Snakemake workflow: DNA-seq variant calling with Varlociraptor
Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output, operation, topic
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
This workflow detects genomic variants with Delly and Freebayes , followed by statistical assessment with Varlociraptor . It is designed to flexibly define calling groups, and directly integrates the fetching of SRA samples (if required) and reference data (the latter making use of between workflow caching ).
Note: at the moment, Varlociraptor is limited to SNVs, MNVs, small and large (structural) indels and hence also this workflow. This will change with future releases of Varlociraptor .
Authors
-
Felix Mölder (@FelixMoelder)
-
Johannes Köster (@johanneskoester)
Usage
In any case, if you use this workflow in a paper, don't forget to give credits to the authors by citing the URL of this (original) repository.
Step 1: Obtain a copy of this workflow
-
Create a new github repository using this workflow as a template .
-
Clone the newly created repository to your local system, into the place where you want to perform the data analysis.
Step 2: Configure workflow
General settings
Configure the workflow according to your needs via editing the file
config.yaml
.
Sample and unit sheet
-
Add samples to
config/samples.tsv
. For each sample, the columnssample_name
,alias
,platform
, andgroup
have to be defined. Samples within the samegroup
will be called jointly. Aliases represent the name of the sample within its group (they can be the same as the sample name, or something simpler, e.g. tumor or normal). -
For each sample, add one or more sequencing units (runs, lanes or replicates) to the unit sheet
config/units.tsv
. For each unit, define adapters, and either one (columnfq1
) or two (columnsfq1
,fq2
) FASTQ files (these can point to anywhere in your system). Alternatively, you can define an SRA (sequence read archive) accession (starting with e.g. ERR or SRR) by using a columnsra
. In the latter case, the pipeline will automatically download the corresponding paired end reads from SRA. If both local files and SRA accession are available, the local files will be preferred.
Missing values can be specified by empty columns or by writing
NA
.
Calling scenario
Varlociraptor supports integrated uncertainty aware calling and filtering of variants for arbitrary scenarios. These are defined as so-called scenarios, via a variant calling grammar .
-
For each group, a scenario is rendered via Jinja .
-
Therefore, edit the template scenario (
scenario.yaml
) according to your needs. The sample sheet is available for jinja rendering as a pandas data frame in the variablesamples
. This allows to customize the scenario according to the contents of the sample sheet. You can therefore add additional columns to the sample sheet (e.g. purity) and access them in the scenario template, in order to pass the information to Varlociraptor.
Step 3: Execute workflow
Test your configuration by performing a dry-run via
snakemake --use-conda -n
Execute the workflow locally via
snakemake --use-conda --cores $N
using
$N
cores or run it in a cluster environment via
snakemake --use-conda --cluster qsub --jobs 100
or
snakemake --use-conda --drmaa --jobs 100
If you not only want to fix the software stack but also the underlying OS, use
snakemake --use-conda --use-singularity
in combination with any of the modes above. See the Snakemake documentation for further details.
Step 4: Investigate results
After successful execution, you can create a self-contained interactive HTML report with all results via:
snakemake --report report.html
This report can, e.g., be forwarded to your collaborators. An example (using some trivial test data) can be seen here .
Step 5: Commit changes
Whenever you change something, don't forget to commit the changes back to your github copy of the repository:
git commit -a
git push
Step 6: Obtain updates from upstream
Whenever you want to synchronize your workflow copy with new developments from upstream, do the following.
-
Once, register the upstream repository in your local copy:
git remote add -f upstream git@github.com:snakemake-workflows/dna-seq-varlociraptor.git
orgit remote add -f upstream https://github.com/snakemake-workflows/dna-seq-varlociraptor.git
if you do not have setup ssh keys. -
Update the upstream version:
git fetch upstream
. -
Create a diff with the current version:
git diff HEAD upstream/master workflow > upstream-changes.diff
. -
Investigate the changes:
vim upstream-changes.diff
. -
Apply the modified diff via:
git apply upstream-changes.diff
. -
Carefully check whether you need to update the config files:
git diff HEAD upstream/master config
. If so, do it manually, and only where necessary, since you would otherwise likely overwrite your settings and samples.
Step 7: Contribute back
In case you have also changed or added steps, please consider contributing them back to the original repository:
-
Fork the original repo to a personal or lab account.
-
Clone the fork to your local system, to a different place than where you ran your analysis.
-
Copy the modified files from your analysis to the clone of your fork, e.g.,
cp -r workflow path/to/fork
. Make sure to not accidentally copy config file contents or sample sheets. Instead, manually update the example config files if necessary. -
Commit and push your changes to your fork.
-
Create a pull request against the original repository.
Testing
Test cases are in the subfolder
.test
. They are automtically executed via continuous integration with Github actions.
Code Snippets
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | __author__ = "Johannes Köster, Derek Croote" __copyright__ = "Copyright 2020, Johannes Köster" __email__ = "johannes.koester@uni-due.de" __license__ = "MIT" import os import tempfile from snakemake.shell import shell log = snakemake.log_fmt_shell(stdout=True, stderr=True) outdir = os.path.dirname(snakemake.output[0]) if outdir: outdir = "--outdir {}".format(outdir) extra = snakemake.params.get("extra", "") with tempfile.TemporaryDirectory() as tmp: shell( "fasterq-dump --temp {tmp} --threads {snakemake.threads} " "{extra} {outdir} {snakemake.wildcards.accession} {log}" ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 | __author__ = "Johannes Köster" __copyright__ = "Copyright 2016, Johannes Köster" __email__ = "koester@jimmy.harvard.edu" __license__ = "MIT" from snakemake.shell import shell shell( "bcftools concat {snakemake.params} -o {snakemake.output[0]} " "{snakemake.input.calls}" ) |
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | __author__ = "Julian de Ruiter" __copyright__ = "Copyright 2017, Julian de Ruiter" __email__ = "julianderuiter@gmail.com" __license__ = "MIT" from snakemake.shell import shell n = len(snakemake.input) assert n == 2, "Input must contain 2 (paired-end) elements." log = snakemake.log_fmt_shell(stdout=False, stderr=True) shell( "cutadapt" " {snakemake.params.adapters}" " {snakemake.params.others}" " -o {snakemake.output.fastq1}" " -p {snakemake.output.fastq2}" " -j {snakemake.threads}" " {snakemake.input}" " > {snakemake.output.qc} {log}" ) |
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | __author__ = "Julian de Ruiter" __copyright__ = "Copyright 2017, Julian de Ruiter" __email__ = "julianderuiter@gmail.com" __license__ = "MIT" from snakemake.shell import shell log = snakemake.log_fmt_shell(stdout=False, stderr=True) shell( "cutadapt" " {snakemake.params}" " -j {snakemake.threads}" " -o {snakemake.output.fastq}" " {snakemake.input[0]}" " > {snakemake.output.qc} {log}" ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | __author__ = "Johannes Köster" __copyright__ = "Copyright 2018, Johannes Köster" __email__ = "johannes.koester@protonmail.com" __license__ = "MIT" from tempfile import TemporaryDirectory import os from snakemake.shell import shell extra = snakemake.params.get("extra", "") java_opts = snakemake.params.get("java_opts", "") with TemporaryDirectory() as tmpdir: recal_table = os.path.join(tmpdir, "recal_table.grp") log = snakemake.log_fmt_shell(stdout=True, stderr=True) known = snakemake.input.get("known", "") if known: known = "--known-sites {}".format(known) shell( "gatk --java-options '{java_opts}' BaseRecalibrator {extra} " "-R {snakemake.input.ref} -I {snakemake.input.bam} " "-O {recal_table} {known} {log}" ) log = snakemake.log_fmt_shell(stdout=True, stderr=True, append=True) shell( "gatk --java-options '{java_opts}' ApplyBQSR -R {snakemake.input.ref} -I {snakemake.input.bam} " "--bqsr-recal-file {recal_table} " "-O {snakemake.output.bam} {log}" ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | __author__ = "Johannes Köster" __copyright__ = "Copyright 2016, Johannes Köster" __email__ = "koester@jimmy.harvard.edu" __license__ = "MIT" from snakemake.shell import shell log = snakemake.log_fmt_shell(stdout=True, stderr=True) shell( "picard MarkDuplicates {snakemake.params} INPUT={snakemake.input} " "OUTPUT={snakemake.output.bam} METRICS_FILE={snakemake.output.metrics} " "{log}" ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 | __author__ = "Johannes Köster" __copyright__ = "Copyright 2019, Johannes Köster" __email__ = "johannes.koester@uni-due.de" __license__ = "MIT" import subprocess as sp import sys from itertools import product from snakemake.shell import shell species = snakemake.params.species.lower() release = int(snakemake.params.release) build = snakemake.params.build branch = "" if release >= 81 and build == "GRCh37": # use the special grch37 branch for new releases branch = "grch37/" log = snakemake.log_fmt_shell(stdout=False, stderr=True) spec = ("{build}" if int(release) > 75 else "{build}.{release}").format( build=build, release=release ) suffixes = "" datatype = snakemake.params.get("datatype", "") if datatype == "dna": suffixes = ["dna.primary_assembly.fa.gz", "dna.toplevel.fa.gz"] elif datatype == "cdna": suffixes = ["cdna.all.fa.gz"] elif datatype == "cds": suffixes = ["cds.all.fa.gz"] elif datatype == "ncrna": suffixes = ["ncrna.fa.gz"] elif datatype == "pep": suffixes = ["pep.all.fa.gz"] else: raise ValueError("invalid datatype, must be one of dna, cdna, cds, ncrna, pep") success = False for suffix in suffixes: url = "ftp://ftp.ensembl.org/pub/{branch}release-{release}/fasta/{species}/{datatype}/{species_cap}.{spec}.{suffix}".format( release=release, species=species, datatype=datatype, spec=spec.format(build=build, release=release), suffix=suffix, species_cap=species.capitalize(), branch=branch, ) try: shell("curl -sSf {url} > /dev/null 2> /dev/null") except sp.CalledProcessError: continue shell("(curl -L {url} | gzip -d > {snakemake.output[0]}) {log}") success = True break if not success: print( "Unable to download requested sequence data from Ensembl. " "Did you check that this combination of species, build, and release is actually provided?", file=sys.stderr, ) exit(1) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 | __author__ = "Johannes Köster" __copyright__ = "Copyright 2019, Johannes Köster" __email__ = "johannes.koester@uni-due.de" __license__ = "MIT" import tempfile import subprocess import sys import os from snakemake.shell import shell from snakemake.exceptions import WorkflowError species = snakemake.params.species.lower() release = int(snakemake.params.release) build = snakemake.params.build type = snakemake.params.type if release < 98: print("Ensembl releases <98 are unsupported.", file=open(snakemake.log[0], "w")) exit(1) branch = "" if release >= 81 and build == "GRCh37": # use the special grch37 branch for new releases branch = "grch37/" log = snakemake.log_fmt_shell(stdout=False, stderr=True) if type == "all": if species == "homo_sapiens" and release >= 93: suffixes = [ "-chr{}".format(chrom) for chrom in list(range(1, 23)) + ["X", "Y", "MT"] ] else: suffixes = [""] elif type == "somatic": suffixes = ["_somatic"] elif type == "structural_variations": suffixes = ["_structural_variations"] else: raise ValueError( "Unsupported type {} (only all, somatic, structural_variations are allowed)".format( type ) ) species_filename = species if release >= 91 else species.capitalize() urls = [ "ftp://ftp.ensembl.org/pub/{branch}release-{release}/variation/vcf/{species}/{species_filename}{suffix}.{ext}".format( release=release, species=species, suffix=suffix, species_filename=species_filename, branch=branch, ext=ext, ) for suffix in suffixes for ext in ["vcf.gz", "vcf.gz.csi"] ] names = [os.path.basename(url) for url in urls if url.endswith(".gz")] try: gather = "curl {urls}".format(urls=" ".join(map("-O {}".format, urls))) workdir = os.getcwd() with tempfile.TemporaryDirectory() as tmpdir: if snakemake.input.get("fai"): shell( "(cd {tmpdir}; {gather} && " "bcftools concat -Oz --naive {names} > concat.vcf.gz && " "bcftools reheader --fai {workdir}/{snakemake.input.fai} concat.vcf.gz " "> {workdir}/{snakemake.output}) {log}" ) else: shell( "(cd {tmpdir}; {gather} && " "bcftools concat -Oz --naive {names} " "> {workdir}/{snakemake.output}) {log}" ) except subprocess.CalledProcessError as e: if snakemake.log: sys.stderr = open(snakemake.log[0], "a") print( "Unable to download variation data from Ensembl. " "Did you check that this combination of species, build, and release is actually provided? ", file=sys.stderr, ) exit(1) |
1 2 3 4 5 6 7 8 9 10 | __author__ = "Michael Chambers" __copyright__ = "Copyright 2019, Michael Chambers" __email__ = "greenkidneybean@gmail.com" __license__ = "MIT" from snakemake.shell import shell shell("samtools faidx {snakemake.params} {snakemake.input[0]} > {snakemake.output[0]}") |
1 2 3 4 5 6 7 8 9 10 | __author__ = "Johannes Köster" __copyright__ = "Copyright 2016, Johannes Köster" __email__ = "koester@jimmy.harvard.edu" __license__ = "MIT" from snakemake.shell import shell shell("samtools index {snakemake.params} {snakemake.input[0]} {snakemake.output[0]}") |
1 2 3 4 5 6 7 8 9 10 11 | __author__ = "Johannes Köster" __copyright__ = "Copyright 2016, Johannes Köster" __email__ = "koester@jimmy.harvard.edu" __license__ = "MIT" from snakemake.shell import shell log = snakemake.log_fmt_shell(stdout=False, stderr=True) shell("tabix {snakemake.params} {snakemake.input[0]} {log}") |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 | __author__ = "Johannes Köster" __copyright__ = "Copyright 2020, Johannes Köster" __email__ = "johannes.koester@uni-due.de" __license__ = "MIT" from pathlib import Path from snakemake.shell import shell def get_only_child_dir(path): children = [child for child in path.iterdir() if child.is_dir()] assert ( len(children) == 1 ), "Invalid VEP cache directory, only a single entry is allowed, make sure that cache was created with the snakemake VEP cache wrapper" return children[0] extra = snakemake.params.get("extra", "") log = snakemake.log_fmt_shell(stdout=False, stderr=True) fork = "--fork {}".format(snakemake.threads) if snakemake.threads > 1 else "" stats = snakemake.output.stats cache = snakemake.input.cache plugins = snakemake.input.plugins entrypath = get_only_child_dir(get_only_child_dir(Path(cache))) species = entrypath.parent.name release, build = entrypath.name.split("_") load_plugins = " ".join(map("--plugin {}".format, snakemake.params.plugins)) if snakemake.output.calls.endswith(".vcf.gz"): fmt = "z" elif snakemake.output.calls.endswith(".bcf"): fmt = "b" else: fmt = "v" shell( "(bcftools view {snakemake.input.calls} | " "vep {extra} {fork} " "--format vcf " "--vcf " "--cache " "--cache_version {release} " "--species {species} " "--assembly {build} " "--dir_cache {cache} " "--dir_plugins {plugins} " "--offline " "{load_plugins} " "--output_file STDOUT " "--stats_file {stats} | " "bcftools view -O{fmt} > {snakemake.output.calls}) {log}" ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | __author__ = "Johannes Köster" __copyright__ = "Copyright 2020, Johannes Köster" __email__ = "johannes.koester@uni-due.de" __license__ = "MIT" from pathlib import Path from snakemake.shell import shell extra = snakemake.params.get("extra", "") log = snakemake.log_fmt_shell(stdout=True, stderr=True) shell( "vep_install --AUTO cf " "--SPECIES {snakemake.params.species} " "--ASSEMBLY {snakemake.params.build} " "--CACHE_VERSION {snakemake.params.release} " "--CACHEDIR {snakemake.output} " "--CONVERT " "--NO_UPDATE {log}" ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | __author__ = "Johannes Köster" __copyright__ = "Copyright 2020, Johannes Köster" __email__ = "johannes.koester@uni-due.de" __license__ = "MIT" import sys from pathlib import Path from urllib.request import urlretrieve from zipfile import ZipFile from tempfile import NamedTemporaryFile if snakemake.log: sys.stderr = open(snakemake.log[0], "w") outdir = Path(snakemake.output[0]) outdir.mkdir() with NamedTemporaryFile() as tmp: urlretrieve( "https://github.com/Ensembl/VEP_plugins/archive/release/{release}.zip".format( release=snakemake.params.release ), tmp.name, ) with ZipFile(tmp.name) as f: for member in f.infolist(): memberpath = Path(member.filename) if len(memberpath.parts) == 1: # skip root dir continue targetpath = outdir / memberpath.relative_to(memberpath.parts[0]) if member.is_dir(): targetpath.mkdir() else: with open(targetpath, "wb") as out: out.write(f.read(member.filename)) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | __author__ = "Johannes Köster" __copyright__ = "Copyright 2016, Johannes Köster" __email__ = "koester@jimmy.harvard.edu" __license__ = "MIT" from snakemake.shell import shell exclude = ( "-x {}".format(snakemake.input.exlude) if snakemake.input.get("exlude", "") else "" ) extra = snakemake.params.get("extra", "") log = snakemake.log_fmt_shell(stdout=True, stderr=True) shell( "OMP_NUM_THREADS={snakemake.threads} delly call {extra} " "{exclude} -g {snakemake.input.ref} " "-o {snakemake.output[0]} {snakemake.input.samples} {log}" ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | __author__ = "Johannes Köster, Felix Mölder" __copyright__ = "Copyright 2017, Johannes Köster" __email__ = "johannes.koester@protonmail.com, felix.moelder@uni-due.de" __license__ = "MIT" from snakemake.shell import shell shell.executable("bash") log = snakemake.log_fmt_shell(stdout=False, stderr=True) params = snakemake.params.get("extra", "") pipe = "" if snakemake.output[0].endswith(".bcf"): pipe = "| bcftools view -Ob -" if snakemake.threads == 1: freebayes = "freebayes" else: chunksize = snakemake.params.get("chunksize", 100000) regions = "<(fasta_generate_regions.py {snakemake.input.ref}.fai {chunksize})".format( snakemake=snakemake, chunksize=chunksize ) if snakemake.input.get("regions", ""): regions = ( "<(bedtools intersect -a " r"<(sed 's/:\([0-9]*\)-\([0-9]*\)$/\t\1\t\2/' " "{regions}) -b {snakemake.input.regions} | " r"sed 's/\t\([0-9]*\)\t\([0-9]*\)$/:\1-\2/')" ).format(regions=regions, snakemake=snakemake) freebayes = ("freebayes-parallel {regions} {snakemake.threads}").format( snakemake=snakemake, regions=regions ) shell( "({freebayes} {params} -f {snakemake.input.ref}" " {snakemake.input.samples} {pipe} > {snakemake.output[0]}) {log}" ) |
1 2 3 4 5 6 7 8 9 10 | __author__ = "Johannes Köster" __copyright__ = "Copyright 2016, Johannes Köster" __email__ = "koester@jimmy.harvard.edu" __license__ = "MIT" from snakemake.shell import shell shell("samtools view {snakemake.params} {snakemake.input[0]} > {snakemake.output[0]}") |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | __author__ = "Christopher Schröder, Patrik Smeds" __copyright__ = "Copyright 2020, Christopher Schröder, Patrik Smeds" __email__ = "christopher.schroeder@tu-dortmund.de, patrik.smeds@gmail.com" __license__ = "MIT" from os import path from snakemake.shell import shell log = snakemake.log_fmt_shell(stdout=False, stderr=True) # Check inputs/arguments. if len(snakemake.input) == 0: raise ValueError("A reference genome has to be provided.") elif len(snakemake.input) > 1: raise ValueError("Please provide exactly one reference genome as input.") # Prefix that should be used for the database prefix = snakemake.params.get("prefix", "") if len(prefix) > 0: prefix = "-p " + prefix shell("bwa-mem2 index" " {prefix}" " {snakemake.input[0]}" " {log}") |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 | __author__ = "Christopher Schröder, Johannes Köster, Julian de Ruiter" __copyright__ = ( "Copyright 2020, Christopher Schröder, Johannes Köster and Julian de Ruiter" ) __email__ = "christopher.schroeder@tu-dortmund.de koester@jimmy.harvard.edu, julianderuiter@gmail.com" __license__ = "MIT" from os import path from snakemake.shell import shell # Extract arguments. extra = snakemake.params.get("extra", "") sort = snakemake.params.get("sort", "none") sort_order = snakemake.params.get("sort_order", "coordinate") sort_extra = snakemake.params.get("sort_extra", "") log = snakemake.log_fmt_shell(stdout=False, stderr=True) # Check inputs/arguments. if not isinstance(snakemake.input.reads, str) and len(snakemake.input.reads) not in { 1, 2, }: raise ValueError("input must have 1 (single-end) or 2 (paired-end) elements") if sort_order not in {"coordinate", "queryname"}: raise ValueError("Unexpected value for sort_order ({})".format(sort_order)) # Determine which pipe command to use for converting to bam or sorting. if sort == "none": # Simply convert to bam using samtools view. pipe_cmd = "samtools view -Sbh -o {snakemake.output[0]} -" elif sort == "samtools": # Sort alignments using samtools sort. pipe_cmd = "samtools sort {sort_extra} -o {snakemake.output[0]} -" # Add name flag if needed. if sort_order == "queryname": sort_extra += " -n" prefix = path.splitext(snakemake.output[0])[0] sort_extra += " -T " + prefix + ".tmp" elif sort == "picard": # Sort alignments using picard SortSam. pipe_cmd = ( "picard SortSam {sort_extra} INPUT=/dev/stdin" " OUTPUT={snakemake.output[0]} SORT_ORDER={sort_order}" ) else: raise ValueError("Unexpected value for params.sort ({})".format(sort)) shell( "(bwa-mem2 mem" " -t {snakemake.threads}" " {extra}" " {snakemake.params.index}" " {snakemake.input.reads}" " | " + pipe_cmd + ") {log}" ) |
16 17 | wrapper: "0.59.2/bio/vep/annotate" |
37 38 | shell: "(bcftools view --threads {threads} {input.bcf} {params.pipes} | bcftools view --threads {threads} -Ob > {output}) 2> {log}" |
54 55 | shell: "rbt vcf-annotate-dgidb {input} > {output} 2> {log}" |
12 13 | script: "../scripts/render-scenario.py" |
30 31 32 | shell: "varlociraptor preprocess variants {params.omit_isize} --candidates {input.candidates} " "{input.ref} --bam {input.bam} --output {output} 2> {log}" |
46 47 48 49 | shell: "varlociraptor " "call variants generic --obs {params.obs} " "--scenario {input.scenario} > {output} 2> {log}" |
67 68 | wrapper: "0.59.2/bio/bcftools/concat" |
16 17 | wrapper: "0.60.0/bio/freebayes" |
34 35 | wrapper: "0.60.0/bio/delly" |
12 13 | shell: "(bcftools view {input} | filter_vep --filter \"{params.filter}\" --vcf_info_field ANN --only_matched | bcftools view -Ob > {output}) 2> {log}" |
27 28 | shell: "varlociraptor filter-calls posterior-odds --events {params.events} --odds barely < {input} > {output} 2> {log}" |
43 44 45 | shell: "varlociraptor filter-calls control-fdr {input} --var {wildcards.vartype} " "--events {params.events} --fdr {params.threshold} > {output} 2> {log}" |
58 59 | wrapper: "0.59.2/bio/bcftools/concat" |
15 16 | wrapper: "0.64.0/bio/bwa-mem2/mem" |
29 30 | wrapper: "0.59.2/bio/picard/markduplicates" |
48 49 | wrapper: "0.59.2/bio/gatk/baserecalibrator" |
12 13 | shell: "rbt oncoprint --vep-annotation {params.groups} > {output} 2> {log}" |
13 14 | shell: "fgbio TrimPrimers -H -i {input.bams} -p {input.primers} -s {params.sort_order} -o {output} &> {log}" |
37 38 | shell: "yara_indexer {input} &> {log}" |
58 59 | shell: "yara_mapper -t {threads} -ll {params.library_len} -ld {params.library_error} -o {output} {params.ref_prefix} {input.reads} > {log}" |
71 72 | wrapper: "0.61.0/bio/samtools/view" |
84 85 | shell: "samtools sort -n {input} | bamToBed -i - -bedpe > {output} 2> {log}" |
97 98 | shell: "samtools sort -n {input} | bamToBed -i - > {output} 2> {log}" |
110 111 | script: "../scripts/build_primer_regions.py" |
123 124 | script: "../scripts/build_target_regions.py" |
136 137 | shell: "sort -k1,1 -k2,2n {input} | mergeBed -i - > {output} 2> {log}" |
152 153 154 155 | shell: "(complementBed -i {input.target_regions} -g <(head " "-n {params.chroms} {input.genome_index} | cut " "-f 1,2 | sort -k1,1 -k 2,2n) > {output}) 2> {log}" |
169 170 | shell: "samtools view -h -b -L {input.regions} {input.bam} > {output} 2> {log}" |
12 13 | wrapper: "0.59.2/bio/reference/ensembl-sequence" |
24 25 | wrapper: "0.59.2/bio/samtools/faidx" |
38 39 | shell: "samtools dict {input} > {output} 2> {log} " |
56 57 | wrapper: "0.59.2/bio/reference/ensembl-variation" |
70 71 | shell: "rbt vcf-fix-iupac-alleles < {input} | bcftools view -Oz > {output}" |
84 85 | wrapper: "0.64.0/bio/bwa-mem2/index" |
97 98 | wrapper: "0.59.2/bio/vep/cache" |
108 109 | wrapper: "0.59.2/bio/vep/plugins" |
16 17 18 19 20 21 | shell: "bcftools view {input.bcf} > {output}.vcf;" "create_report {output}.vcf {input.ref} --flanking 100 " "--info-columns ANN dgiDB_drugs cosmic_LEGACY_ID --info-columns-prefixes PROB_ --sample-columns DP AF OBS" " --template {params} --tracks {input.bams} --output {output} --standalone 2>&1 > {log}; " "rm {output}.vcf" |
13 14 15 16 17 18 19 | shell: "varlociraptor estimate tmb " "--plot-mode {wildcards.mode} " "--coding-genome-size {params.coding_genome_size} " "--somatic-tumor-events {params.somatic_events} " "--tumor-sample {params.tumor_sample} " "< {input} > {output} 2> {log}" |
7 8 | wrapper: "0.56.0/bio/sra-tools/fasterq-dump" |
21 22 | shell: "cat {input} > {output} 2> {log}" |
38 39 | wrapper: "0.59.2/bio/cutadapt/pe" |
53 54 | wrapper: "0.59.2/bio/cutadapt/se" |
66 67 | shell: "cat {input} > {output} 2> {log}" |
10 11 | shell: "bcftools index {input} 2> {log}" |
21 22 | wrapper: "0.59.2/bio/samtools/index" |
35 36 | wrapper: "0.59.2/bio/tabix" |
10 11 | shell: "vl2svg {input} {output} 2> {log}" |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | import pandas as pd chunksize = 10 ** 6 with open(snakemake.output[0], "w") as out: with open(snakemake.log[0], "w") as log_file: for data_primers in pd.read_csv( snakemake.input[0], sep="\t", header=None, chunksize=chunksize, usecols=[0, 1, 2, 3, 4, 5], ): valid_primers = data_primers[0] == data_primers[3] valid_data = data_primers[valid_primers].copy() valid_data.iloc[:, [1, 4]] += 1 print( valid_data.drop(columns=[3]).to_csv( sep="\t", index=False, header=[ "chrom", "left_start", "left_end", "right_start", "right_end", ], ), file=out, ) print( data_primers[~valid_primers].to_csv( sep="\t", index=False, header=False ), file=log_file, ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | import pandas as pd chunksize = 10 ** 6 with open(snakemake.output[0], "w") as out: with open(snakemake.log[0], "w") as log_file: for data_primers in pd.read_csv( snakemake.input[0], sep="\t", header=None, chunksize=chunksize, usecols=[0, 1, 3, 5, 6], ): valid_primers = data_primers[0] == data_primers[3] print( data_primers[valid_primers] .drop(columns=[3, 6]) .to_csv(sep="\t", index=False, header=False), file=out, ) print( data_primers[~valid_primers].to_csv( sep="\t", index=False, header=False ), file=log_file, ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | import sys from jinja2 import Template import pandas as pd sys.stderr = open(snakemake.log[0], "w") with open(snakemake.input[0]) as template, open(snakemake.output[0], "w") as out: samples = snakemake.params.samples out.write( Template(template.read()).render( samples=samples[samples["group"] == snakemake.wildcards.group] ) ) |
Support
- Future updates
Related Workflows





