Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output, operation
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
FABLE is an automated and reproducible snakemake workflow tailored to Oxford Nanopore Sequencing reads. After easy installation
Code Snippets
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | import pandas as pd import matplotlib.pyplot as plt import numpy as np import pathlib, os # Create an empty dataframe df = pd.DataFrame() # get list of benchmark files bench_files = pathlib.Path("benchmarks").glob("*.tsv") for bench_tsv_file in bench_files: tmp_df = pd.read_csv(bench_tsv_file, sep='\t') tmp_df.insert(0,"Process",bench_tsv_file.stem) df = df.append(tmp_df,ignore_index=True) df['Process'] = pd.Categorical(df.Process, categories=["Porechop", "NanoQ", "FastQC", "Pre-alignment_NanoPlot", "Minimap2", "Post-alignment_NanoPlot" ], ordered=True) df=df.sort_values('Process') df = df.reset_index(drop=True) # replace negligible values to 0 df = df.replace('-', np.NaN) df=df.replace(np.nan, 0) df['cumsum_cpu_time'] = df['cpu_time'].cumsum() df['cumsum_max_vms']=df['max_vms'].cumsum() print(df) x_idx = np.arange(df.shape[0]) fig, (ax1,ax2)= plt.subplots(nrows=1, ncols=2, figsize=(12, 4)) # c = ['hotpink', 'palevioletred', 'pink', 'plum','thistle','lavender'] c = ['thistle','palevioletred','pink','lavender','lightsteelblue','powderblue'] # bar plot for cpu_time on ax1 df.plot(x='Process', y='cpu_time', kind='bar', color=c, ax=ax1) # line plot for cumsum_cpu_time on ax1 df.plot(x='Process', y='cumsum_cpu_time', kind='line', marker='o', markersize=2, color='black', ax=ax1) # bar plot for max_vms on ax2 df.plot(x='Process', y='max_vms', kind='bar', color=c, ax=ax2) # line plot for cumsum_max_vms on ax2 df.plot(x='Process', y='cumsum_max_vms', kind='line', marker='o', markersize=2, color='black', ax=ax2) plt.tight_layout() ax1.title.set_text('CPU time') ax2.title.set_text('Maximum VMS') ax1.set_xticklabels(df['Process'],rotation = 30, horizontalalignment='right', fontsize='small') ax1.set_ylabel('Seconds') ax2.set_xticklabels(df['Process'],rotation = 30, horizontalalignment='right', fontsize='small') ax2.set_ylabel('MegaBytes') ax1.legend(loc='upper left', bbox_to_anchor=(0, 1.17), fontsize=7, fancybox=True, ncol=1) ax2.legend(loc='upper left', bbox_to_anchor=(0, 1.17), fontsize=7, fancybox=True, ncol=1) plt.savefig(snakemake.output[0], bbox_inches="tight") |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | import pandas as pd import matplotlib.pyplot as plt import numpy as np import pathlib, os #Create an empty dataframe first. df = pd.DataFrame() # get list of benchmark files in the bench_files = pathlib.Path("benchmarks").glob("*.tsv") # bench_files = sorted(bench_files, key=os.path.getmtime) #for bench_tsv_file in pathlib.Path('./workdir_mm2/benchmarks').glob("*.tsv"): for bench_tsv_file in bench_files: #print(bench_tsv_file) tmp_df = pd.read_csv(bench_tsv_file, sep='\t') tmp_df.insert(0,"Process",bench_tsv_file.stem) df = df.append(tmp_df,ignore_index=True) df['Process'] = pd.Categorical(df.Process, categories=["Porechop", "NanoQ", "FastQC", "Pre-alignment_NanoPlot", "Vulcan", "Post-alignment_NanoPlot" ], ordered=True) df=df.sort_values('Process') df = df.reset_index(drop=True) df['cumsum_cpu_time'] = df['cpu_time'].cumsum() df['cumsum_max_vms']=df['max_vms'].cumsum() print(df) x_idx = np.arange(df.shape[0]) fig, (ax1,ax2)= plt.subplots(nrows=1, ncols=2, figsize=(12, 4)) # c = ['hotpink','palevioletred', 'pink', 'plum','thistle','lavender'] c = ['thistle','palevioletred','pink','lavender','lightsteelblue','powderblue'] # bar plot for cpu_time on ax1 df.plot(x='Process', y='cpu_time', kind='bar', color=c, ax=ax1) # line plot for cumsum_cpu_time on ax1 df.plot(x='Process', y='cumsum_cpu_time', kind='line', marker='o', markersize=2, color='black', ax=ax1) # bar plot for max_vms on ax2 df.plot(x='Process', y='max_vms', kind='bar', color=c, ax=ax2) # line plot for cumsum_max_vms on ax2 df.plot(x='Process', y='cumsum_max_vms', kind='line', marker='o', markersize=2, color='black', ax=ax2) plt.tight_layout() ax1.title.set_text('CPU time') ax2.title.set_text('Maximum VMS') ax1.set_xticklabels(df['Process'],rotation = 30, horizontalalignment='right', fontsize='small') ax1.set_ylabel('Seconds') ax2.set_xticklabels(df['Process'],rotation = 30, horizontalalignment='right', fontsize='small') ax2.set_ylabel('MegaBytes') ax1.legend(loc='upper left', bbox_to_anchor=(0, 1.17), fontsize=7, fancybox=True, ncol=1) ax2.legend(loc='upper left', bbox_to_anchor=(0, 1.17), fontsize=7, fancybox=True, ncol=1) plt.savefig(snakemake.output[0], bbox_inches="tight") |
36 37 | shell: "porechop -i {input} -t {threads} -o {output}" |
65 66 | shell: "fastqc --threads {threads} --outdir {params.outdir} {input}" |
80 81 | shell: "NanoPlot -t {threads} --N50 --fastq {input} --outdir {params.outdir} -p {params.prefix}" |
95 96 | shell: "vulcan -ont -t {threads} -r {input.ref} -i {input.fastq} -o {params.prefix}" |
103 104 | shell: "samtools index {input}" |
118 119 | shell: "NanoPlot -t {threads} --N50 --bam {input} -p {params.prefix} -o {params.outdir}" |
126 127 | shell: "bedtools genomecov -ibam {input} -bg > {output}" |
134 135 | shell: "faSize -detailed -tab {input} > {output}" |
143 144 | shell: "bedGraphToBigWig {input.bedgraph} {input.chrsize} {output}" |
151 152 | shell: "samtools stats {input} | grep ^SN | cut -f 2- > {output}" |
159 160 | shell: "mv {input} {output}" |
167 168 | shell: "mv {input} {output}" |
177 178 | script: "scripts/vulcan_plot_benchmark.py" |
189 190 | shell: "multiqc {input} -o report/MultiQC" |
201 202 | shell: "minimap2 -ax map-ont {input.ref} {input.fastq} > {output}" |
209 210 | shell: "samtools sort {input} -o {output}" |
217 218 | shell: "samtools index {input}" |
232 233 | shell: "NanoPlot -t {threads} --N50 --bam {input} -p {params.prefix} -o {params.outdir}" |
240 241 | shell: "bedtools genomecov -ibam {input} -bg > {output}" |
248 249 | shell: "faSize -detailed -tab {input} > {output}" |
257 258 | shell: "bedGraphToBigWig {input.bedgraph} {input.chrsize} {output}" |
265 266 | shell: "samtools stats {input} | grep ^SN | cut -f 2- > {output}" |
273 274 | shell: "mv {input} {output}" |
281 282 | shell: "mv {input} {output}" |
291 292 | script: "scripts/mm2_plot_benchmark.py" |
303 304 | shell: "multiqc {input} --outdir report/MultiQC" |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Created: 1yr ago
Updated: 1yr ago
Maitainers:
public
URL:
https://github.com/kaiseriskera/FABLE
Name:
fable
Version:
1
Downloaded:
0
Copyright:
Public Domain
License:
Apache License 2.0
Keywords:
- Future updates
Related Workflows

ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...

Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...

snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...

ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics

RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...

This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...