Variant Filtering Module for VCF Files with Region and Annotation Filters
Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
Collection of variant filters
:speech_balloon: Introduction
The module consists of rules used to filter VCF files. Currently the VCFs can be filtered based on regions and annotation.
Region based filtering
Regions filtering is based on bcftools and inculdes or excludes variants based on a bed file.
Annotation based filtering
Filter criteria are defined in a .yaml file and can be hard filters or soft filters where a filter flag is added to the filter column in the VCF file. Example of annotations that can be used are those found in the format column or added by VEP. Filter criteria can be combined by logical operators. For matching annotations there is the possibility to use regular expressions in combination with for example exist. Also, NA-behavior can be specified.
:heavy_exclamation_mark: Dependencies
In order to use this module, the following dependencies are required:
:school_satchel: Preparations
Sample and unit data
Input data should be added to
samples.tsv
and
units.tsv
. The following information need to be added to these files:
Column Id | Description |
---|---|
samples.tsv
|
|
sample | unique sample/patient id, one per row |
tumor_content | ratio of tumor cells to total cells |
units.tsv
|
|
sample |
same sample/patient id as in
samples.tsv
|
type | data type identifier (one letter), can be one of T umor, N ormal, R NA |
platform |
type of sequencing platform, e.g.
NovaSeq
|
machine |
specific machine id, e.g. NovaSeq instruments have
@Axxxxx
|
flowcell | identifer of flowcell used |
lane | flowcell lane number |
barcode |
sequence library barcode/index, connect forward and reverse indices by
+
, e.g.
ATGC+ATGC
|
fastq1/2 | absolute path to forward and reverse reads |
adapter | adapter sequences to be trimmed, separated by comma |
:white_check_mark: Testing
The workflow repository contains a small test dataset
.tests/integration
which can be run like so:
cd .tests/integration
$ snakemake -s ../../Snakefile -j1 --configfile config.yaml --use-singularity
:rocket: Usage
To use this module in your workflow, follow the description in the
snakemake docs
. Add the module to your
Snakefile
like so:
module biomarker:
snakefile:
github(
"hydra-genetics/filter",
path="workflow/Snakefile",
tag="v0.1.0",
)
config:
config
use rule * from biomarker as biomarker_*
Compatibility
Latest:
-
annotation:v0.1.0
-
snv_indel:v0.2.0
See COMPATIBLITY.md file for a complete list of module compatibility.
Input files
File | Description |
---|---|
hydra-genetics/annotation
|
|
annotation/{file}.vcf.gz
|
annotated vcf |
hydra-genetics/snv_indel data
|
|
cnv_sv/{file}.vcf.gz
|
non-annotated vcf |
Output files
The following output files should be targeted via another rule (see Config for more info):
File | Description |
---|---|
{file}.include.{tag}.vcf.gz
|
vcf filtered by bcftools include |
{file}.exclude.{tag}.vcf.gz
|
vcf filtered by bcftools exclude |
{file}.filter.{tag}.vcf.gz
|
vcf filtered based on annotations |
Config
The {tag} in the output file must be defined in the config file for the specifc rule that should be applied, see example in config.yaml where:
-
row 14 defines tag: 'noexon1' for rule bcftools_filter_include_region
-
row 20 defines tag: 'snv_hard_filter' for rule filter_vcf
:judge: Rule Graph
Filtering
Code Snippets
36 37 38 39 40 41 | shell: "(bcftools filter " "{params.filter} " "{params.extra} " "{input.vcf} " "-o {output.vcf}) &> {log}" |
73 74 75 76 77 78 | shell: "(bcftools filter " "{params.filter} " "{params.extra} " "{input.vcf} " "-o {output.vcf}) &> {log}" |
108 109 | wrapper: "v1.24.0/bio/bcftools/view" |
31 32 | script: "../scripts/filter_vcf.py" |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 | import logging import re import yaml from collections import OrderedDict from hydra_genetics.utils.io import utils from pysam import VariantFile def is_float(element) -> bool: try: float(element) return True except ValueError: return False def _and_function(v1, v2): return v1 and v2 def _or_function(v1, v2): return v1 or v2 def _parse_helper(f_iterator): """ function used to parse a string with parenthesis and create a nested fail_filter_list :param f_iterator: filter string that will be parsed :type f_iterator: string iterator :return: return a nested list """ data = [] filter_string = '' for item in f_iterator: if item == '(': result, closing_parantes = _parse_helper(f_iterator) if len(result) == 1: result = result[0] data.append(result) if not closing_parantes: raise SyntaxError("Missing closing parantes!") elif item == ')': if len(filter_string) != 0: data.append(filter_string) return data, True else: filter_string += item if filter_string.startswith(' or '): data.append(_or_function) result, p_found = _parse_helper(f_iterator) if len(result) == 1: result = result[0] data.append(result) return data, p_found elif filter_string.startswith(' and '): data.append(_and_function) result, p_found = _parse_helper(f_iterator) if len(result) == 1: result = result[0] data.append(result) return data, p_found elif filter_string.endswith(' or '): data.append(filter_string[:-4]) data.append(_or_function) result, p_found = _parse_helper(f_iterator) if len(result) == 1: result = result[0] data.append(result) return data, p_found elif filter_string.endswith(' and '): data.append(filter_string[:-5]) data.append(_and_function) result, p_found = _parse_helper(f_iterator) if len(result) == 1: result = result[0] data.append(result) return data, p_found if len(filter_string) != 0: data.append(filter_string) return data, False def _convert_string(data, process_function): """ converts a nested list of string into functions :params data: data structure with string :type list: nested list with strings :params process_function: function used to convert string to lambda function :type list: function :return: nested list with lambda functions """ if isinstance(data, str): return process_function(data) elif isinstance(data, list): if len(data) == 3: return [_convert_string(data[0], process_function), data[1], _convert_string(data[2], process_function)] elif len(data) == 1: return _convert_string(data[0], process_function) else: raise Exception("Unhandled data structure case {}, unexpected number of items {}!".format(data, len(data))) else: raise Exception("Unhandled data structure case {}\ntype: {}\nlength: {}".format(data, type(data), len(data))) def _evaluate_expression(data, variant): """ function used to evaluate variant using a nested list of functions :param data: a nested list with functions that will be evaluated :type data: nested list :param variant: variant that will be evaluated :type process_function: a function :param :return: boolean """ if callable(data): return data(variant) elif isinstance(data, list): if len(data) == 3: return data[1](_evaluate_expression(data[0], variant), _evaluate_expression(data[2], variant)) elif len(data) == 1: return _evaluate_expression(data[0], variant) else: raise Exception("Unhandled data structure case {}, unexpected number of items {}!".format(data, len(data))) else: raise Exception("Unhandled data structure case {}!".format(data)) def create_variant_filter(filter, string_parser): data, _ = _parse_helper(iter(filter)) data = _convert_string(data, string_parser) return lambda variant: _evaluate_expression(data, variant) def create_convert_expression_function(annotation_extractors): """ :param annotation_extractors: dict with functions that can extract annotations :type annotation_extractors: dict """ def na_handling_helper(na_handling, expression): if na_handling == "NA_TRUE": return True elif na_handling == "NA_FALSE": return False elif na_handling == "NA_ERROR": raise ValueError("Couldn't evaluate {} due to missing value".format(expression)) def regex_compare(regex_exist, value, expression=""): if value is None: value = "" if "!exist" in expression: return re.search(regex_exist, value) is None else: return re.search(regex_exist, value) is not None def compare_data(comparison, value1, value2, index1=None, index2=None, na_handling="NA_FALSE", expression=""): if isinstance(value1, float): if value2 is None: return na_handling_helper(na_handling, expression) if index2 is not None: value2 = value2[index2] return comparison(value1, float(value2)) elif isinstance(value2, float): if value1 is None: return na_handling_helper(na_handling, expression) if index1 is not None: value1 = value1[index1] return comparison(float(value1), value2) else: if index2 is not None: value2 = value2[index2] if index1 is not None: value1 = value1[index1] if value1 == '-' and value2 is None: value2 = '-' if value2 == '-' and value1 is None: value1 = '-' if value1 is None or value2 is None: return na_handling_helper(na_handling, expression) return comparison(value1, value2) def convert_to_expression(expression): """ Valid format of expression is: - DATA_SOURCE:NA_HANDLING(OPTIONAL):FIELD:COLUMN(OPTIONAL) [<|>|=|!=] VALUE - VALUE [<|>|=|!=] DATA_SOURCE:NA_HANDLING(OPTIONAL):FIELD:COLUMN(OPTIONAL) - exist[regex, DATA_SOURCE:NA_HANDLING(OPTIONAL):FIELD:COLUMN] - !exist[regex, DATA_SOURCE:NA_HANDLING(OPTIONAL):FIELD:COLUMN] DATA_SOURCE: - VEP - FORMAT - INFO - QUAL NA_HANDLING: - NA_TRUE: when None is found the expression will return True and filter variant - NA_FALSE: when None is found the expression will return False and not filter variant - NA_ERROR: when None is found the an error will be raised if value not found Default will be NA_FALSE, i.e a filter will not remove variant FIELD, any field in info, format or vep string COLUMN, used to extract value from tuple :params expression :type expression: string """ comparison = { ">": lambda value1, value2: value1 > value2, "<": lambda value1, value2: value1 < value2, "=": lambda value1, value2: value1 == value2, "!=": lambda value1, value2: value1 != value2 } # Extract information about how None values should be handled during filtering regex_na_handling = r"(VEP|FORMAT|INFO|QUAL):(NA_TRUE|NA_FALSE|NA_ERROR):" na_handling = re.search(regex_na_handling, expression) if na_handling: na_handling = na_handling.groups()[1] # Remove NA handling information from expression expression = re.sub(r"(NA_TRUE|NA_FALSE|NA_ERROR):", '', expression) else: na_handling = "NA_FALSE" regex_string = "[ ]*(VEP|FORMAT|INFO):([A-Za-z0-9_.]+):*([0-9]*)" if "exist[" in expression: # Handle exist expression # Example "exist[XM_[0-9]+, VEP:Feature]" exist_statment, regex_exist, field = re.search(r"([!]{0,1}exist)\[(.+),[ ]*(.+)\]", expression).groups() source, field, index = re.search(regex_string, field).groups() if len(index) > 0: def get_value(variant): return annotation_extractors[source](variant, field)[int(index)] else: def get_value(variant): value = annotation_extractors[source](variant, field) if isinstance(value, tuple): value = ",".join(value) return value return lambda variant: regex_compare(regex_exist, get_value(variant), expression) elif "QUAL" in expression.strip(): data = re.split("[ ]([<>=!]+)[ ]", expression) if "QUAL" in data[0]: value = float(data[2]) return lambda variant: compare_data( comparison[data[1]], annotation_extractors["QUAL"](variant), value, na_handling=na_handling, expression=expression ) elif "QUAL" in data[2]: value = float(data[0]) return lambda variant: compare_data( comparison[data[1]], value, annotation_extractors["QUAL"](variant), na_handling=na_handling, expression=expression ) else: # Handle comparison expression # Example "FORMAT:NA_TRUE:SB_mutect2:1 > 400" data = re.split("[ ]([<>=!]+)[ ]", expression) if len(data) != 3: raise Exception("Invalid expression: " + expression) if "VEP:" in data[0] or "FORMAT:" in data[0] or "INFO:" in data[0]: source, field, index = re.search(regex_string, data[0]).groups() if len(index) == 0: index = None else: index = int(index) try: data[2] = data[2].rstrip(" ").lstrip(" ") value2 = float(data[2]) return lambda variant: compare_data( comparison[data[1]], annotation_extractors[source](variant, field), value2, index1=index, na_handling=na_handling, expression=expression ) except ValueError: return lambda variant: compare_data( comparison[data[1]], annotation_extractors[source](variant, field), data[2], index1=index, na_handling=na_handling, expression=expression ) elif "VEP:" in data[2] or "FORMAT:" in data[2] or "INFO:" in data[2]: source, field, index = re.search(regex_string, data[2]).groups() if len(index) == 0: index = None else: index = int(index) try: data[0] = data[0].rstrip(" ").lstrip(" ") value1 = float(data[0]) return lambda variant: compare_data( comparison[data[1]], value1, annotation_extractors[source](variant, field), index2=index, na_handling=na_handling, expression=expression ) except ValueError: return lambda variant: compare_data( comparison[data[1]], data[0], annotation_extractors[source](variant, field), index2=index, na_handling=na_handling, expression=expression ) else: raise Exception("Could not find comparison field in: " + expression) return convert_to_expression def check_yaml_file(variants, filters): for filter in filters["filters"]: if "expression" not in filters["filters"][filter]: raise Exception("No expression entry for %s" % filter) filter_text = "" if ( "soft_filter" not in filters["filters"][filter] or ("soft_filter" in filters["filters"][filter] and filters["filters"][filter]["soft_filter"] != "False") ): if "soft_filter_flag" not in filters["filters"][filter]: raise Exception("No soft_filter_flag entry for %s" % filter) if "description" not in filters["filters"][filter]: filter_text = "Failed %s filter" % filter else: filter_text = filters["filters"][filter]["description"] elif "description" not in filters["filters"][filter]: filter_text = "Failed %s filter (hard filtered)" % filter else: filter_text = "%s %s" % (filters["filters"][filter]["description"], "(hard filtered)") if "soft_filter_flag" in filters["filters"][filter]: variants.header.filters.add(filters["filters"][filter]["soft_filter_flag"], None, None, filter_text) def filter_variants(sample_name_regex, in_vcf, out_vcf, filter_yaml_file): variants = VariantFile(in_vcf) log = logging.getLogger() log.info("Load yaml filter config file") filters = {"filters": []} if filter_yaml_file is not None: log.info("Process yaml for: {}".format(filter_yaml_file)) with open(filter_yaml_file) as file: filters = yaml.load(file, Loader=yaml.FullLoader) log.info("Checking yaml file parameters") check_yaml_file(variants, filters) log.info("Process vcf header: {}".format(in_vcf)) annotation_extractor = {} for record in variants.header.records: if record.type == "INFO": if record['ID'] == "CSQ": log.info(" -- found vep information: {}".format(in_vcf)) log.debug(" -- -- {}".format(record['Description'].split("Format: ")[1].split("|"))) vep_fields = {v: c for c, v in enumerate(record['Description'].split("Format: ")[1].split("|"))} annotation_extractor["VEP"] = utils.get_annotation_data_vep(vep_fields) vcf_out = VariantFile(out_vcf, 'w', header=variants.header) log.info("Mapping samples") sample_format_index_mapper = {sample: index for index, sample in enumerate(variants.header.samples)} sample_index = 0 sample_name_match = False number_of_matches = 0 for name, index in sample_format_index_mapper.items(): if re.search(sample_name_regex, name): sample_index = index sample_name_match = True number_of_matches = number_of_matches + 1 if number_of_matches > 1: raise Exception("More then one sample match regex") if not sample_name_match and len(sample_format_index_mapper) > 1: raise Exception("More then one sample and no regex") if sample_name_match: log.info(f"Using index: {sample_index}, found using regex {sample_name_regex}") else: log.info(f"Using default index: {sample_index}, nothing found using regex {sample_name_regex}") log.info("Process variants") annotation_extractor['FORMAT'] = utils.get_annotation_data_format(sample_index) annotation_extractor['INFO'] = utils.get_annotation_data_info annotation_extractor['QUAL'] = lambda variant: None if variant.qual == '.' else variant.qual expression_converter = create_convert_expression_function(annotation_extractor) vcf_filters = [] soft_filters = [] for filter, value in filters["filters"].items(): vcf_filters.append(create_variant_filter(value['expression'], expression_converter)) if "soft_filter" in filters["filters"][filter]: soft_filters.append([filter, filters["filters"][filter]["soft_filter"] != "False"]) else: soft_filters.append([filter, True]) for variant in variants: hard_filter = False i = 0 for vcf_filter in vcf_filters: try: if vcf_filter(variant): if soft_filters[i][1]: variant.filter.add(filters["filters"][soft_filters[i][0]]["soft_filter_flag"]) else: hard_filter = True i += 1 except TypeError as e: log.error("Could not filter variant: '{}' with filter '{}'\n".format(str(variant), str(vcf_filter))) raise e if not hard_filter: vcf_out.write(variant) vcf_out.close() if __name__ == "__main__": sample_name_regex = snakemake.params.sample_name_regex in_vcf = snakemake.input.vcf out_vcf = snakemake.output.vcf filter_yaml_file = snakemake.params.filter_config filter_variants(sample_name_regex, in_vcf, out_vcf, filter_yaml_file) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | __author__ = "Johannes Köster" __copyright__ = "Copyright 2016, Johannes Köster" __email__ = "koester@jimmy.harvard.edu" __license__ = "MIT" from snakemake.shell import shell from snakemake_wrapper_utils.bcftools import get_bcftools_opts bcftools_opts = get_bcftools_opts(snakemake, parse_ref=False, parse_memory=False) extra = snakemake.params.get("extra", "") log = snakemake.log_fmt_shell(stdout=True, stderr=True) shell("bcftools view {bcftools_opts} {extra} {snakemake.input[0]} {log}") |
Support
- Future updates
Related Workflows





