/post_df3_HGI_sample_QC_summary.xlsx", "data/hail_gather_data/for_sample_QC.tsv", "data/plotPhenoInfo/") args = commandArgs(trailingOnly=TRUE) print(args) PhenoFileLocation=args[1] qc_file<-args[2] outFolder=args[3] samplesheet<-read_excel(PhenoFileLocation, sheet = "qc_table") qc_table<-read_tsv(qc_file) dir.create(outFolder,recursive = TRUE, showWarnings = FALSE) setwd(outFolder) samplesheet<-samplesheet%>% rename(sex_to_use=`Sex (f=fem, m=m)`)%>% mutate(sex_for_fam=ifelse(sex_to_use=="f", 2, ifelse(sex_to_use=="m",1,0))) sample_sex<-samplesheet %>% select(sex_to_use, s) qc_table<-qc_table %>% left_join(sample_sex, by=(c("s"="s"))) qc_table<-qc_table %>% mutate(Age=as.integer(Age), A2=as.integer(A2), B2=as.integer(B2), C2=as.integer(C2), is_case=as.integer(is_case) ) # Check Age vs. Sex SexPlot<-ggplot(qc_table)+ geom_histogram(aes(x=Age, fill=sex_to_use), bins=20)+ theme_bw() print(SexPlot) ggsave(filename="SexPlot.pdf", plot=SexPlot, width=7, height=3) SexInfo<-qc_table %>% summarise(mean(sex_to_use=="m"), num=sum(sex_to_use!="noSex")) write_tsv(x=SexInfo, file="SexInfo.tsv") # Check Age vs. Severity qc_table <- qc_table %>% mutate(is_case_F=as.factor(is_case)) AgePlot<-ggplot(qc_table)+ geom_histogram(aes(x=Age, fill=is_case_F), bins=20)+ geom_vline(data=qc_table %>% filter(is_case==0), aes(xintercept = mean(Age)), col="red")+ geom_vline(data=qc_table %>% filter(is_case==1), aes(xintercept = mean(Age)), col="green")+ geom_vline(data=qc_table %>% filter(is_case==2), aes(xintercept = mean(Age)), col="blue")+ theme_bw() print(AgePlot) ggsave(filename="AgePlot.pdf", plot=AgePlot, width=7, height=3) AgeInfo<-qc_table %>% group_by(is_case)%>% summarise(MEAN=mean(Age), SD=sd(Age), N=length(Age))%>% mutate(SEM=SD/sqrt(N)) write_tsv(x=AgeInfo, file="AgeInfo.tsv") |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | library(tidyverse) library(readxl) # Params: # 1. input pheno-excel # 2. input PC file # 3. output file args=c("config/post_df3_HGI_sample_QC_summary.xlsx","data/PCAcovar/A2_EUR_PCA.eigenvec") # first: excel_file, second: fam-file, third: Phenotype column in excel args = commandArgs(trailingOnly=TRUE) print(args) # File formats: #Line 1 : Header with FID, IID and C covariate names. #Followed by lines of C+2 values. Space/tab separated. samplesheet<-read_tsv(args[1])%>% mutate(sex_for_fam=ifelse(is_female==TRUE, 2, ifelse(is_female==FALSE,1,0))) col_names_eigenv<-c("FID","IID", paste0("PC",1:10)) # sex coding: 1=male, 2=female # pheno coding: 1=control, 2=case eigenv<-read_delim(args[2], col_names=col_names_eigenv, delim=" ") cov_info<-eigenv %>% left_join(samplesheet, by=c("IID"="s"))%>% mutate(Age=as.integer(Age)) %>% mutate(age_sex=Age*sex_for_fam)%>% mutate(Age2=Age*Age)%>% select(all_of(col_names_eigenv), Age, Age2, age_sex, sex_for_fam) write_tsv(x = cov_info, file = args[3], col_names = TRUE) # pheno file for regenie |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 | library(tidyverse) library(readxl) # Params: # 1. input pheno-excel # 2. input fam file # 3. pheno column name in excel # 4. Output: fam file (Plink) # 5. Output: pheno file (Regenie) #testing #setwd("/media/axel/Dateien/Arbeit_Gen/COVID_WGS/WGS_GWAS_pipeline") args=c("../../resources/EURs_unrel.tsv","data/anc_vcf/EUR_vcf_not_rel.vcf.bgz.fam", "A1", "data/regenie_pheno/fam_file.fam", "data/regenie_pheno/phenox") # first: excel_file, second: fam-file, third: Phenotype column in excel args = commandArgs(trailingOnly=TRUE) print(args) # File formats: #FAM file: # A text file with no header line, and one line per sample with the following six fields: #Family ID ('FID') #Within-family ID ('IID'; cannot be '0') #Within-family ID of father ('0' if father isn't in dataset) # Within-family ID of mother ('0' if mother isn't in dataset) #Sex code ('1' = male, '2' = female, '0' = unknown) #Phenotype value ('1' = control, '2' = case, '-9'/'0'/non-numeric = missing data if case/control) # Regnie pheno file # FID IID Y1 Y2 # 0=control, 1=case, missing values must be coded as NA samplesheet<-read_tsv(args[1])%>% mutate(sex_for_fam=ifelse(is_female==TRUE, 2, ifelse(is_female==FALSE,1,0))) pheno_col_num<-which(colnames(samplesheet) == args[3]) pheno_PLINK<-as.integer(unlist(samplesheet[,pheno_col_num]))+1 samplesheet$pheno_P=replace_na(pheno_PLINK, -9) pheno_REGENIE<-as.integer(unlist(samplesheet[,pheno_col_num])) samplesheet$pheno_R=pheno_REGENIE # add sex stratification / age strat samplesheet <- samplesheet %>% mutate(pheno_R_female=ifelse(is_female==TRUE, pheno_R, NA), # just keep females pheno_R_male=ifelse(is_female==FALSE, pheno_R, NA), # just keep males pheno_R_GE60=ifelse(pheno_R==1 & Age < 60, NA, pheno_R), # set cases 59 or younger to missing pheno_R_LT60=ifelse(pheno_R==1 & Age >= 60, NA, pheno_R), pheno_R_GE60CC=ifelse(Age < 60, NA, pheno_R), # set persons 59 or younger to missing pheno_R_LT60CC=ifelse(Age >= 60, NA, pheno_R)) # set persons 60 or older to missing col_names_fam<-c("FID","IID","father","mother","sex","pheno") # sex coding: 1=male, 2=female # pheno coding: 1=control, 2=case fam<-read_delim(args[2], delim=" ", col_names=col_names_fam, col_types=c( FID = col_character(), IID = col_character(), father = col_character(), mother = col_character(), sex = col_integer(), pheno = col_integer() ) ) print("fam:") head(fam) print("samplesheet:") head(samplesheet) all_info_joined<-fam %>% left_join(samplesheet, by=c("IID"="s"))%>% mutate(sex=sex_for_fam) fam_new<-all_info_joined %>% select(all_of(col_names_fam[1:4]), sex_for_fam, pheno_P) write_tsv(x = fam_new, file = args[4], col_names = FALSE) # fam_file for plink pheno_file_regenie <- all_info_joined %>% select(FID, IID, pheno_R, pheno_R_female, pheno_R_male, pheno_R_GE60, pheno_R_LT60, pheno_R_GE60CC, pheno_R_LT60CC) colnames(pheno_file_regenie)<-c("FID","IID", args[3], paste0(args[3],"_female"), paste0(args[3],"_male"), paste0(args[3],"_GE60"), paste0(args[3],"_LT60"), paste0(args[3],"_GE60CC"), paste0(args[3],"_LT60CC")) print("out:") head(pheno_file_regenie) write_tsv(x = pheno_file_regenie, file = args[5], col_names = TRUE) # pheno file for regenie |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 | if (!require("GenomicRanges", quietly = TRUE) & (!require("rtracklayer", quietly = TRUE)) ){ install.packages("BiocManager", repos='http://cran.us.r-project.org') BiocManager::install("GenomicRanges") BiocManager::install("rtracklayer") } library(tidyverse) library(data.table) library(GenomicRanges) library(rtracklayer) gene_set_path<-"resources/gene_sets.tsv" gene_set_path<-snakemake@input[[1]] bed_path<-"resources/genomic_ranges.bed" bed_path<-snakemake@input[[2]] aaf_path<-"results/all_vars_for_RVAS/data.anno.aaf.file.txt" aaf_path<-snakemake@input[[3]] anno_path<-"/home/aschmidt/Arbeit_Gen/COVID_WGS/COVID_annotation/results/for_RVAS/all_contigs_anno.file.txt" anno_path<-snakemake@input[[4]] bim_path<-"results/all_vars_for_RVAS/eurs.bim" bim_path<-snakemake@input[[5]] #order_csq<-"resources/genomic_ranges.bed" #order_csq<-snakemake@input[[6]] new_anno_path<-"set.annos.tsv" new_anno_path<-snakemake@output[[1]] new_aafs_path<-"aafs.tsv" new_aafs_path<-snakemake@output[[2]] new_sets_path<-"sets.tsv" new_sets_path<-snakemake@output[[3]] relevant_variants_path<-"relevant_variants.tsv" relevant_variants_path<-snakemake@output[[4]] new_bim_path<-"new_bim.bim" new_bim_path<-snakemake@output[[5]] aafs<-read_delim(aaf_path, delim=" ", col_names = c("ID", "AAF")) print("aafs:") head(aafs) annos<-read_delim(anno_path, delim=" ", col_names = c("ID", "gene_id", "annot")) print("annos") head(annos) bim<-fread(bim_path, sep ="\t", col.names = c("CHR", "ID", "cM","BP","A1","A2")) print("bim") head(bim) #bim_test<-head(bim, n=5000000) bim_new_id<-bim %>% mutate(IDnew=paste("1", 1:n(), A1, A2, sep=":"))%>% mutate(BPnew=1:n())%>% mutate(CHRnew=1) comb_sources<-bim_new_id %>% left_join(aafs, by="ID")%>% left_join(annos, by="ID") print("combsource") head(comb_sources) head(comb_sources %>% filter(!is.na(annot))) # make sets based on gene definitions gene_sets<-read_tsv(gene_set_path) new_sets<-tibble() new_annos<-tibble() new_aaf<-tibble() score_conseq<-function(conseq){ conseq_tbl<-c("pLoF", "missense.revel07", "missense.revel05", "missense.revel03", "moderate", "synonymous", "UTR5_CADD", "UTR5", "UTR3_CADD", "UTR3", "promoter_CADD", "promoter", "enhancer_CADD", "enhancer", "regionBased") conseq_rank<-c() for (single_conseq in conseq){ single_rank<-which(conseq_tbl %in% single_conseq) single_rank<-ifelse(is.na(single_rank), 99, single_rank) conseq_rank<-c(conseq_rank, single_rank) } conseq_rank<- return(conseq_rank) } i=1 for (single_gene_set in unique(gene_sets$set)){ rel_genes<-gene_sets %>% filter(set==single_gene_set) tmp_annos<-comb_sources %>% filter(gene_id %in% rel_genes$gene_id)%>% filter(annot!="not_relevant")%>% mutate(gene_id=single_gene_set) if (nrow(tmp_annos)==0){ next() } # check for variants that are added to the gene set more than once, take the most severe conseq mltpl_occuring_tmp<-tmp_annos %>% add_count(IDnew)%>% filter(n>1)%>% select(-n) if (nrow(mltpl_occuring_tmp)>0){ tmp_annos<-tmp_annos %>% filter(!IDnew %in% mltpl_occuring_tmp$IDnew) for (IDnew_tmp in unique(mltpl_occuring_tmp$IDnew)){ mltpl_occuring_single<-mltpl_occuring_tmp %>% filter(IDnew==IDnew_tmp)%>% mutate(eff_score=score_conseq(annot))%>% arrange(eff_score) print(IDnew_tmp) print(mltpl_occuring_single) mltpl_occuring_single<-mltpl_occuring_single %>% select(-eff_score) tmp_annos<-rbind(tmp_annos, mltpl_occuring_single[1,]) } } new_annos<-rbind(new_annos, tmp_annos) tmp_IDs<-paste(tmp_annos$IDnew, collapse=",") tmp_set<-tibble(gene_id=single_gene_set, chr="1", pos=i, IDs=tmp_IDs) new_sets<-rbind(new_sets, tmp_set) i=i+1 } #### # make sets based on bed file region_sets<-import(bed_path) head(region_sets) region_sets_names<-str_split(region_sets$name, ";", simplify=TRUE) region_sets_names<-as_tibble(region_sets_names) colnames(region_sets_names)<- c("set", "gene") set_names<-unique(region_sets_names$set) sources_w_AF<-comb_sources %>% filter(!is.na(AAF))%>% mutate(pos_start=BP, pos_end=BP+nchar(A1)) head(sources_w_AF) chroms<-paste0("chr",sources_w_AF$CHR) chroms<-str_replace(chroms, "chr23", "chrX") annos_granges <- GRanges( seqnames = chroms, ranges = IRanges(start=sources_w_AF$pos_start, end = sources_w_AF$pos_end) ) head(annos_granges) for (set_name in set_names){ tmp_region<-region_sets[region_sets_names$set==set_name] tmp_intersect<-GenomicRanges::intersect(annos_granges, tmp_region) tmp_chr_pos_inReg <-sources_w_AF[annos_granges %in% tmp_intersect,]%>% distinct(ID, .keep_all=TRUE)%>% mutate(gene_id=set_name, annot="regionBased") if (nrow(tmp_chr_pos_inReg)==0){ next() } new_annos<-rbind(new_annos, tmp_chr_pos_inReg, fill=TRUE) tmp_IDs<-paste(tmp_chr_pos_inReg$IDnew, collapse=",") tmp_set<-tibble(gene_id=set_name, chr="1", pos=i, IDs=tmp_IDs) new_sets<-rbind(new_sets, tmp_set) i=i+1 } #### new_annos_export<-new_annos %>% distinct(IDnew, gene_id, annot) new_aaf<-comb_sources %>% distinct(IDnew, AAF) %>% filter(!is.na(AAF)) relevant_variants<-unique(new_annos_export$ID) write_delim(x=new_annos_export, file = new_anno_path, col_names = FALSE ) write_delim(x=new_aaf, file = new_aafs_path, col_names = FALSE ) write_delim(x=new_sets, file = new_sets_path, col_names = FALSE ) write(x = relevant_variants, file=relevant_variants_path) bim_new_id<-bim_new_id%>% select(CHRnew,IDnew,cM,BPnew,A1,A2)%>% relocate(CHRnew,IDnew,cM,BPnew,A1,A2) write_tsv(x=bim_new_id, file = new_bim_path, col_names = FALSE ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 | library(data.table) vars<-fread(snakemake@input[[1]], fill=TRUE, header = TRUE, na.strings = ".") # vars<-fread("results/for_RVAS/annotated_split_vep_1.tsv", fill=TRUE, header = TRUE, na.strings = ".") vars<-vars[, c("chrom","pos","ref","alt"):=tstrsplit(ID, ":", fixed=TRUE)] ###### MASKS ###### vars<-vars[BIOTYPE == "protein_coding"] vars<-vars[,REVEL_score:=as.numeric(REVEL_score)] vars<-vars[, ':=' (revel03=!is.na(REVEL_score) & REVEL_score>0.3, revel05=!is.na(REVEL_score) & REVEL_score>0.5, revel07=!is.na(REVEL_score) & REVEL_score>0.7, missense=like(Consequence, "missense_variant"), syn=like(Consequence, "synonymous_variant"), pLOF=(IMPACT=="HIGH"), UTR5=like(Consequence, "5_prime_UTR_variant"), UTR3=like(Consequence, "3_prime_UTR_variant"), promoter=like(Consequence,"upstream_gene_variant") & TSSDistance <= 1000, enhancer=like(Consequence, "upstream_gene_variant")& TSSDistance <= 50000 & !is.na(DHS), CADD10= !(is.na(CADD_PHRED) | CADD_PHRED<10) ) ] vars<-vars[, ':=' (revel03_mis=(revel03 & missense), revel05_mis=(revel05 & missense), revel07_mis=(revel07 & missense), moderate_non_missense=(!missense & (IMPACT=="MODERATE")))] vars<-vars[, by=c("ID", "Gene"), mask_anno:=ifelse(sum(pLOF)>0,"pLoF", ifelse(sum(revel07_mis)>0, "missense.revel07", ifelse(sum(revel05_mis)>0, "missense.revel05", ifelse(sum(revel03_mis)>0, "missense.revel03", ifelse(sum(missense | moderate_non_missense)>0, "moderate", ifelse(sum(syn)>0, "synonymous", ifelse(sum(UTR5)>0 & sum(CADD10)>0, "UTR5_CADD", ifelse(sum(UTR5)>0, "UTR5", ifelse(sum(UTR3)>0 & sum(CADD10)>0, "UTR3_CADD", ifelse(sum(UTR3)>0, "UTR3", ifelse(sum(promoter)>0 & sum(CADD10)>0, "promoter_CADD", ifelse(sum(promoter)>0, "promoter", ifelse(sum(enhancer)>0 & sum(CADD10)>0, "enhancer_CADD", ifelse(sum(enhancer)>0, "enhancer", "not_relevant") ) ) ) ) ) ) ) ) ) ) ) ) ) ] anno_list<-rbindlist(list(vars[, c("ID", "Gene", "mask_anno")]), use.names = FALSE) ###### AF ###### vars=vars[, maxAF:=pmax(as.numeric(gnomAD_ex_AF), as.numeric(gnomAD_ge_AF), 0, na.rm = TRUE)] vars=vars[, minAF:=pmin(as.numeric(gnomAD_ex_AF), as.numeric(gnomAD_ge_AF), 1, na.rm = TRUE)] vars=vars[, maxAC:=pmax(as.numeric(gnomAD_ex_AC), as.numeric(gnomAD_ge_AC), 0, na.rm = TRUE)] vars=vars[, maxHom:=pmax(as.numeric(gnomAD_ex_nhomalt), as.numeric(gnomAD_ge_nhomalt), 0, na.rm = TRUE)] #vars=vars[,AF_category:=ifelse( (maxAF < 0.005) & (maxAC > 9 | maxHom > 0 ), 0.005, maxAF) ] vars=vars[,AF_category:=maxAF] ###### SET LIST ####### collapsed_vars<-vars[,concats:=paste(ID, collapse=","), by=Gene] collapsed_vars<-unique(collapsed_vars[,c("Gene","chrom","concats")]) collapsed_vars<-collapsed_vars[,pos:=1:nrow(collapsed_vars)] collapsed_vars<-collapsed_vars[Gene!="" & !is.na(Gene), ] fwrite(unique(anno_list), file = snakemake@output[[1]], col.names = FALSE, sep=" ") fwrite(unique(vars[, c("ID", "AF_category")]), file = snakemake@output[[2]], col.names = FALSE, sep=" ") fwrite((collapsed_vars[,c("Gene","chrom","pos","concats")]), file = snakemake@output[[3]], col.names = FALSE, sep=" ") fwrite(vars[, -"concats"], file = snakemake@output[[4]], col.names = TRUE, sep="\t") |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | library(tidyverse) #cov<-read_tsv("/media/axel/Dateien/Arbeit_Gen/COVID_WGS/WGS_GWAS_pipeline/results/regenie_pheno/cov_A2_EUR") #pheno<-read_tsv("/media/axel/Dateien/Arbeit_Gen/COVID_WGS/WGS_GWAS_pipeline/results/regenie_pheno/pheno_EUR_A2") cov<-read_tsv(snakemake@input[[2]])%>% select(-FID) pheno<-read_tsv(snakemake@input[[1]])%>% select(-FID) pheno_cov<-pheno %>% left_join(cov, by = "IID") write_tsv(x=pheno_cov,file=snakemake@output[[1]]) males<-pheno %>% filter(sex_for_fam==1) %>% select(IID) write_tsv(x=males, file=snakemake@output[[2]], col_names=FALSE) |
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 | import pandas as pd import pandas_plink from xarray import DataArray import shutil import dask.array # %% mask_def_file = snakemake.input.regenie_mask_def aaf_file = snakemake.input.data_anno_aaf_file anno_file = snakemake.input.regenie_anno_file af_cutoffs = list(map(float, snakemake.params.af_cutoffs)) plink_in_prefix = snakemake.params.plink_in_prefix out_prefix = snakemake.params.plink_out_folder set_file = snakemake.output.setFile_rvtest debug_joined_out = snakemake.output.debug_joined_out #%% # read plink with pandas_plink (bim, fam, bed) = pandas_plink.read_plink(plink_in_prefix, verbose=False) bim.cm = bim.cm.astype(int) #%% # Read regenie aaf_file, anno_file, mask_def aafs = pd.read_csv(aaf_file, sep=' ', names=['ID', 'aaf']) mask_def = pd.read_csv(mask_def_file, sep=' ', names=['mask', "annots"]) mask_def.annots = mask_def.annots.map(lambda a: a.split(',')) mask_def = mask_def.set_index("mask") anno = pd.read_csv(anno_file, sep=' ', names=['ID', 'gene', 'annot']) anno = anno.dropna() # %% # Create M0-M4 True/False columns in table for mask, annots in mask_def.annots.items(): anno[mask] = anno.annot.isin(annots) # Join AF info into table anno_aaf = anno.join(aafs.set_index("ID"), on="ID", how="outer") # %% # join bim (variant table) with regenie anno joined = bim.join(anno_aaf.set_index("ID"), on="snp", how="inner") joined = joined.sort_values(by=['gene', 'pos']) joined.to_csv(debug_joined_out, sep="\t") #%% for mask in mask_def.index.unique(): for af_cutoff in af_cutoffs: mask_out_prefix = f"{out_prefix}{mask}_{af_cutoff}" # subset variant table subset = joined[joined[mask] & (joined["aaf"] < af_cutoff)] # export genotype data (subset["i"] contains positions of variants in table) pandas_plink.write_plink1_bin( DataArray(bed[subset["i"]], dims=["variant", "sample"]), bed=mask_out_prefix+".bed" ) # write variant subset to bim file subset[["gene","snp","cm","pos","a0","a1"]].to_csv(mask_out_prefix+".bim", sep=" ", header=False, index=False) # reuse original fam file shutil.copy(plink_in_prefix + ".fam", mask_out_prefix +".fam") #%% # create setfile, each gene has its own "chromosome"/contig set_str = "" for gene in joined.gene.unique(): set_str += f"{gene}\t{gene}:0-{joined.pos.max() + 100}\n" with open(set_file, "wt") as f: f.write(set_str) |
4
of
scripts/plink_subset_for_rvtest.py
1 2 3 4 5 6 7 8 9 10 11 12 | library(tidyverse) check_S_path<-snakemake@input[[1]] plot_out<-snakemake@output[[1]] check_S<-read.table(check_S_path, header = T) F_plot<-ggplot(check_S, aes(x=F, fill=PEDSEX==1 | PEDSEX==0))+ geom_histogram(bins=100) ggsave(filename = plot_out, plot = F_plot) ggsave(filename = paste0(plot_out, "zoomed.jpg"), plot = F_plot + ylim(c(0,100)) ) |
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 | packs <- c("qqman","optparse","data.table","R.utils") for (p in packs) { if( !require(p, character.only = T)) { print(p) install.packages( p, repos = c(CRAN = "http://cran.r-project.org") ) } } option_list = list( make_option(c("-f", "--file"), type="character", default=NULL, help="dataset file name", metavar="character"), make_option(c("-o", "--out"), type="character", help="output file name [default= %default]", metavar="character"), make_option(c("-c","--chrcol"), type="character", default="CHR", help="chromosome column [default= %default]", metavar="character"), make_option(c("-p","--pval_col"), type="character", default="P", help="pvalue column [default= %default]. This can be a comma separated list and plots will be generated for each of these", metavar="character"), make_option(c("-b","--bp_col"), type="character", default="BP", help="bp column [default= %default]", metavar="character"), make_option(c("-l","--loglog_pval"), type="integer", default=10, help="-log10 p-val threshold for using log-log scale in manhattan plot [default= %default]", metavar="integer"), make_option(c("-i","--id_col"), type="character", default="ID", help="-ID_col [default= %default]", metavar="character"), make_option(c("-g","--log"), type="logical", default="FALSE", help="-log [default= %default]", metavar="logical"), make_option(c("-m","--minrep_col"), type="character", help="if given then chr:bp:ref:alt identifier assumed and chr and bp are read from there [default= %default]", metavar="character") ); opt_parser = OptionParser(option_list=option_list); opt = parse_args(opt_parser, positional_arguments=0); # file="../GWAS/REGENIE_OUT_STEP2_chr1_pheno.regenie" # bp_col="GENPOS" # chr_col="CHROM" # pcols =c("LOG10P") file <- opt$options$file print(paste("reading file:", file)) data <- fread(file, header=T) options(bitmapType='cairo') print(str(opt)) bp_col <- opt$options$bp_col chr_col <- opt$options$chrcol id_col <- opt$options$id_col print(summary(data)) print( summary( data[[chr_col]] ) ) #colnames(data) <- toupper( colnames(data) ) pcols <- unlist(strsplit(opt$options$pval_col,",")) output_prefix=file if( !is.null(opt$options$out)) { output_prefix=opt$options$out } if(! is.null(opt$options$minrep_col ) ) { print("getting BP and CHR from minrepid") split <- strsplit(as.character(data[[opt$options$minrep_col]]), ":") data[[bp_col]] <- unlist( lapply( split, function(x) as.numeric(x[2]) )) data[[chr_col]] <- unlist( lapply( split, function(x) x[1] )) } print(append(pcols,c(bp_col,chr_col))) if( any( ! append(pcols,c(bp_col,chr_col)) %in% colnames(data) )) { stop( paste0("All required columns do not exist in the data: ", paste(pcols,sep=",", collapse=""),",", bp_col, ",",chr_col, collapse="" )) } print(summary(as.factor(data[[chr_col]]))) data[[chr_col]] <- gsub("chr","",data[[chr_col]]) data[[chr_col]] <- gsub("X|chrX","23",data[[chr_col]]) data[[chr_col]] <- gsub("Y|chrY","24",data[[chr_col]]) data[[chr_col]] <- gsub("MT|chrMT|M|chrM","25",data[[chr_col]]) data[[chr_col]] <- as.numeric(data[[chr_col]]) data <- data[ !is.na(data[[chr_col]]) ] quants <- c(0.7,0.5,0.456,0.1,0.01, 0.001) for( pcol in pcols) { if (opt$options$log==TRUE){ data[[pcol]]<- 10^(-data[[pcol]]) } subdata <- data[ !is.na(data[[pcol]]) & is.numeric( data[[pcol]] ) ] lambda <- round( quantile( (qchisq(1-subdata[[pcol]], 1) ), probs=quants ) / qchisq(quants,1), 3) png( paste(output_prefix,"_", pcol ,"_qqplot.png", sep="" )) qq(subdata[[pcol]], main=paste("\nlambda ", quants, ": ", lambda, sep="" ) ) dev.off() sink( paste(output_prefix,"_", pcol ,"_qquantiles.txt", sep="" ) ) cat( paste( quants, ":", lambda, sep="")) sink() print("subsetting p-vals < 0.01 for manhattan...") subdata <- subdata[ subdata[[pcol]]<0.01 & subdata[[pcol]]>0 ] print( paste0("Plotting manhattan with ", nrow(subdata), " variants") ) print( summary(subdata[[pcol]] )) png( paste(output_prefix,"_",pcol,"_manhattan.png", sep=""), width=1000, height=400) logs <- -log10(subdata[[pcol]]) manhattan( subdata , chr=chr_col, bp=bp_col, p=pcol,snp=id_col, ylim=c( 2,max(logs)+1) ) dev.off() print("!!!!!!!!!!!!!!!!!!!!!!!") print("plotting log-log manhattan") loglog_p <- opt$options$loglog_pval logs <- ifelse(logs < loglog_p, logs, loglog_p * log10(logs) / log10(loglog_p)) subdata[["p_scaled"]] <- 10^(-logs) tick_pos <- round(seq(1, max(logs), length.out=round(max(logs)))) tick_lab <- sapply(tick_pos, function(pos) { round(ifelse(pos < loglog_p, pos, loglog_p^(pos/loglog_p))) }) png( paste(output_prefix,"_",pcol,"_manhattan_loglog.png", sep=""), width=1000, height=400) manhattan( subdata, chr=chr_col, bp=bp_col, p="p_scaled", snp=id_col, ylim=c( 2,max(logs)+1), yaxt="n") axis(2, at = tick_pos, labels=tick_lab, las=2) dev.off() } |
63 64 65 66 67 68 69 70 71 72 | shell: """ #wget -nc ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz #gzip -d GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz bcftools filter -r chr1,chr2,chr3,chr4,chr5,chr6,chr7,chr8,chr9,chr10,chr11,chr12,chr13,chr14,chr15,chr16,chr17,chr18,chr19,chr20,chr21,chr22,chrX \ {input.bcf} -Ou | \ bcftools norm --check-ref w -f {input.fasta} -Ou | \ bcftools annotate --set-id '%CHROM:%POS:%REF:%FIRST_ALT' -Oz > {output.vcf_gz} tabix -p vcf {output.vcf_gz} """ |
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 | shell: """ mkdir -p {params.tmp_dir} hail_python_script="workflow/scripts/vcf2hail.py $(pwd)/{input.vcf} \ $(pwd)/{output} \ $(pwd)/{params.tmp_dir} \ $(pwd)/{input.individual_list}" if [ {config[cluster]} = "yes" ]; then worker_nodes_excluded={config[worker_nodes_excluded]} num_workers=60 source workflow/scripts/spark_submit_command.sh $spark_submit_command $hail_python_script else python $hail_python_script fi """ |
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 | shell: """ mkdir -p {params.tmp_dir} hail_python_script="workflow/scripts/primaryQC.py \ $(pwd)/{input.mt} \ $(pwd)/{params.tmp_dir} \ $(pwd)/{output.sample_qc_file} \ $(pwd)/{params.out_plink}" if [ {config[cluster]} = "yes" ]; then queue="medium" export TMPDIR=$(pwd)/{params.tmp_dir} hours_to_run=12 DRIVE_MEM=78 SPARK_LOCAL_DIRS=$(pwd)/{params.tmp_dir} worker_nodes_excluded={config[worker_nodes_excluded]} num_workers=60 source workflow/scripts/spark_submit_command.sh $spark_submit_command $hail_python_script else python $hail_python_script fi rm -rf {params.tmp_dir}* """ |
160 161 162 163 164 165 166 167 168 169 170 171 | shell: """ echo $(pwd) cp workflow/scripts/plot_sampleQC.R {params.path_output} cp {input.xl_file} {params.path_output} cd {params.path_output} Rscript -e 'library(rmarkdown); rmarkdown::render("plot_sampleQC.R", "html_document")' rm *.R """ |
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 | shell: """ mkdir -p {params.tmp_dir} hail_python_script="workflow/scripts/MakeVarSets.py \ $(pwd)/{params.tmp_dir} \ $(pwd)/{input.MT} \ $(pwd)/{input.input_vcf} \ $(pwd)/{input.individual_list} \ $(pwd)/{params.out_trunk} \ $(pwd)/{params.out_Commontrunk}" if [ {config[cluster]} = "yes" ]; then export TMPDIR=$(pwd)/{params.tmp_dir} worker_nodes_excluded={config[worker_nodes_excluded]} hours_to_run=12 DRIVE_MEM=148 num_workers=60 source workflow/scripts/spark_submit_command.sh $spark_submit_command $hail_python_script else python $hail_python_script fi """ |
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 | shell: """ plink2 \ --bfile {params.in_plink} \ --maf 0.01 \ --exclude bed0 {input.bed} \ --make-bed \ --out {params.tmp_plink} plink \ --bfile {params.tmp_plink} \ --indep-pairwise 1000kb 50 0.2 \ --out {params.out_plink} plink \ --bfile {params.in_plink} \ --extract {params.out_plink}.prune.in \ --split-x hg38 no-fail \ --make-bed \ --out {params.out_plink} rm {params.tmp_plink}* """ |
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 | shell: """ plink \ --fam {input.fam} \ --bim {input.bim} \ --bed {input.bed} \ --filter-females \ --hwe 1e-3 midp include-nonctrl \ --make-just-bim \ --out {params.hwe_vars} plink \ --fam {input.fam} \ --bim {input.bim} \ --bed {input.bed} \ --extract {output.hwe_vars} \ --check-sex 0.5 0.8 \ --out {params.out_plink} """ |
305 | script: "scripts/plotFcheckSex.R" |
320 321 322 323 324 325 326 327 328 329 | shell: """ plink \ --fam {input.fam} \ --bim {input.bim} \ --bed {input.bed} \ --chr 1-22 \ --missing \ --out {params.out_plink} """ |
343 344 345 346 347 348 349 350 351 352 | shell: """ mkdir -p {params.out_folder} cd {params.out_folder} wget -nc ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130606_sample_info/20130606_g1k.ped #reference genome (GRCh38) #wget -nc ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz #gzip -d GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz """ |
362 363 364 365 366 367 368 369 | shell: """ mkdir -p {params.folder_cont} cd {params.folder_cont} prefix="ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/release/20181203_biallelic_SNV/ALL.chr" suffix=".shapeit2_integrated_v1a.GRCh38.20181129.phased.vcf.gz" wget -nc "$prefix""{wildcards.contig}""$suffix" "$prefix""{wildcards.contig}""$suffix".tbi """ |
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 | shell: """ if bcftools view -q 0.05:minor {input.vcf} | \ bcftools norm -m-any --check-ref w -f "{input.fasta}" | \ bcftools annotate -x ID -I +'%CHROM:%POS:%REF:%ALT' | \ bcftools norm -Ob --rm-dup both \ > {output.bcf} ; then echo "no error" fi plink --noweb \ --bcf {output.bcf} \ --keep-allele-order \ --vcf-idspace-to _ \ --allow-extra-chr 0 \ --split-x b38 no-fail \ --make-bed \ --out {params.bed1} plink --noweb \ --bfile {params.bed1} \ --extract {input.hailbim} \ --maf 0.10 --indep 50 5 1.5 \ --make-bed \ --out {params.bed2} """ |
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 | shell: """ echo {input._1000G_data} | tr " " "\\n" | sed 's/.bed//g' > {output.merge_list} plink --merge-list {output.merge_list} --out results/1000G/Merged awk '{{ print $2 }}' results/1000G/Merged.bim > results/1000G/MergeVariants.txt plink --bfile {params.hailplink} \ --extract results/1000G/MergeVariants.txt \ --make-bed \ --out results/1000G/hail_for_ancestry printf "results/1000G/Merged\\nresults/1000G/hail_for_ancestry" > results/1000G/ForMergeFull.list mkdir -p results/PCA plink --merge-list results/1000G/ForMergeFull.list --out results/PCA/MergeFullForPCA awk '{{ print $1,$2 }}' results/1000G/Merged.fam | awk '$(NF+1) = "1000G"' > results/PCA/clusters.txt awk '{{ print $1,$2 }}' results/1000G/hail_for_ancestry.fam | awk '$(NF+1) = "Cohort"' >> results/PCA/clusters.txt plink --bfile results/PCA/MergeFullForPCA \ --pca-cluster-names 1000G \ --pca 20 \ --out {params.pca_prefix} \ --within results/PCA/clusters.txt """ |
470 471 472 473 474 475 | shell: """ cp -f workflow/scripts/populations_PCA.R results/PCA/populations_PCA.R cd results/PCA/ Rscript -e 'library(rmarkdown); rmarkdown::render("populations_PCA.R", "html_document")' """ |
488 489 490 491 492 493 494 | shell: """ king \ -b {params.plink_in}.bed \ --kinship \ --prefix {params.prefix} """ |
520 521 522 523 524 525 526 527 528 529 530 531 532 | shell: """ cut -f1 {input.list} > {params.tmp_id} cat {input.fam} | grep -f {params.tmp_id} > {params.tmp_fam} plink \ --bed {input.bed} \ --bim {input.bim} \ --fam {input.fam} \ --keep {params.tmp_fam} \ --make-bed \ --out {params.out_prefix} """ |
559 560 561 562 563 564 565 566 | shell: """ mkdir -p {params.path} Rscript workflow/scripts/generate_regenie_pheno.R {input.individual_list} {input.fam} {wildcards.pheno} {output.fam} {output.pheno} cp -f {input.bim} {output.bim} cp -f {input.bed} {output.bed} """ |
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 | shell: """ mkdir -p {params.pathQC} plink \ --bed {input.bed} \ --bim {input.bim} \ --fam {input.fam} \ --filter-cases \ --missing \ --out {params.pathQC}/Geno05_CR_sex_snp_qc_snpqcCAS plink \ --bed {input.bed} \ --bim {input.bim} \ --fam {input.fam} \ --filter-controls \ --missing \ --out {params.pathQC}/Geno05_CR_sex_snp_qc_snpqcCON plink \ --bed {input.bed} \ --bim {input.bim} \ --fam {input.fam} \ --hardy \ --out {params.pathQC}/Geno05_CR_sex_snp_qc_snpqcALL plink \ --bed {input.bed} \ --bim {input.bim} \ --fam {input.fam} \ --hardy \ --chr 23 \ --filter-females \ --out {params.pathQC}/Geno05_CR_sex_snp_qc_snpqcALL_female ### R session wd=$(pwd) cp workflow/scripts/additional_QC_cohort.R {params.pathQC}/ cd {params.pathQC} Rscript -e 'library(rmarkdown); rmarkdown::render("additional_QC_cohort.R", "html_document")' cd $wd # 1e. final QC (4675116) plink \ --bed {input.bed} \ --bim {input.bim} \ --fam {input.fam} \ --exclude {params.pathQC}/missingness_hardy_weinberg_filter.txt \ --make-bed \ --out {params.out_prefix} rm -rf {params.pathQC} """ |
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 | shell: """ mkdir -p {params.folderPCA} #common plink \ --bed {input.bed} \ --bim {input.bim} \ --fam {input.fam} \ --chr 1-22 \ --indep-pairwise 50 5 0.05 \ --keep-allele-order \ --maf 0.01 \ --out "{params.pathinterim}" plink \ --bed {input.bed} \ --bim {input.bim} \ --fam {input.fam} \ --extract "{params.pathinterim}.prune.in" \ --pca 10 \ --out "{params.out_prefix}" rm {params.pathinterim}* """ |
691 692 693 694 | shell: """ Rscript workflow/scripts/generate_covar_file.R {input.individual_list} {input.PCA_cov} {output} """ |
708 709 | shell: "Rscript workflow/scripts/compile_phenotype_plots.R {input} {params.out_dir}" |
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 | shell: """ regenie \ --step 2 \ --minMAC 5 \ --covarFile {input.cov} \ --phenoFile {input.pheno} \ --bed {params.plink_file} \ --bt \ --ignore-pred \ --write-samples \ --bsize 5000 \ --out {params.regenie_step2} \ --af-cc \ --firth \ --firth-se \ --approx \ --gz """ |
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 | shell: """ regenie \ --step 2 \ --minMAC 5 \ --covarFile {input.cov} \ --phenoFile {input.pheno} \ --bed {params.plink_file} \ --condition-list {input.conditional_list} \ --bt \ --ignore-pred \ --write-samples \ --bsize 5000 \ --out {params.regenie_step2} \ --af-cc \ --firth \ --firth-se \ --approx \ --gz """ |
819 820 821 822 823 824 825 826 827 828 829 830 | shell: """ plink2 \ --bim {input.bim} \ --bed {input.bed} \ --fam {input.fam} \ --glm no-x-sex hide-covar log10 \ --covar {input.cov} \ --covar-variance-standardize \ --out {params.plink_out} \ --mac 5 """ |
842 843 844 845 | shell: """ Rscript workflow/scripts/qqplots_GWAS.R -f {input} -o {input} -c CHROM -p LOG10P -b GENPOS --log TRUE -i ID """ |
864 865 | script: "scripts/add_PRS_to_COV.R" |
887 888 | script: "scripts/gene_sets.R" |
906 907 908 909 910 911 912 913 914 915 | shell: """ plink \ --fam {input.fam} \ --bed {input.bed} \ --bim {input.bim} \ --extract {input.relevant_vars} \ --make-bed \ --out {params.plink_out} """ |
935 936 937 938 939 940 941 942 943 944 | shell: """ plink \ --fam {input.fam} \ --bed {input.bed} \ --bim {input.bim} \ --max-maf {wildcards.AF} \ --make-bed \ --out {params.plink_out} """ |
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 | shell: """ export LD_LIBRARY_PATH={config[LD_LIBRARY_PATH]} regenie \ --step 2 \ --minMAC 1 \ --covarFile {input.cov} \ --phenoFile {input.pheno} \ --aaf-file {input.anno_aaf} \ --anno-file {input.anno_csq} \ --mask-def {input.mask_def} \ --set-list {input.var_sets} \ --bed {params.plink_file} \ --aaf-bins {wildcards.AF} \ --bt \ --write-samples \ --ignore-pred \ --out {params.regenie_step2} \ {params.test_params} \ --af-cc \ --maxstep-null 2 \ --maxiter-null 100000 \ --gz #--check-burden-files \ #--strict-check-burden \ """ |
1012 1013 1014 1015 1016 1017 1018 1019 1020 | shell: """ plink \ --fam {input.fam} \ --bim {input.mask_bim} \ --bed {input.mask_bed} \ --model fisher \ --out {params.plink_out} """ |
1034 1035 | script: "scripts/qq_plots_RVAS.R" |
1056 1057 1058 1059 1060 1061 1062 1063 1064 | shell: """ plink \ --fam {input.famCommon} \ --bim {input.bimCommon} \ --bed {input.bedCommon} \ --score {input.PRS} 1 2 3 sum \ --out {params.out_pref} """ |
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 | shell: """ plink \ --fam {input.fam} \ --bim {input.bim} \ --bed {input.bed} \ --chr X \ --from-bp 12767072 \ --to-bp 12967072 \ --make-bed \ --out {params.out_plink} """ |
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 | shell: """ export LD_LIBRARY_PATH={config[LD_LIBRARY_PATH]} regenie \ --step 2 \ --minMAC 1 \ --covarFile {input.cov} \ --phenoFile {input.pheno} \ --bed {params.plink_file} \ --bt \ --firth \ --firth-se \ --write-samples \ --ignore-pred \ --out {params.regenie_step2} \ {params.rez} \ {params.sex_param} \ --af-cc \ --bsize 500 \ --gz """ |
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 | shell: """ plink \ --fam {input.fam} \ --bim {input.bim} \ --bed {input.bed} \ {params.sex_param} \ --model fisher \ --out {params.plink_out} """ |
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 | shell: """ plink \ --fam {input.fam} \ --bim {input.bim} \ --bed {input.bed} \ {params.sex_param} \ --filter-cases \ --freqx \ --out {params.out_case} plink \ --fam {input.fam} \ --bim {input.bim} \ --bed {input.bed} \ {params.sex_param} \ --filter-controls \ --freqx \ --out {params.out_ctrl} """ |
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 | shell: """ plink \ --fam {input.fam} \ --bed {input.bed} \ --bim {input.bim} \ {params.maf} \ --homozyg \ --out {params.ROH_out} """ |
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 | shell: """ plink \ --fam {input.fam} \ --bed {input.bed} \ --bim {input.bim} \ --het gz \ --ibc \ --out {params.ROH_out} """ |
1273 1274 1275 1276 1277 1278 | shell: """ cd {params.out_folder} wget https://storage.googleapis.com/gcp-public-data--gnomad/release/3.1.2/vcf/genomes/gnomad.genomes.v3.1.2.sites.chr{wildcards.contig}.vcf.bgz wget https://storage.googleapis.com/gcp-public-data--gnomad/release/3.1.2/vcf/genomes/gnomad.genomes.v3.1.2.sites.chr{wildcards.contig}.vcf.bgz.tbi """ |
1287 1288 1289 1290 1291 1292 1293 1294 | shell: """ cd {params.out_dir} wget https://kircherlab.bihealth.org/download/CADD/v1.6/GRCh38/whole_genome_SNVs.tsv.gz wget https://kircherlab.bihealth.org/download/CADD/v1.6/GRCh38/whole_genome_SNVs.tsv.gz.tbi wget https://kircherlab.bihealth.org/download/CADD/v1.6/GRCh38/gnomad.genomes.r3.0.snv.tsv.gz wget https://kircherlab.bihealth.org/download/CADD/v1.6/GRCh38/gnomad.genomes.r3.0.snv.tsv.gz.tbi """ |
1308 1309 1310 1311 1312 1313 1314 1315 | shell: """ keep_string="^INFO/AC,INFO/AN,INFO/AF,INFO/popmax,INFO/faf95_popmax,INFO/AC_oth,INFO/AN_oth,INFO/AF_oth,INFO/nhomalt_oth,INFO/AC_ami,INFO/AN_ami,INFO/AF_ami,INFO/nhomalt_ami,INFO/AC_sas,INFO/AN_sas,INFO/AF_sas,INFO/nhomalt_sas,INFO/AC_fin,INFO/AN_fin,INFO/AF_fin,INFO/nhomalt_fin,INFO/AC_eas,INFO/AN_eas,INFO/AF_eas,INFO/nhomalt_eas,INFO/AC_amr,INFO/AN_amr,INFO/AF_amr,INFO/nhomalt_amr,INFO/AC_afr,INFO/AN_afr,INFO/AF_afr,INFO/nhomalt_afr,INFO/AC_raw,INFO/AN_raw,INFO/AF_raw,INFO/nhomalt_raw,INFO/AC_mid,INFO/AN_mid,INFO/AF_mid,INFO/nhomalt_mid,INFO/nhomalt,INFO/AC_asj,INFO/AN_asj,INFO/AF_asj,INFO/nhomalt_asj,INFO/AC_nfe,INFO/AN_nfe,INFO/AF_nfe,INFO/nhomalt_nfe,INFO/AC_popmax,INFO/AN_popmax,INFO/AF_popmax,INFO/nhomalt_popmax" bcftools annotate -x "$keep_string" {input} -Oz -o {output} tabix -pvcf {output} #rm {input} """ |
1327 1328 1329 1330 1331 1332 1333 | shell: """ bcftools concat -Oz {input} > {output.reduced} tabix -pvcf {output.reduced} #bcftools view ouptut.reduced -i "INFO/AF>0.01" -Oz -o output.above_one_perc #tabix -pvcf output.above_one_perc """ |
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 | shell: """ # software required: bedops, bedtools mkdir -p {params.out_folder} cd {params.out_folder} # get bedtools reference file wget -Nc https://raw.githubusercontent.com/arq5x/bedtools2/master/genomes/human.hg38.genome -O bedtools_hg38_ref_file.genome # GENCODE wget -Nc ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_35/gencode.v35.annotation.gff3.gz # exons zcat gencode.v35.annotation.gff3.gz | \ awk '$3 == "exon"' - | \ sort -k1,1 -k4,4n -V | \ bedtools merge -i stdin | \ cut -f1-3 | gzip > gencode35Exons.bed.gz # add padding to gencode file bedtools slop -b 20 \ -i gencode35Exons.bed.gz \ -g bedtools_hg38_ref_file.genome | \ gzip > gencode35ExonsPadded.bed.gz # promoters zcat gencode.v35.annotation.gff3.gz | \ grep -P "transcript\t" | grep -P "\t\+\t" | \ awk '{{OFS="\t"}}{{print $1,$4-1001,$4-1}}' > plus_strand_promotor.bed zcat gencode.v35.annotation.gff3.gz | \ grep -P "transcript\t" | grep -P "\t\-\t" | \ awk '{{OFS="\t"}}{{print $1,$5-1,$5+999}}' > minus_strand_promotor.bed cat plus_strand_promotor.bed minus_strand_promotor.bed | \ sort -k1,1 -k3,3n -V | \ awk '{{OFS="\t"}}{{if ($2<0) print $1,"0",$3; else print $0}}' | \ gzip > promoters.bed.gz # ClinVar wget -Nc ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/clinvar.vcf.gz zcat clinvar.vcf.gz | grep "^#" > clinvar_pathogenic.vcf zcat clinvar.vcf.gz | grep -v "^#" | egrep "pathogenic|Pathogenic" | grep -v "uncertain" >> clinvar_pathogenic.vcf bedtools merge -i clinvar_pathogenic.vcf | cut -f1-3 | awk '{{OFS=""}}{{print "chr",$0}}' | gzip > clinvar_pathogenic.bed.gz # SpliceAI # filter splice AI for scores >0.5 and convert to BED zcat {params.anno_sources}'/spliceai_scores_sorted.hg38.vcf.gz' | \ egrep "0\.[5-9]|1\.0" | \ awk 'BEGIN {{OFS="\t"}} {{ print $1, $2-1, $2 }}' | \ gzip > \ splice_ai_positions.bed.gz # merge and sort individual bed files zcat gencode35ExonsPadded.bed.gz clinvar_pathogenic.bed.gz splice_ai_positions.bed.gz promoters.bed.gz ../../{input.DHS} | \ cat - ../../{input.GenRa} | \ cut -f1-3 | \ bedtools sort | \ bedtools merge > "ExonsClinVarSpliceAI.bed" """ |
1425 1426 1427 1428 1429 1430 1431 1432 1433 | shell: """ cat {input.bedfile} | grep "^chr{wildcards.contig} " > {output.relevant_bed} bcftools view {input} -R {output.relevant_bed} -Ob | \ bcftools sort -T $TMPDIR | \ bcftools norm -m-any -Ob | \ bcftools norm --remove-duplicates -Oz -o {output.vcf_prefiltered} """ |
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 | shell: """ work_dir=$(pwd) database_dir={params.anno_sources} echo $SLURM_NODELIST echo $TMPDIR cd $TMPDIR #git clone https://github.com/ImperialCardioGenetics/UTRannotator.git #export PERL5LIB=$(pwd)/UTRannotator cp -v $database_dir'/Homo_sapiens_assembly38.fasta.bgz'* . #/dev/shm/ #1G, store to RAMdisk cp -v $database_dir'/gnomad.genomes.v3.1.2.sites.all_red.vcf.gz'* . # 9G #cp -v $database_dir'/gnomad.exomes.r2.1.1.sites.liftover_grch38.vcf.bgz'* . # 86 G biggest file, do not copy mkdir -p dbNSFP41 cp -v $database_dir'/dbNSFP41/dbNSFP4.1a_hg38.gz'* dbNSFP41/ #31G cp -v $database_dir'/dbNSFP41/dbNSFP4.1a.readme.txt' dbNSFP41/ cp -v $database_dir'/spliceai_scores_sorted.hg38.vcf.gz'* . #0,6G cp -v $database_dir'/cnv_database_171_samples.vcf.gz'* . #cp -v $database_dir'/whole_genome_SNVs.tsv.gz'* . # copy CADD 81G #cp -v $database_dir'/gnomad.genomes.r3.0.snv.tsv.gz'* . # copy CADD 6G cp -rv $database_dir'/homo_sapiens' . # 15G wget -N ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/clinvar.vcf.gz wget -N ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/clinvar.vcf.gz.tbi cd $work_dir #export PERL5LIB=$database_dir'/UTRannotator/' #wget https://raw.githubusercontent.com/Ensembl/VEP_plugins/postreleasefix/101/TSSDistance.pm export PERL5LIB=$database_dir vep -v \ --cache \ --offline \ --force_overwrite \ --fork 8 \ --buffer {params.buffer} \ --hgvs \ --no_stats \ --format vcf \ --numbers \ --nearest gene \ --vcf \ --distance 50000,1000 \ --gene_phenotype \ --pick_allele_gene \ --af \ --af_esp \ --check_existing \ -a GRCh38 \ --dir_cache $TMPDIR \ --fasta $TMPDIR'/Homo_sapiens_assembly38.fasta.bgz' \ --custom $TMPDIR'/clinvar.vcf.gz',ClinVar,vcf,exact,0,CLNSIG,CLNREVSTAT,CLNDN \ --custom $TMPDIR'/gnomad.genomes.v3.1.2.sites.all_red.vcf.gz',gnomAD_ge,vcf,exact,0,AF,AC,AN,nhomalt,popmax,AF_oth,AF_ami,AF_sas,AF_fin,AF_eas,AF_amr,AF_afr,nhomalt_afr,AF_raw,AF_mid,AF_asj,AF_nfe,AF_popmax \ --custom $database_dir'/gnomad.exomes.r2.1.1.sites.liftover_grch38.vcf.bgz',gnomAD_ex,vcf,exact,0,AF,AN,AC,AF_afr,AF_amr,AF_asj,AF_eas,AF_fin,AF_nfe,AF_oth,AF_sas,nhomalt \ --plugin dbNSFP,$TMPDIR'/dbNSFP41/dbNSFP4.1a_hg38.gz',Ensembl_proteinid,MutationTaster_pred,MutationTaster_score,LRT_pred,Polyphen2_HDIV_pred,Polyphen2_HVAR_pred,SIFT_pred,REVEL_score,REVEL_rankscore,phyloP100way_vertebrate,phyloP100way_vertebrate_rankscore,phastCons100way_vertebrate,phastCons100way_vertebrate_rankscore,BayesDel_noAF_score,BayesDel_noAF_pred \ --plugin CADD,$database_dir'/whole_genome_SNVs.tsv.gz',$database_dir'/gnomad.genomes.r3.0.snv.tsv.gz' \ --custom $TMPDIR'/spliceai_scores_sorted.hg38.vcf.gz',SpliceAI,vcf,exact,0,ALLELE,SYMBOL,DS_AG,DS_AL,DS_DG,DS_DL \ --custom {input.DHS},DHS,bed,exact,0 \ --plugin StructuralVariantOverlap,file=$TMPDIR'/cnv_database_171_samples.vcf.gz' \ --plugin TSSDistance \ -i {input.vcf} \ -o stdout | bgzip > {output} #--plugin UTRannotator,$TMPDIR'/UTRannotator/uORF_starts_ends_GRCh38_PUBLIC.txt' \ #--custom $TMPDIR'/gnomad.exomes.r2.1.1.sites.liftover_grch38.vcf.bgz',gnomAD_ex,vcf,exact,0,AF,AN,AC,AF_afr,AF_amr,AF_asj,AF_eas,AF_fin,AF_nfe,AF_oth,AF_sas,nhomalt \ #rm /dev/shm/Homo_sapiens_assembly38.fasta.bgz* """ |
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 | shell: """ function return_AF_string_w_genomes {{ echo "((gnomAD_ge_AF < "$1" or not gnomAD_ge_AF) and ((IMPACT is HIGH) or (IMPACT is MODERATE) or (IMPACT is LOW) or (SpliceAI_SYMBOL)) and (gnomAD_ge_nhomalt < 11 or not gnomAD_ge_nhomalt)) or (ClinVar_CLNSIG and not (ClinVar_CLNSIG match benign or ClinVar_CLNSIG match Benign)) or (CLIN_SIG match pathogenic or CLIN_SIG match Pathogenic)" #echo "((gnomAD_ge_AF_AFR < "$1" or not gnomAD_ge_AF_AFR) and (gnomAD_ge_AF_AMR < "$1" or not gnomAD_ge_AF_AMR) and (gnomAD_ge_AF_EAS < "$1" or not gnomAD_ge_AF_EAS) and (gnomAD_ge_AF_FIN < "$1" or not gnomAD_ge_AF_FIN) and (gnomAD_ge_AF_NFE < "$1" or not gnomAD_ge_AF_NFE) and (gnomAD_ge_AF_SAS < "$1" or not gnomAD_ge_AF_SAS) and (AA_AF < "$1" or not AA_AF) and (EA_AF < "$1" or not EA_AF) and ((IMPACT is HIGH) or (IMPACT is MODERATE) or (IMPACT is LOW) or (SpliceAI_SYMBOL)) and (gnomAD_ex_nhomalt < 5 or not gnomAD_ex_nhomalt)) or (ClinVar_CLNSIG and not (ClinVar_CLNSIG match benign or ClinVar_CLNSIG match Benign)) or (CLIN_SIG match pathogenic or CLIN_SIG match Pathogenic)" }} filter_vep_str="$(return_AF_string_w_genomes 0.02)" echo "bcftools +fill-tags {input} -- -t AN,AC | filter_vep --format vcf --force_overwrite --filter \\""$filter_vep_str"\\" | bgzip > {output}" | bash """ |
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 | shell: """ zcat {input} | sed 's:;AN=:;AN_cohort=:g' | \ sed 's:ID=AN,:ID=AN_cohort,:g' | \ sed 's:;AC=:;AC_cohort=:g' | \ sed 's:ID=AC,:ID=AC_cohort,:g' | \ sed 's:||:|0|:g'| sed 's:||:|0|:g' | bgzip > {params.vep_renamed} split_string1='%CHROM\\t%POS\\t%ID\\t%REF\\t%ALT\\t%QUAL\\t%AC_cohort\\t%AN_cohort\\t' split_string2='%CSQ\\t' split_string3='[%GT\\t%TGT\\t%AD\\t%GQ\\t]' # header1=$(echo $split_string1 | sed 's:\\\\t: :g') header2=$(bcftools +split-vep {params.vep_renamed} -l -l | cut -f2 | tr "\\n" "\\t") header3=$(bcftools query -u -H -f $split_string3'\\n' {params.vep_renamed} | head -n1 | cut -f2-5) || echo "" echo "sample ${{header1}} $header2 $header3" | awk -v OFS="\\t" '$1=$1' > {output} for sample in `bcftools query -l {params.vep_renamed}`; do bcftools view -c1 -s $sample {params.vep_renamed} | \ bcftools +split-vep -f $split_string1$split_string2$split_string3'\\n' -d -A tab | \ awk -v var="$sample" -F $'\t' 'BEGIN {{OFS = FS}} {{print var, $0 }}' >> {output} done #rm -f {params.vep_renamed} """ |
1598 1599 1600 1601 1602 | shell: """ bcftools +split-vep -l {input} | cut -f2 | tr '\\n' ';' | awk 'BEGIN {{ FS = ";"}} ;{{ print "ID;"$0}}' > {output} bcftools +split-vep -d -f'%CHROM:%POS:%REF:%ALT;%CSQ\n' -A ";" {input} >> {output} """ |
1618 1619 | script: "scripts/make_aaf_anno.R" |
1632 1633 | shell: "cat {input} > {output}" |
1648 1649 1650 1651 1652 1653 1654 | shell: """ bcftools view --min-ac 1 {input} | \ bcftools +fill-tags | \ bcftools +split-vep -f "%CHROM\t%ID\t%MAF\t%AN\t%gnomAD_ge_AF\t%gnomAD_ge_AF_nfe\t%gnomAD_ge_AC\n" --select worst:any | gzip > {output} """ |
1691 1692 1693 1694 1695 | shell: """ plink2 --bfile {params.plink_in_prefix} --freq --out {params.freq_out_prefix} plink2 --bfile {params.plink_in_prefix} --freq counts --out {params.ac_out_prefix} """ |
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 | run: import pandas as pd import numpy as np data_af = pd.read_csv(input.data_af_file, sep="\s+") data_af=data_af[["ID","ALT_FREQS"]] anno_af = pd.read_csv(input.regenie_aaf_file, sep=" ", names=["snp", "aaf"]) joined = data_af.join(anno_af.set_index("snp"), on="ID", how="inner") joined["merged_aaf"] = joined[["ALT_FREQS", "aaf"]].max(axis=1) # added AC check - however - this is not effective with the current sample size) data_ac = pd.read_csv(input.data_ac_file, sep="\s+") data_ac=data_ac[["ID","ALT_CTS"]] joined_AC=joined.join(data_ac.set_index("ID"), on="ID", how="inner") joined_AC["merged_aaf"] = np.where( (joined_AC.ALT_CTS > 2) & (joined_AC.merged_aaf<0.001), 0.005, joined_AC.merged_aaf) joined_AC.merged_aaf = joined_AC.merged_aaf.round(4) joined_AC[["ID", "merged_aaf"]].to_csv(output.data_anno_aaf_file, sep=" ", header=False, index=False, float_format='%.5E') |
1749 | script: "scripts/plink_subset_for_rvtest.py" |
1767 1768 1769 1770 1771 | shell: """ plink2 --bfile {params.plink_in_prefix} --export vcf bgz id-paste=iid --out {params.vcf_out_prefix} --allow-extra-chr bcftools index -f -t {params.vcf_out_prefix}.vcf.gz """ |
1783 1784 1785 1786 1787 1788 1789 1790 | run: import pandas as pd fam = pd.read_csv(input.fam, names=["fid", "iid","fatid","matid","sex","empty"], sep=' ') pheno = pd.read_csv(input.phenotypes, names=["fid","iid","pheno"], sep='\t', header=0).set_index("iid") pheno.head() out = fam.join(pheno.pheno, on="iid") out.pheno = out.pheno + 1 out[["fid", "iid","fatid","matid","sex","pheno"]].to_csv(output.rvtest_pheno_file, sep="\t", header=False, index=False) |
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 | shell: """ rvtest \ --inVcf {input.invcf} \ --pheno {input.rvtest_pheno_file} \ --setFile {input.setFile_rvtest} \ --noweb \ --kernel skat \ --out {params.out_prefix} """ |
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 | shell: """ rvtest \ --inVcf {input.invcf} \ --pheno {input.rvtest_pheno_file} \ --setFile {input.setFile_rvtest} \ --noweb \ --burden exactCMC \ --out {params.out_prefix} """ |
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 | shell: """ rvtest \ --inVcf {input.invcf} \ --pheno {input.rvtest_pheno_file} \ --setFile {input.setFile_rvtest} \ --noweb \ --kernel skat \ --out {params.out_prefix} """ |
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 | shell: """ cp -f {input.phenofam} {params.out_prefix}G.fam cp -f {input.bim} {params.out_prefix}G.bim cp -f {input.bed} {params.out_prefix}G.bed cp {input.temp} {params.out_prefix}.param sed -i "s:bfile:{params.out_prefix}G:g" {params.out_prefix}.param sed -i "s:outx:{params.out_prefix}:g" {params.out_prefix}.param resources/.no_upload/GECS/gecs {params.out_prefix}.param rm -f {params.out_prefix}G.b* """ |
1947 1948 1949 1950 1951 | shell: """ zcat {input} > {output.pos} zcat {input} | cut -f1 -d" " > {output.ids} """ |
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 | shell: """ plink \ --bfile "{params.ar_pl_in}" \ --extract "{input.dbSNP_ids}" \ --make-bed \ --out {params.ar_pl_out}_tmp1 plink \ --bfile {params.ar_pl_out}_tmp1 \ --update-map "{input.dbSNP_pos}" 3 1 \ --make-bed \ --out {params.ar_pl_out} awk '{{print $2"ARRAY",$2"ARRAY",$3,$4,$5,$6}}' {params.ar_pl_out}.fam > {params.ar_pl_out}_tmp.fam mv {params.ar_pl_out}_tmp.fam {params.ar_pl_out}.fam rm -f {params.ar_pl_out}_tmp* """ |
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 | shell: """ echo "start" plink \ --vcf {input.vcf} \ --chr 18,19,20,21 \ --vcf-half-call h \ --double-id \ --make-bed \ --out {params.plink_pref}_tmp plink \ --bfile {params.plink_pref}_tmp \ --update-name "{input.dbSNP_pos}" 1 4 \ --make-just-bim \ --out {params.plink_pref}_tmp2 cat {params.plink_pref}_tmp2.bim | sed "s/chr//g" > {params.plink_pref}_tmp.bim plink \ --fam {params.plink_pref}_tmp.fam \ --bed {params.plink_pref}_tmp.bed \ --bim {params.plink_pref}_tmp.bim \ --extract {params.array_plink}.bim \ --make-bed \ --out {params.plink_pref} rm -f {params.plink_pref}_tmp* """ |
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 | shell: """ #module load king king \ -b {params.hl_pl}.bed,{params.ar_pl}.bed \ --duplicate \ --related \ --degree 1 \ --prefix {params.king_prefix} king \ -b {params.hl_pl}.bed,{params.ar_pl}.bed \ --kinship \ --prefix {params.king_prefix}_kinship """ |
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 | shell: """ #export LD_LIBRARY_PATH={config[LD_LIBRARY_PATH]} regenie \ --step 1 \ --bed {params.plink_file} \ --covarFile {input.pathCov} \ --phenoFile {input.pathPheno} \ --bt \ --extract {input.filtered} \ --loocv \ --bsize 1000 \ --out {params.step1} #--extract input.pruned \ """ |
2111 | script: "scripts/make_phenoCov.R" |
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 | shell: """ # LD pruned variants for regenie step 1 plink \ --bed {input.bed} \ --bim {input.bim} \ --fam {input.fam} \ --keep {input.keep_fam} \ --maf 0.01 \ --chr 1-22 \ --geno 0.01 \ --snps-only just-acgt \ --hwe 1e-10 \ --exclude range {input.longrange_LD} \ --make-bed \ --out {params.pruned_plink} cut -f2 {output.bim} > {output.var_ids} """ |
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 | shell: """ step1_fitNULLGLMM.R \ --plinkFile={params.plink_file} \ --phenoFile={input.phenocov} \ --phenoCol={wildcards.pheno} \ --covarColList=PC1,PC2,PC3,PC4,PC5,PC6,PC7,PC8,PC9,PC10,Age,Age2,age_sex,sex_for_fam \ --sampleIDColinphenoFile=IID \ --traitType=binary \ --outputPrefix={params.step1} \ --LOCO=TRUE \ --IsOverwriteVarianceRatioFile=TRUE \ --nThreads=4 """ |
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 | shell: """ plink \ --bfile {params.plink_in} \ --recode vcf-iid \ --out {params.vcfprefix} cat {params.vcfprefix}.vcf | bgzip > {output.vcf} tabix --csi -pvcf {output.vcf} plink \ --bfile {params.plink_in} \ --recode vcf-iid \ --chr X \ --out {params.vcfprefix_justX} cat {params.vcfprefix_justX}.vcf | bgzip > {output.vcf_justX} tabix --csi -pvcf {output.vcf_justX} """ |
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 | shell: """ step2_SPAtests.R \ --vcfField=GT \ --GMMATmodelFile={params.saige_step1}.rda \ --varianceRatioFile={params.saige_step1}.varianceRatio.txt \ --SAIGEOutputFile={output} \ --numLinesOutput=1000 \ --IsOutputNinCaseCtrl=TRUE \ --IsOutputHetHomCountsinCaseCtrl=TRUE \ --minMAC=3 \ --IsOutputAFinCaseCtrl=TRUE \ --vcfFile={params.in_vcf} {params.loco} """ |
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 | shell: """ if cat {input} | grep "CHR" | head -n1 > {params.header} then echo "don't worry" fi cat {input} | grep -v "CHR" | \ cat {params.header} - | gzip > {output} """ |
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 | shell: """ mkdir -p {params.tmp_dir} hail_python_script="workflow/scripts/relatedness_filter.py $(pwd)/{input.GWAS_MT} $(pwd)/{params.tmp_dir} $(pwd)/{input.pheno_file} $(pwd)/{output.kinship_vals} $(pwd)/{output.to_remove}" if [ {config[cluster]} = "yes" ]; then queue="long" hours_to_run=168 DRIVE_MEM=78 worker_nodes_excluded={config[worker_nodes_excluded]} num_workers=20 source workflow/scripts/spark_submit_command.sh $spark_submit_command $hail_python_script else python $hail_python_script fi rm -rf {params.tmp_dir}* """ |
Support
- Future updates
Related Workflows





