DTR phage pipeline
The DTR phage pipeline is a Snakemake pipeline for obtaining polished, full-length dsDNA bacteriophage genomes with direct terminal repeats (DTRs) from enviromental samples.
Getting started
Dependencies
The pipeline relies heavily on
conda
to supply
Snakemake
and the software packages required for various steps in the analysis. If
conda
is not currently installed on your system (highly encouraged!), please first follow the installation instructions for installing
miniconda
.
Snakemake is a workflow management system that uses Python-based language that is ideally-suited for providing reproducible and scalable bioinformatic pipelines. If you are unfamiliar with Snakemake, this tutorial is a good place to start.
Installation
First clone the repositorty to the desired location and enter the cloned directory:
git clone https://github.com/nanoporetech/DTR-phage-pipeline.git
cd DTR-phage-pipeline
Next, create a
conda
environment where you will run
Snakemake
:
conda env create -f environment.yml
That's all. Ideally,
conda
shoud take care of all the remaining dependencies when each specific Snakemake step (described below) is executed.
If conda is slow
For speed tips related to conda, see mamba section below.
Testing
To verify that everything is set up correctly, simply run the workflow without modifying config.yaml:
snakemake --use-conda -p -r -j 10
Pipeline configuration
The pipeline determines the input files, output path, and the various software parameters from the file
config.yml
, which contains key:value pairs that control how the pipeline runs.
-
Attention must be paid to the first section of
config.yml
('Editing mandatory'), as these might change from run to run.-
sample
: name of the sample (e.g. 25m) -
stype
: sample type (e.g. 1D or filtered_02um, etc) -
version
: run version (for changing run parameters) -
input_fasta
: FASTA file containing nanopore reads to be analyzed -
input_summary
: Sequencing summary file associated with the FASTA file -
output_root
: Base directory where pipeline results will be written -
max_threads
: Maximum number of threads to allocate for each rule -
MEDAKA:model
: Medaka model to use for polishing the draft genome (e.g.r941_min_high_g303
). See Medaka documentation for details on selecting the proper model for you basecalled reads. -
MEDAKA:threads
: Number of threads to use for each Medaka genome polishing. Should be <<max_threads
so that multiple genomes can be polished in parallel. -
KAIJU:db
: Path to Kaiju database to use for taxonomic annotation. Folder should contain the*.fmi
,names.dmp
, andnodes.dmp
files. These be downloaded from the Kaiju web server . nr+euk is recommended. -
KAIJU:switch
: Parameters to use for Kaiju annotation. These parameters should suffice in most cases. -
SKIP_BINS:<sample>:<stype>:<version>
: List of k-mer bins to skip for analysis. HDBSCAN assigns all unbinned reads to bin_id = -1, which should always be skipped. Occasionally downstream errors in the pipeline indicate that additional bad k-mer bins should also be skipped.
-
-
The second section of
config.yml
('Editing optional') contains software parameters that can be adjusted, but should perform sufficiently well in most cases using the default values.- 'BIN_AVA_ALGN:CLUST:max_recursion': If you get an error in this step from reaching Python's max recursion depth, you can try increasing the limit here if you have the system resources available.
Pipeline execution
The full pipeline, starting from raw reads and ending with nanopore-polished phage genomes, can be executed in one step.
snakemake --use-conda -p -j <nproc> -r
Where
<nproc>
is the maximum number of cores for all tasks in the pipeline. The output files for this workflow are placed in a path according to the variables set in the
config.yml
file. In this description,
<run_output_dir>
will refer to the path consisting of
<output_root>/<sample>/<stype>/<version>
as defined in the
config.yml
file.
all_kmer_count_and_bin
The first step provides summary plots for the input reads, identifies reads containing DTR sequences, creates k-mer count vectors, embeds these vectors into 2-d via UMAP , and calls bins in the embedding via HDBSCAN .
The outputs from this step will fall into three directories:
-
<run_output_dir>/reads_summary
-
reads.summary.stats.png
: Read length and qscore distributions for all input reads
-
-
<run_output_dir>/dtr_reads
-
output.dtr.fasta
: FASTA file of all DTR-containing reads -
output.dtr.hist.png
: Read length distribution of all DTR-containing reads -
output.dtr.stats.tsv
: Statistics for each DTR-containing read
-
-
<run_output_dir>/kmer_binning
-
bin_membership.tsv
: bin assignments for each DTR-containing read -
kmer_comp.tsv
: 5-mer count vectors for each DTR-containing read -
kmer_comp.umap.tsv
: x- and y-coordinates for each read in the 2-d embedding -
kmer_comp.umap.*.png
: Variety of scatter plots of UMAP embedding of k-mer count vectors, annoted by features including GC-content, read length, and bin assigned by HDBSCAN -
kmer_comp.umap.bins.tsv
: Mean x- and y-coordinates for each bin assigned by HDBSCAN (for finding bins in 2-d embedding)
-
all_kaiju
The next (optional) step annotates reads using Kaiju and is not strictly required for producing polished genomes. However, it can be informative for verifying the integrity of the k-mer bins and for other downstream analyses.
Some of the output files for this step include:
-
<run_output_dir>/kaiju
-
results.html
: Krona dynamic plot of annotated taxonomic composition of DTR-containing reads -
results.taxa.tsv
: Per-read annotation results
-
-
<run_output_dir>/kmer_binning
-
kmer_comp.umap.nr_euk.[0-6].png
: Scatter plots of UMAP embedding of k-mer count vectors, annotated by various levels of taxonomic annotation
-
all_populate_kmer_bins
The next step simply populates subdirectories with the binned reads as assigned by HDBSCAN.
These subdirectories are located in the
kmer_binning
directory:
-
<run_output_dir>/kmer_binning/bins/<bin_id>
-
Each bin subdirectory contains a list of binned read names (
read_list.txt
) and an associated FASTA file of reads (<bin_id>.reads.fa
)
all_alignment_clusters
Next, each k-mer bin is refined by all-vs-all aligning all reads within a bin. The resulting alignment scores are clustered hierarchically and refined alignment clusters are called from the clustering.
The bin refinement results for each k-mer bin are also placed in
kmer_binning
directory:
-
<run_output_dir>/kmer_binning/refine_bins/align_clusters/<bin_id>
-
Each bin refinement procedure generates an alignment (
<bin_id>.ava.paf
), clustering heatmap (<bin_id>.clust.heatmap.png
), and information on alignment cluster assignments (<bin_id>.clust.info.tsv
)
all_polish_and_annotate
Next, a single read is selected from each valid alignment cluster and is polished by the remaining reads in the alignment cluster. Polishing is first done using multiple rounds of Racon (3x by default), then is finished using a single round of Medaka polishing.
This step produces polished output in the following directories:
-
<run_output_dir>/kmer_binning/refine_bins/align_cluster_reads/<clust_id>
simply contains the reads corresponding to each alignment cluster -
<run_output_dir>/kmer_binning/refine_bins/align_cluster_polishing/racon/<clust_id>
contains the Racon polishing output for each alignment cluster -
<run_output_dir>/kmer_binning/refine_bins/align_cluster_polishing/medaka/<clust_id>
contains the Medaka polishing output for each alignment cluster-
The critical output file in each of these
medaka/<clust_id>
folders is the<clust_id>.ref_read.medaka.fasta
file containing the Medaka-polished genome produced from this alignment cluster . Subsequent Snakemake rules analyze, aggregate, and deduplicate these polished genomes. -
<clust_id>.ref_read.medaka.prodigal.cds.*
files describe the coding sequence annotations from Prodigal for this Medaka-polished genome. -
<clust_id>.ref_read.strands.*
files describe the strand abundance for reads in each alignment cluster. Clusters containing >80% reads from a single strand should be treated with suspicion. -
<clust_id>.ref_read.dtr.aligns.*
files describe the results of aligning the DTR sequence from each corresponding k-mer bin to the polished genome from each alignment cluster. If the DTR sequences all align to the same reference positions, the DTR is fixed. However, if they align all over the reference genome, this suggests that a headful DNA packaging mechanism was used.
-
all_combine_dedup_summarize
Next, we finish up the genome discovery portion of the pipeline by running a series of aggregations and evaluations of the final polished genome sequences.
All output from this step is written to a single directory:
-
<run_output_dir>/kmer_binning/refine_bins/align_cluster_polishing
-
polished.seqs.fasta
: The combined set of genomes from each alignment cluster -
polished.seqs.unique.fasta
: Same as above but only containing unique sequences after the deduplication step -
polished.stats.tsv
: Various statistics for each polished genome, including length, GC content, DTR details, cluster strand abundance, CDS annotation statistics, circular permutation status, and many others -
polished.stats.unique.tsv
: Same as above but only containing unique sequences after the deduplication step -
polished.unique.cds.summary.all.png
: Summary plots of summary statistics for the coding sequences (CDS) annotated by Prodigal for each unique polished genome -
polished.unique.cds.summary.dtr_npol10.png
: Same as above but only including polished genomes with a confirmed DTR and at least 10 reads used for polishing
-
all_linear_concatemer_reads
Finally, we run one final step to query the sequencing dataset for linear concatemer reads that could represent interesting mobile elements in the environmental sample.
All output from this step is written to a single directory:
-
<run_output_dir>/concatemers
-
concats.fasta
: All identified concatemeric reads found in the input reads -
concats.tsv
: Statistic for each concatemeric read found, including readname, length, repeat size, and repeat copy count -
concats.contours.png
: Scatter plot with density contours showing the relationship between the observed repeat length and copy count in all identified concatemeric reads.
-
Licence and Copyright
(c) 2019 Oxford Nanopore Technologies Ltd.
This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0. If a copy of the MPL was not distributed with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
Code Snippets
12 13 | shell: 'minimap2 -t {threads} {params.cli} {input} {input} > {output}' |
26 27 28 29 | shell: 'python {SCRIPT_DIR}/cluster_ava_alignments.py -p {params.prefix} ' ' -R {params.max_recurs} ' ' -s {params.min_score_frac} -n {params.min_reads} {input}' |
37 38 39 40 41 42 | run: fns = input.clust_info_csvs df = pd.concat([pd.read_csv(fn) for fn in fns], ignore_index=True) df = df.sort_values(['bin_id', 'cluster']) print(f"Writing to {output.combined}") df.to_csv(str(output.combined), index=False) |
54 55 56 57 58 59 60 61 62 63 64 65 66 67 | run: # parse table; filter by cluster for clust_info_file in input.clust_info: bin_id = os.path.basename(os.path.dirname(clust_info_file)) logger.debug(f"DEBUG: bin id: {bin_id}") df = pd.read_csv(clust_info_file) for clust_id, df_clust in df.groupby('cluster'): bin_clust_id = f"{bin_id}_{clust_id}" bin_clust_dir = str(BIN_CLUSTER_DIR).format(bin_clust_id=bin_clust_id) os.makedirs(bin_clust_dir, exist_ok=True) readlist = str(BIN_CLUSTER_READS_LIST).format(bin_clust_id=bin_clust_id) df_clust['read_id'].to_csv(readlist, index=False, header=False) readinfo = str(BIN_CLUSTER_READS_INFO).format(bin_clust_id=bin_clust_id) df_clust.to_csv(readinfo, index=False) |
90 91 | shell: 'seqkit grep -f {input.clustreads} {input.allfasta} > {output}' |
99 100 101 102 103 104 105 | run: clust_info_df = pd.read_csv(input.cluster_info) ref_idx = clust_info_df['clust_read_score'].idxmax() ref_read = clust_info_df.loc[ref_idx, ['read_id']] pol_reads = clust_info_df[~clust_info_df['read_id'].isin(ref_read.values)]['read_id'] ref_read.to_csv(output.ref, index=False, header=False) pol_reads.to_csv(output.pol, index=False, header=False) |
113 114 | shell: 'seqkit grep -f {input.readlist} {input.fasta} > {output}' |
122 123 | shell: 'seqkit grep -f {input.readlist} {input.fasta} > {output}' |
12 13 | shell: 'prodigal -p meta -q -i {input} -o {output.txt} -d {output.fasta}' |
21 22 23 | shell: 'python {SCRIPT_DIR}/summarize_cds_result_fasta.py -o {output} {input.cds} ' '{input.ref}' |
38 39 40 | shell: 'minimap2 -t {threads} {params.switches} {input.ref} ' '{input.reads} > {output}' |
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 | run: clust_id = wildcards.bin_clust_id cols = ['qname', 'qlen', 'qstart', 'qend', 'strand', 'tname', \ 'tlen', 'tstart', 'tend', 'matches', 'alnlen', 'mapqv'] paf = pd.read_csv(input.paf, sep='\t', header=None, usecols=list(range(12)), names=cols) paf = paf.groupby(['qname','strand','tname']).size().reset_index(name='count')[['qname','strand','tname']] n_pos = paf[paf['strand']=='+'].shape[0] n_neg = paf[paf['strand']=='-'].shape[0] n_tot = n_pos + n_neg ref = paf['tname'].unique()[0].split(':')[0] f_n = open(output.counts, 'w') f_n.write('read\tclust_id\tn_tot\tfrac_pos\tfrac_neg\n') f_n.write('{ref}\t{clust}\t{n_tot}\t{pos}\t{neg}\n'.format(ref=ref,clust=clust_id,n_tot=(n_pos+n_neg),pos=float(n_pos)/n_tot,neg=float(n_neg)/n_tot)) reads_df = paf[['qname','strand']].rename(columns={'qname':'read_id', 'strand':'label'}) ref_df = pd.DataFrame.from_dict({'read_id':[ref], 'label':['ref']}) df = pd.concat([reads_df, ref_df]) df['clust_id'] = clust_id df.to_csv(output.annots, sep='\t', index=False) |
11 12 | shell: 'nucmer -p {params.prefix} --nosimplify {input} {input}' |
20 21 | shell: 'show-coords -c -l -T {input.delta} > {output.nucfilt}' |
35 36 37 38 | shell: 'python {SCRIPT_DIR}/dedup_sample_genomes.py -p {params.minpct} ' '-c {params.mincov} -f {output.fasta} -s {output.stats} ' '{input.coords} {input.fasta} {input.stats}' |
46 47 48 | shell: 'python {SCRIPT_DIR}/plot_cds_summaries.py --output1={output.plot1} ' '--output2={output.plot2} {input}' |
17 18 19 | shell: 'python {SCRIPT_DIR}/plot_headful_dtr_positions.py -t {threads} -p {params.prefix} ' '-o {params.ovlp} {input.binsdir} {input.ref}' |
18 19 20 | shell: 'python {SCRIPT_DIR}/find_dtr_all_seqs.py -t {threads} -p {params.prefix} ' '-d {params.tmpdir} -o {params.ovlp} -c {params.chunksize} {input}' |
13 14 15 | shell: 'kaiju {params.switch} -z {threads} -t {params.db}/nodes.dmp ' '-f {params.db}/kaiju_db.fmi -i {input} -o {output}' |
21 22 23 | shell: "csvcut -t -c 3 {input} | sort -nk1 | uniq > {output}; " "echo -e 'taxID' | cat - {output} > /tmp/out && mv /tmp/out {output}" |
32 33 | shell: 'kaiju-addTaxonNames -p -t {params.db}/nodes.dmp -n {params.db}/names.dmp -i {input.results} -o {output}' |
45 46 47 | shell: 'kaiju2krona -u -t {params.db}/nodes.dmp -n {params.db}/names.dmp ' '-i {input.results} -o {output.krona}; ktImportText -o {output.html} {output.krona}' |
13 14 15 | shell: 'python {SCRIPT_DIR}/kmer_freq.py {params.cli} -k {params.k} -t {threads} ' '{input} > {output}' |
23 24 | shell: 'python {SCRIPT_DIR}/add_qscore_to_kmer_freq.py -o {output} {input.freq} {input.summ}' |
36 37 38 | shell: 'python {SCRIPT_DIR}/run_umap.py -l {params.min_rl} -q {params.min_q} ' '-d {params.min_d} -n {params.neighbors} -o {output} {input.comp}' |
51 52 53 | shell: 'python {SCRIPT_DIR}/plot_umap_with_qscore.py -o {output} -s {params.size} ' '-a {params.alpha} {input}' |
64 65 66 | shell: 'python {SCRIPT_DIR}/plot_umap_with_gc_content.py -o {output} -s {params.size} ' '-a {params.alpha} {input.umap} {input.fasta}' |
79 80 81 | shell: 'python {SCRIPT_DIR}/plot_umap_with_readlength.py -o {output} -m {params.min_rl} ' '-n {params.max_cb_rl} -s {params.size} -a {params.alpha} {input.umap} {input.fastx}' |
90 91 | shell: 'python {SCRIPT_DIR}/run_hdbscan.py -o {output} -c {params.min_cluster} {input}' |
100 | shell: "cut -f 6 {input} | tail -n+2 | sort | uniq > {output}" |
109 110 111 | shell: 'python {SCRIPT_DIR}/plot_umap_with_hdbscan_labels.py -o {output} -s {params.size} ' '-a {params.alpha} {input}' |
122 123 124 | shell: 'python {SCRIPT_DIR}/plot_umap_with_kaiju_labels.py -r {wildcards.rank} -o {output} ' '-s {params.size} -a {params.alpha} {input.umap} {input.annot}' |
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 | run: df_reads = pd.read_csv(input.bin_membership, sep='\t') # aggregate read stats into bin stats df_bins = df_reads.groupby('bin_id').agg(bases=pd.NamedAgg('length', sum), genomesize=pd.NamedAgg('length', np.mean), coverage=pd.NamedAgg('length', len), readlist=pd.NamedAgg('read', set), ) df_bins['rl_gs_est'] = True # write bin stats (without readlist) to stats file df_bins[['bases','genomesize','coverage','rl_gs_est']] \ .sort_index() \ .to_csv(output.all_stats, sep='\t') # write bin specific files for bin_id, row in df_bins.iterrows(): # # create bin specific subdir of BINS_ROOT bin_dir = str(BIN_DIR).format(bin_id=bin_id) os.makedirs(bin_dir, exist_ok=True) # # save genome size to file gsize_fn = str(BIN_GENOME_SIZE).format(bin_id=bin_id) with open(gsize_fn, 'w') as fh: fh.write(f'{row["genomesize"]}\n') # # save read list to file rlist_fn = str(BIN_READLIST).format(bin_id=bin_id) with open(rlist_fn, 'w') as fh: fh.write('{}\n'.format('\n'.join(row['readlist']))) |
193 194 | shell: 'seqkit grep -f {input.read_list} -o {output} {input.reads_fasta}' |
14 15 16 17 18 | shell: 'mkdir -p {params.aln_dir}; python {SCRIPT_DIR}/check_seqs_for_concatemers.py ' '-o {params.ovlp_len} -d {params.aln_dir} -t {threads} -m {params.minlen} ' '-o {output} {input}; ' 'rm -rf {params.aln_dir}' |
26 27 | shell: 'python {SCRIPT_DIR}/plot_linear_concat_reads_contours.py -o {output} {input}' |
17 18 19 | shell: 'python {SCRIPT_DIR}/run_racon.py -t {threads} -n {params.iterations} ' '-q {params.minq} -o {output.polished} {input.raw_reads} {input.draft}' |
35 36 37 38 | shell: 'medaka_consensus -i {input.raw_reads} -d {input.draft} ' '-o {params.out_dir} -t {threads} -m {params.model}; ' 'mv {params.out_dir}/consensus.fasta {output}' |
47 48 49 50 51 | shell: 'python {SCRIPT_DIR}/rename_polished_genome.py -o {output} ' '{input.fasta} ' '{input.ref_read_list} ' '{input.pol_reads_list}' |
8 9 | shell: 'cat {input} > {output}' |
18 19 | shell: 'porechop {params.switches} -t {threads} -i {input} -v 1 -o {output}' |
31 32 33 | shell: 'python {SCRIPT_DIR}/find_dtr_all_seqs.py --no_fasta --no_hist -t {threads} ' '-p {params.prefix} -o {params.ovlp} -c {params.chunksize} {input}' |
41 42 43 | shell: """python {SCRIPT_DIR}/combine_cds_summary.py -o {output.table} \ {MEDAKA_DIR}/*/*.ref_read.medaka.prodigal.cds.stats.txt """ |
57 58 59 | shell: 'python {SCRIPT_DIR}/calculate_genomes_gc_contents.py -p {params.prefix} ' '-o {output} {input.dtr_table} {input.cds_table} {input.bins_dir} {params.clust_dir}' |
70 71 72 73 74 75 76 77 78 79 80 81 | run: count_fns = [input.counts] if isinstance(input.counts, Path) else input.counts count_dfs = [pd.read_csv(fn, sep='\t') for fn in count_fns] count_df = pd.concat(count_dfs) count_df['bin'] = count_df['clust_id'].map(lambda x: int(x.split('_')[0])) count_df['cluster'] = count_df['clust_id'].map(lambda x: int(x.split('_')[1])) count_df = count_df.sort_values(['bin','cluster']).drop(['bin','cluster'], axis=1).round({'frac_pos': 2, 'frac_neg': 2}) count_df.to_csv(output.counts, sep='\t', index=False) annot_fns = [input.annots] if isinstance(input.annots, Path) else input.annots annot_dfs = [pd.read_csv(fn, sep='\t') for fn in annot_fns] annot_df = pd.concat(annot_dfs) annot_df.to_csv(output.annots, sep='\t', index=False) |
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 | run: fns = list(str(i) for i in input) logger.debug("DEBUG: Loading dtr alignment infos from " + repr(fns)) fns = expand_template_from_bin_clusters({}, DTR_ALIGN_TSV) logger.debug("DEBUG: Loading dtr alignment infos from " + repr(fns)) df = pd.concat([pd.read_csv(fn, sep='\t') for fn in fns]) print(df.shape) print(df.head()) df['dtr_len'] = df['tend'] - df['tstart'] df['left_dist'] = df['tend'] df['right_dist'] = df['tlen'] - df['tstart'] for_df = [] for group,df_ in df.groupby('bin_clust_id'): cyc_perm = False # If the distance from the genome end to the inner DTR boundary is more than 2x the median DTR length, keep. # If > 25% of the reads pass that filter, label the cluster as being cyclically permuted. df_filt = df_[df_['left_dist'] > (2 * df_['dtr_len'].median())] df_filt = df_filt[df_filt['right_dist'] > (2 * df_filt['dtr_len'].median())] if df_filt.shape[0]>(0.25*df_.shape[0]): cyc_perm = True for_df.append( (df_.loc[0,'bin_clust_id'], cyc_perm)) df_out = pd.DataFrame.from_records(for_df, columns=['clust_id','cyc_perm']) df_out.to_csv(output.cyc_perm_stats, sep='\t', index=False) |
118 119 120 121 122 123 124 125 126 127 128 129 | run: df_gc = pd.read_csv(input.dtr_gc_stats, sep='\t').set_index('clust_id') df_cds = pd.read_csv(input.cds_stats, sep='\t').set_index('clust_id') df_strand = pd.read_csv(input.strand_stats, sep='\t').set_index('clust_id') df_cyc = pd.read_csv(input.cyc_perm_stats, sep='\t').set_index('clust_id') df_cds = df_cds.drop(['read','ref_len'], axis=1) df_strand = df_strand.drop('read', axis=1) df = df_cds.join(df_strand, how='left') df = df.join(df_cyc, how='left') df = df.join(df_gc, how='left').reset_index().sort_values('clust_id') df.to_csv(output[0], sep='\t', index=False) |
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 | run: import matplotlib; matplotlib.use('Agg') import matplotlib.pyplot as plt df = pd.read_csv(input.all_summary, quoting=3, sep='\t') # Sometimes these summary files have quotation marks around each row entry if type(df.iloc[0,0])=='str': if df.iloc[0,0].find('\"')>-1: df.columns = df.columns.map(lambda x: x.strip('\"')) df.iloc[:,0] = df.iloc[:,0].str.strip('\"') df.iloc[:,-1] = df.iloc[:,-1].str.strip('\"').astype('float') length = 'sequence_length_template' qscore = 'mean_qscore_template' if 'sequence_length_2d' in df.columns: # This is 1Dsq data, not 1D. Update column ID name for querying length = length.replace('template', '2d') qscore = qscore.replace('template', '2d') fig = plt.figure(figsize=(12,10)) # Prevent outlier lengths from screwing up histogram plot_df = df.query('({l} <= 70000)'.format(l=length)) ax1 = fig.add_subplot(2,1,1) ax1.hist(plot_df[qscore], bins=50, linewidth=0, alpha=0.5, color='b') ax1.set_xlabel('qscore') ax1.set_ylabel('count') ax1.set_title('%s reads; mean qscore = %.1f' % (len(df[qscore]), np.mean(df[qscore]))) ax2 = fig.add_subplot(2,1,2) ax2.hist(plot_df[length], bins=50, linewidth=0, alpha=0.5, color='b') ax2.set_xlabel('length') ax2.set_ylabel('count') ax2.set_title('mean length = %i' % np.mean(df[length])) fig.savefig(output.plot) |
34 35 36 37 38 39 | shell: 'wrapper_phage_contigs_sorter_iPlant.pl -f {input} \ --wdir {VIRSORTER_DIR} \ --data-dir {config[VIRSORTER][data_dir]} \ --db {config[VIRSORTER][db]} --ncpu {threads} \ {params.virome} {params.diamond}' |
46 | shell: 'cat {input} > {output}' |
295 296 | run: print(f"Cannot run kaiju! DB not found at {KAIJU_DB_DIR}") |
Support
- Future updates
Related Workflows





