A reproducible and scalable snakemake workflow for the analysis of DNA metabarcoding experiments, with a special focus on food and feed samples.
FooDMe is a reproducible and scalable snakemake workflow for the analysis of DNA metabarcoding experiments, with a special focus on food and feed samples.
Usage
The documentation for this workflow is hosted on our homepage . If you use this workflow for research, you can cite this repo using the DOI above.
This workflow support snakemake´s standardized usage and is referenced in the snakemake workflows catalog .
Code Snippets
20 21 | script: "../scripts/filter_taxonomy.py" |
36 37 38 39 40 41 42 43 44 | shell: """ exec 2> {log} export BLASTDB={params.taxdb} blastdbcmd -db {params.blast_DB} -tax_info -outfmt %T \ > {output.taxlist} """ |
63 64 | script: "../scripts/make_blast_mask.py" |
79 80 | script: "../scripts/apply_blocklist.py" |
92 93 94 95 | shell: """ touch {output.mask} 2> {log} """ |
107 108 109 110 | shell: """ touch {output.block} > {log} """ |
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 | shell: """ export BLASTDB={params.taxdb} if [ {input.mask} = "common/blast_mask.txt" ] then masking="-taxidlist common/blast_mask.txt" else masking="" fi blastn -db {params.blast_DB} \ -query {input.query} \ -out {output.report} \ -task 'megablast' \ -evalue {params.e_value} \ -perc_identity {params.perc_identity} \ -qcov_hsp_perc {params.qcov} $masking \ -outfmt '6 qseqid sseqid evalue pident bitscore sacc staxid length mismatch gaps stitle' \ -num_threads {threads} \ 2> {log} sed -i '1 i\query\tsubject\tevalue\tidentity\tbitscore\tsubject_acc\tsubject_taxid\talignment_length\tmismatch\tgaps\tsubject_name' {output.report} """ |
176 177 178 179 180 181 182 183 184 | shell: """ exec 2> {log} if [ -s {input.report} ]; then grep -v -f {params.acc_list} {input.report} > {output.report} else touch {output.report} fi """ |
200 201 | script: "../scripts/filter_blast.py" |
218 219 | script: "../scripts/min_consensus_filter.py" |
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 | shell: """ exec 2> {log} if [ -s {input.blast} ] then # Get list of all OTUs OTUs=$(grep "^>" {input.otus} | cut -d";" -f1 | tr -d '>' | sort -u) for otu in $OTUs do size=$(grep -E "^>${{otu}}\>" {input.otus} | cut -d"=" -f2) bhits=$(grep -c -E "^${{otu}};" {input.blast} || true) if [ $bhits -eq 0 ] then # When there is no blast hit echo "{wildcards.sample}\t$otu\t$size\t0\t0\t0\t0\t0\t-\t-\t-\t- (1.0)\t../{input.blast}\t../{input.filtered}" >> {output} else # Otherwise collect and print stats to file bit_best=$(grep -E "^${{otu}};" {input.blast} | cut -f5 | cut -d. -f1 | sort -rn | head -n1) bit_low=$(grep -E "^${{otu}};" {input.blast} | cut -f5 | cut -d. -f1 | sort -n | head -n1) bit_thr=$(($bit_best - {params.bit_diff})) shits=$(grep -c -E "^${{otu}}\>" {input.filtered}) cons=$(grep -E "^${{otu}}\>" {input.lca} | cut -d'\t' -f2-5) echo "{wildcards.sample}\t$otu\t$size\t$bhits\t$bit_best\t$bit_low\t$bit_thr\t$shits\t$cons\t../{input.blast}\t../{input.filtered}" >> {output} fi done # Sort by size and add header (just to get hits on top) sort -k3,3nr -o {output} {output} sed -i '1 i\Sample\tQuery\tCount\tBlast hits\tBest bit-score\tLowest bit-score\tBit-score threshold\tSaved Blast hits\tConsensus\tRank\tTaxid\tDisambiguation\tlink_report\tlink_filtered' {output} else echo "{wildcards.sample}\t-\t-\t0\t0\t0\t0\t0\t-\t-\t-\t-\t../{input.blast}\t../{input.filtered}" > {output} sed -i '1 i\Sample\tQuery\tCount\tBlast hits\tBest bit-score\tLowest bit-score\tBit-score threshold\tSaved Blast hits\tConsensus\tRank\tTaxid\tDisambiguation\tlink_report\tlink_filtered' {output} fi """ |
297 298 299 300 301 302 303 | shell: """ head -n 1 {input.report[0]} > {output.agg} for i in {input.report}; do cat ${{i}} | tail -n +2 >> {output.agg} done """ |
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 | shell: """ exec 2> {log} echo "Sample\tQuery\tUnknown sequences\tUnknown sequences [%]\t(Sub-)Species consensus\t(Sub-)Species consensus [%]\tGenus consensus\tGenus consensus [%]\tFamily consensus\tFamily consensus [%]\tHigher rank consensus\tHigher rank consensus [%]" > {output} all=$(grep -c -E "OTU_|ASV_" <(tail -n +2 {input}) || true) nohits=$(grep -c "[[:blank:]]-[[:blank:]]" {input} || true) spec=$(grep -c "species" {input} || true) gen=$(grep -c "genus" {input} || true) fam=$(grep -c "family" {input} || true) other=$(( $all - $nohits - $spec - $gen - $fam )) if [ $all -ne 0 ] then nohits_perc=$(printf %.2f "$((10**3 * (100* $nohits / $all)))e-3") spec_perc=$(printf %.2f "$((10**3 * (100* $spec / $all)))e-3") gen_perc=$(printf %.2f "$((10**3 * (100* $gen / $all)))e-3") fam_perc=$(printf %.2f "$((10**3 * (100* $fam / $all)))e-3") other_perc=$(printf %.2f "$((10**3 * (100* $other / $all)))e-3") echo "{wildcards.sample}\t$all\t$nohits\t$nohits_perc\t$spec\t$spec_perc\t$gen\t$gen_perc\t$fam\t$fam_perc\t$other\t$other_perc" >> {output} else echo "{wildcards.sample}\t0\t0\t0\t0\t0\t0\t0\t0\t0\t0\t0" >> {output} fi """ |
364 365 366 367 368 369 370 371 | shell: """ exec 2> {log} cat {input.report[0]} | head -n 1 > {output.agg} for i in {input.report}; do cat ${{i}} | tail -n +2 >> {output.agg} done """ |
392 393 | script: "../scripts/summarize_results.py" |
412 413 414 415 416 417 418 419 420 | shell: """ exec 2> {log} cat {input.report[0]} | head -n 1 > {output.agg} for i in {input.report}; do cat ${{i}} | tail -n +2 >> {output.agg} done """ |
20 21 | script: "../scripts/krona_table.py" |
40 41 | shell: "ktImportText -o {output.graph} {input.table} 2> {log}" |
62 63 64 65 66 67 68 69 70 71 72 73 | shell: """ exec 2> {log} i=0 for file in {input.report} do file_list[$i]="${{file}},$(echo ${{file}} | cut -d'/' -f1)" ((i+=1)) done ktImportText -o {output.agg} ${{file_list[@]}} """ |
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 | shell: """ exec 2> {log} if [[ {params.method} == "otu" ]] then echo "Sample\tQ30 rate\tInsert size peak\tRead number\tPseudo-reads\tReads in OTU\tOTU number\tAssigned reads\t(Sub-)Species consensus\tGenus consensus\tHigher rank consensus\tNo match" > {output.report} Q30=$(tail -n +2 {input.fastp} | cut -d'\t' -f9) size=$(tail -n +2 {input.fastp} | cut -d'\t' -f11) reads=$(tail -n +2 {input.merging} | cut -d'\t' -f2) pseudo=$(tail -n +2 {input.merging} | cut -d'\t' -f5) clustered=$(tail -n +2 {input.clustering} | cut -d'\t' -f10) otu=$(tail -n +2 {input.tax} | cut -d'\t' -f2) assigned=$(tail -n +2 {input.compo} | awk '$2 != "No match"' | cut -d'\t' -f5 | awk '{{s+=$1}}END{{print s}}') spec=$(tail -n +2 {input.tax} | cut -d'\t' -f5) gen=$(tail -n +2 {input.tax} | cut -d'\t' -f7) high=$(($(tail -n +2 {input.tax} | cut -d'\t' -f9) + $(tail -n +2 {input.tax} | cut -d'\t' -f11))) none=$(tail -n +2 {input.tax} | cut -d'\t' -f3) echo "{wildcards.sample}\t$Q30\t$size\t$reads\t$pseudo\t$clustered\t$otu\t$assigned\t$spec\t$gen\t$high\t$none" >> {output.report} else echo "Sample\tQ30 rate\tInsert size peak\tRead number\tPseudo-reads\tReads in ASV\tASV number\tAssigned reads\t(Sub-)Species consensus\tGenus consensus\tHigher rank consensus\tNo match" > {output.report} Q30=$(tail -n +2 {input.fastp} | cut -d'\t' -f9) size=$(tail -n +2 {input.fastp} | cut -d'\t' -f11) reads=$(tail -n +2 {input.clustering} | cut -d'\t' -f2) pseudo=$(tail -n +2 {input.clustering} | cut -d'\t' -f6) clustered=$(tail -n +2 {input.clustering} | cut -d'\t' -f16) otu=$(tail -n +2 {input.tax} | cut -d'\t' -f2) assigned=$(tail -n +2 {input.compo} | awk '$2 != "No match"' | cut -d'\t' -f5 | awk '{{s+=$1}}END{{print s}}') spec=$(tail -n +2 {input.tax} | cut -d'\t' -f5) gen=$(tail -n +2 {input.tax} | cut -d'\t' -f7) high=$(($(tail -n +2 {input.tax} | cut -d'\t' -f9) + $(tail -n +2 {input.tax} | cut -d'\t' -f11))) none=$(tail -n +2 {input.tax} | cut -d'\t' -f3) echo "{wildcards.sample}\t$Q30\t$size\t$reads\t$pseudo\t$clustered\t$otu\t$assigned\t$spec\t$gen\t$high\t$none" >> {output.report} fi """ |
156 157 158 159 160 161 162 163 | shell: """ exec 2> {log} cat {input.report[0]} | head -n 1 > {output.agg} for i in {input.report}; do cat ${{i}} | tail -n +2 >> {output.agg} done """ |
204 205 | script: "../scripts/write_report.Rmd" |
243 244 | script: "../scripts/write_report.Rmd" |
261 262 | script: "../scripts/conda_collector.py" |
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 | shell: """ exec 2> {log} echo "Database\tLast modified\tFull path" \ > {output.report} paste \ <(echo "BLAST") \ <(date +%F -r {params.blast}.nto) \ <(echo {params.blast}) \ >> {output.report} paste \ <(echo "taxdb.bti") \ <(date +%F -r {params.taxdb}/taxdb.bti) \ <(echo {params.taxdb}/taxdb.bti) \ >> {output.report} paste \ <(echo "taxdb.btd") \ <(date +%F -r {params.taxdb}/taxdb.btd) \ <(echo {params.taxdb}/taxdb.btd) \ >> {output.report} paste \ <(echo "taxdump lineages") \ <(date +%F -r {params.taxdump_lin}) \ <(echo {params.taxdump_lin}) \ >> {output.report} paste \ <(echo "taxdump nodes") \ <(date +%F -r {params.taxdump_nodes}) \ <(echo {params.taxdump_nodes}) \ >> {output.report} """ |
16 17 | script: "../scripts/primer_disambiguation.py" |
31 32 33 34 | shell: """ seqtk seq -r {input.primers} 1> {output.primers_rc} 2> {log} """ |
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 | shell: """ # Simple case only 5p trimming if [[ {params.primer_3p} == False ]] then cutadapt {input.r1} \ {input.r2} \ -o {output.r1} \ -p {output.r2} \ -g file:{params.primers} \ -G file:{params.primers} \ --untrimmed-output {output.trash_R1_5p} \ --untrimmed-paired-output {output.trash_R2_5p} \ --error-rate {params.error_rate} \ 2>&1 > {log} touch {output.trash_R1_3p} touch {output.trash_R2_3p} # in case trimming of 3p is also nescessary else cutadapt --interleaved \ {input.r1} \ {input.r2} \ -g file:{params.primers} \ -G file:{params.primers} \ --untrimmed-output {output.trash_R1_5p} \ --untrimmed-paired-output {output.trash_R2_5p} \ --error-rate {params.error_rate} \ 2>> {log} \ | cutadapt --interleaved \ -o {output.r1} \ -p {output.r2} \ -a file:{input.primers_rc} \ -A file:{input.primers_rc} \ --untrimmed-output {output.trash_R1_3p} \ --untrimmed-paired-output {output.trash_R2_3p} \ --error-rate {params.error_rate} \ - \ 2>&1 >> {log} fi """ |
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 | shell: """ exec 2> {log} before_r1=$(zcat {input.before_r1} | echo $((`wc -l`/4))) after_r1=$(zcat {input.after_r1} | echo $((`wc -l`/4))) before_r2=$(zcat {input.before_r2} | echo $((`wc -l`/4))) after_r2=$(zcat {input.after_r2} | echo $((`wc -l`/4))) before=$(( before_r1 + before_r2 )) after=$(( after_r1 + after_r2 )) if [ $after -ne 0 ] then perc_discarded=$( python -c "print(f'{{round(100*(1-${{after}}/${{before}}),2)}}')" ) else perc_discarded=0.00 fi echo "Sample\tTotal raw reads\tTotal reads after primer trim\tNo primer found [%]" > {output.report} echo "{wildcards.sample}\t$before\t$after\t$perc_discarded" >> {output.report} """ |
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 | shell: """ fastp -i {input.r1} -I {input.r2} \ -o {output.r1} -O {output.r2} \ -h {output.html} -j {output.json}\ --length_required {params.length_required} \ --qualified_quality_phred {params.qualified_quality_phred} \ --cut_by_quality3 \ --cut_window_size {params.window_size} \ --cut_mean_quality {params.mean_qual} \ --disable_adapter_trimming \ --thread {threads} \ --report_title 'Sample {wildcards.sample}' \ > {log} 2>&1 """ |
193 194 | script: "../scripts/parse_fastp.py" |
212 213 214 215 | shell: """ paste {input.cutadapt} {input.fastp} 1> {output.report} 2> {log} """ |
233 234 235 236 237 238 239 240 241 | shell: """ exec 2> {log} cat {input.report[0]} | head -n 1 > {output.agg} for i in {input.report}; do cat ${{i}} | tail -n +2 >> {output.agg} done """ |
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | import sys sys.stderr = open(snakemake.log[0], "w") def main(taxids, blocklist, output): with open(taxids, 'r') as fi: taxs = set([line.strip() for line in fi.readlines()]) with open(blocklist, 'r') as bl: blocks = set([line.split('#')[0].strip() for line in bl.readlines()]) listout = taxs.difference(blocks) with open(output, 'w') as fo: for tax in listout: fo.write(f"{tax}\n") if __name__ == '__main__': main(snakemake.input["taxids"], snakemake.input["blocklist"], snakemake.output['mask']) |
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | import sys sys.stderr = open(snakemake.log[0], "w") import os import yaml import pandas as pd def extract_package_version(envfile): with open(envfile, 'r') as stream: env = yaml.safe_load(stream) for dep in env['dependencies']: p, v = dep.split("=") yield p, v def main(report, basedir): mypath = os.path.join(basedir, "envs") envs = [ os.path.join(mypath, f) for f in os.listdir(mypath) if os.path.isfile(os.path.join(mypath, f)) and f.lower().endswith(('.yaml', '.yml')) ] df = [] for ef in envs: for p, v in extract_package_version(ef): df.append({'Package': p, 'Version': v}) df = pd.DataFrame(df) df.sort_values('Package').to_csv(report, sep="\t", header=True, index=False) if __name__ == '__main__': main( report=snakemake.output['report'], basedir=snakemake.params['dir'] ) |
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | import sys sys.stderr = open(snakemake.log[0], "w") from os import stat import pandas as pd def main(report, filtered, bit_diff): if stat(report).st_size == 0: with open(filtered, "w") as fout: fout.write( "query\tsubject\tevalue\tidentity\tbitscore\tsubject_acc\t" "subject_taxid\talignment_length\tmismatch\tgaps\tsubject_name" ) else: df = pd.read_csv(report, sep="\t", header=0) if df.empty: df.to_csv(filtered, sep="\t", header=True, index=False) else: sd = dict(tuple(df.groupby("query"))) dfout = pd.DataFrame() for key, val in sd.items(): dfout = pd.concat( [dfout, val[val["bitscore"] >= max(val["bitscore"]) - bit_diff]] ) dfout["query"] = dfout["query"].str.split(";").str[0] dfout.to_csv(filtered, sep="\t", header=True, index=False) if __name__ == '__main__': main(snakemake.input['report'], snakemake.output['filtered'], snakemake.params['bit_diff']) |
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | import sys sys.stderr = open(snakemake.log[0], "w") import taxidTools as txd def main(nodes, lineage, taxid, out): tax = txd.Taxonomy.from_taxdump(nodes, lineage) tax.prune(taxid) tax.write(out) if __name__ == '__main__': main(snakemake.params['nodes'], snakemake.params['rankedlineage'], snakemake.params['taxid'], snakemake.output['tax']) |
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | import sys sys.stderr = open(snakemake.log[0], "w") import taxidTools as txd import pandas as pd def get_lineage(taxid, tax): if taxid == "-": return ["Unassigned"] elif taxid == "Undetermined": return ["Undetermined"] else: return [node.name for node in tax.getAncestry(taxid)][::-1] # inverting list to have the lineage descending for Krona def main(input, output, taxonomy): tax = txd.load(taxonomy) df = pd.read_csv(input, sep='\t', header=0) with open(output, "w") as out: for index, row in df.iterrows(): out.write( "\t".join( [str(row["Count"])] + get_lineage(row['Taxid'], tax) ) + "\n") if __name__ == '__main__': main(snakemake.input['compo'], snakemake.output['krt'], snakemake.input['tax']) |
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | import sys sys.stderr = open(snakemake.log[0], "w") import taxidTools as txd def main(taxid_file, parent, output, taxonomy): tax = txd.load(taxonomy) with open(taxid_file, "r") as fin: db_entries = set(fin.read().splitlines()[1:]) with open(output, "w") as fout: for taxid in db_entries: try: if tax.isDescendantOf(str(taxid).strip(), str(parent).strip()): fout.write(taxid + "\n") else: pass except KeyError: pass # Ignoring missing taxids as they are either not in the # taxdumps or actively filtered by the user. if __name__ == '__main__': main(snakemake.input['taxlist'], snakemake.params["taxid"], snakemake.output['mask'], snakemake.input['tax']) |
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 | import sys sys.stderr = open(snakemake.log[0], "w") import taxidTools as txd from collections import Counter, defaultdict def parse_blast(blast_file): """ Parse a BLAST report and returns a dictionnary where Keys are query sequence names and values list of taxids for each hit. BLAST report must have the following formatting: '6 qseqid sseqid evalue pident bitscore sacc staxids sscinames scomnames stitle' """ dictout = defaultdict() with open(blast_file, 'r') as fi: next(fi) # Skip header for line in fi: ls = line.split() taxids = ls[6].split(";") # split taxids if nescessary # extend taxids list for this OTU if ls[0] in dictout.keys(): dictout[ls[0]].extend(taxids) # or inititate the list else: dictout[ls[0]] = taxids # Make sure everything is str formated dictout = {k: [str(e) for e in v] for k, v in dictout.items()} return dictout def main(blast_report, output, min_consensus, taxonomy): if min_consensus <= 0.5 or min_consensus > 1: raise ValueError("'min_consensus' must be in the interval (0.5 , 1]") tax = txd.load(taxonomy) otu_dict = parse_blast(blast_report) with open(output, 'w') as out: out.write("queryID\tConsensus\tRank\tTaxid\tDisambiguation\n") for queryID, taxid_list in otu_dict.items(): try: consensus = tax.consensus(taxid_list, min_consensus) except KeyError: # Taxid not present in the Taxdump version # used raises a KeyError # Filter out missing sequences (verbose) taxid_list_new = [] for taxid in taxid_list: if taxid not in tax.keys(): pass # This is most likely the result of active filtering by the user # No need ot be over verbose with this # print(f"WARNING: taxid {taxid} missing from Taxonomy " # f"reference, it will be ignored") else: taxid_list_new.append(taxid) # Update list taxid_list = taxid_list_new # Empty list case: if not taxid_list: consensus = "Undetermined" else: # Get the consensus with the filtered taxids consensus = tax.consensus(taxid_list, min_consensus) finally: if consensus != "Undetermined": rank = consensus.rank name = consensus.name taxid = consensus.taxid else: taxid = "Undetermined" rank = "Undetermined" name = "Undetermined" # (freq, name) tuple to sort freqs = [((v/len(taxid_list)), tax.getName(k)) for k, v in Counter(taxid_list).items()] sorted_freqs = sorted(freqs, reverse=True) names = "; ".join([f"{f} ({round(n,2)})" for (n, f) in sorted_freqs]) out.write(f"{queryID}\t{name}\t{rank}\t{taxid}\t{names}\n") if __name__ == '__main__': main(snakemake.input['blast'], snakemake.output['consensus'], snakemake.params["min_consensus"], snakemake.input['tax']) |
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | import sys sys.stderr = open(snakemake.log[0], "w") import os import json import csv def main(injson, inhtml, outtsv): with open(injson, "r") as handle: data = json.load(handle) link_path = os.path.join("..", inhtml) header = ( "Total bases before quality trim\tTotal reads after quality trim" "\tTotal bases after quality trim\tQ20 rate after\tQ30 rate after" "\tDuplication rate\tInsert size peak\tlink_to_report" ) datalist = [ data["summary"]["before_filtering"]["total_bases"], data["summary"]["after_filtering"]["total_reads"], data["summary"]["after_filtering"]["total_bases"], data["summary"]["after_filtering"]["q20_rate"], data["summary"]["after_filtering"]["q30_rate"], data["duplication"]["rate"], data["insert_size"]["peak"], link_path, ] with open(outtsv, "w") as outfile: outfile.write(f"{header}\n") writer = csv.writer(outfile, delimiter="\t") writer.writerow(datalist) if __name__ == '__main__': main(snakemake.input['json'], snakemake.input['html'], snakemake.output['tsv']) |
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 | import sys sys.stderr = open(snakemake.log[0], "w") from Bio import SeqIO from itertools import product def extend_ambiguous_dna(seq): """return list of all possible sequences given an ambiguous DNA input""" d = { 'A': 'A', 'C': 'C', 'G': 'G', 'T': 'T', 'M': ['A', 'C'], 'R': ['A', 'G'], 'W': ['A', 'T'], 'S': ['C', 'G'], 'Y': ['C', 'T'], 'K': ['G', 'T'], 'V': ['A', 'C', 'G'], 'H': ['A', 'C', 'T'], 'D': ['A', 'G', 'T'], 'B': ['C', 'G', 'T'], 'N': ['G', 'A', 'T', 'C'] } return list(map("".join, product(*map(d.get, seq)))) def primers_to_fasta(name, seq_list): """return fasta string of primers with tracing newline""" fas = "" for i in range(len(seq_list)): fas += f">{name}[{i}]\n{seq_list[i]}\n" return fas def main(fastain, fastaout): with open(fastain, "r") as fin, open(fastaout, "w") as fout: for record in SeqIO.parse(fin, "fasta"): explicit = extend_ambiguous_dna(record.seq) fasta = primers_to_fasta(record.id, explicit) fout.write(fasta) if __name__ == '__main__': main(snakemake.params['primers'], snakemake.output['primers']) |
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 | import sys sys.stderr = open(snakemake.log[0], "w") import pandas as pd def concatenate_uniq(entries): s = "; ".join(entries.to_list()) df = pd.DataFrame( [e.rsplit(" (", 1) for e in s.split("; ")], columns=["name", "freq"] ) # parenthesis in names df.loc[:, "freq"] = df["freq"].str.replace(")", "", regex=False).astype(float) # Aggreagte, normalize, and sort tot = df["freq"].sum() df = df.groupby("name").apply(lambda x: x.sum() / tot) df = df.sort_values(by=["freq"], ascending=False) # Format as string uniq = df.to_dict()["freq"] uniq = [f"{name} ({round(freq, 2)})" for name, freq in uniq.items()] return "; ".join(uniq) def main(compo, report, sample): df = pd.read_csv(compo, sep="\t", header=0).fillna(0) # Empty input case if len(df["Query"]) == 1 and df["Query"].head(1).item() == "-": with open(report, "w") as fout: fout.write( "Sample\tConsensus\tRank\tTaxid\tCount\tDisambiguation\tPercent of total\tPercent of assigned" ) else: groups = df.groupby(["Consensus", "Rank", "Taxid"]).agg( {"Count": "sum", "Disambiguation": concatenate_uniq} ) groups = groups.sort_values("Count", ascending=False).reset_index() # Get percs of total groups["perc"] = round(groups["Count"] / groups["Count"].sum() * 100, 2) # Get percs of assigned assigned, notassigned = ( groups[groups["Consensus"] != "-"], groups[groups["Consensus"] == "-"], ) assigned["perc_ass"] = round(assigned["Count"] / assigned["Count"].sum() * 100, 2) notassigned["perc_ass"] = "-" groups = pd.concat([assigned, notassigned]) # Formatting groups.insert(0, "Sample", sample) groups.rename(columns={"perc": "Percent of total", "perc_ass": "Percent of assigned"}, inplace=True) groups["Consensus"].replace({"-": "No match"}, inplace=True) groups["Taxid"].replace({0: "-"}, inplace=True) groups.to_csv(report, sep="\t", index=False) if __name__ == '__main__': main(snakemake.input['compo'], snakemake.output['report'], snakemake.params['sample_name']) |
21 22 23 24 25 26 27 28 29 30 31 32 33 | # logging log = file(snakemake@log[[1]], open="wt") sink(log) sink(log, type = "message") knitr::opts_chunk$set(out.width = '80%',fig.asp= 0.5,fig.align='center',echo=FALSE, warning=FALSE, message=FALSE) options(markdown.HTML.header = system.file("misc", "datatables.html", package = "knitr")) library(DT, quietly = T) library(tidyverse, quietly = T) library(htmltools, quietly = T) executor <- Sys.info()["user"] |
41 42 43 44 45 46 47 48 49 | htmltools::a( href="https://cvua-rrw.github.io/FooDMe/", htmltools::img( src = knitr::image_uri(snakemake@params[['logo']]), alt = 'FooDMe documentation', style = 'position:absolute; top:0; right:0; padding:10px;', width=200 ) ) |
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 | workdir <- snakemake@params[["workdir"]] overview <- snakemake@input[["summary"]] fastp <- snakemake@input[["fastp"]] qc_filtering <- snakemake@input[["qc_filtering"]] clustering <- snakemake@input[["clustering"]] blast_rep <- snakemake@input[["blast_rep"]] taxonomy <- snakemake@input[["taxonomy"]] result <- snakemake@input[["result"]] db <- snakemake@input[["db"]] soft <- snakemake@input[["soft"]] OTU_bool <- snakemake@params[["method"]] == "otu" # store True if using OTU # infer run name from workdir run <- basename(workdir) #head(tail(strsplit(workdir,"/")[[1]],2),1) reportAll <- snakemake@params[["sample"]] == "all" # Number of samples nsamples <- nrow(read.csv(file = overview, sep = "\t", check.names=FALSE)) |
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 | data_table <- read.csv(file = overview, sep = "\t", check.names=FALSE) datatable(data_table, filter = 'top', rownames = FALSE, escape = FALSE, extensions = list("ColReorder" = NULL, "Buttons" = NULL), options = list( dom = 'BRrltpi', autoWidth=FALSE, scrollX = TRUE, lengthMenu = list(c(10, 50, -1), c('10', '50', 'All')), ColReorder = TRUE, buttons = list( 'copy', 'print', list( extend = 'collection', buttons = c('csv', 'excel', 'pdf'), text = 'Download' ), I('colvis') ) )) |
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 | data_table <- read.csv(file = fastp, sep = "\t", check.names=FALSE) # Create hyperlinks data_table$links <- paste0("<a href=", data_table$link_to_report, ">file</a>") data_table$link_to_report = NULL datatable(data_table, filter = 'top', rownames = FALSE, escape = FALSE, extensions = list("ColReorder" = NULL, "Buttons" = NULL), options = list( dom = 'BRrltpi', autoWidth=FALSE, scrollX = TRUE, lengthMenu = list(c(10, 50, -1), c('10', '50', 'All')), ColReorder = TRUE, buttons = list( 'copy', 'print', list( extend = 'collection', buttons = c('csv', 'excel', 'pdf'), text = 'Download' ), I('colvis') ) )) |
156 | cat("## Read filtering statistics\n") |
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 | data_table <- read.csv(file = qc_filtering, sep = "\t", check.names=FALSE) datatable(data_table, filter = 'top', rownames = FALSE, escape = FALSE, extensions = list("ColReorder" = NULL, "Buttons" = NULL), options = list( dom = 'BRrltpi', autoWidth=FALSE, scrollX = TRUE, lengthMenu = list(c(10, 50, -1), c('10', '50', 'All')), ColReorder = TRUE, buttons = list( 'copy', 'print', list( extend = 'collection', buttons = c('csv', 'excel', 'pdf'), text = 'Download' ), I('colvis') ) )) |
183 | cat("## Clustering statistics\n") |
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 | data_table <- read.csv(file = clustering, sep = "\t", check.names=FALSE) datatable(data_table, filter = 'top', rownames = FALSE, escape = FALSE, extensions = list("ColReorder" = NULL, "Buttons" = NULL), options = list( dom = 'BRrltpi', autoWidth=FALSE, scrollX = TRUE, lengthMenu = list(c(10, 50, -1), c('10', '50', 'All')), ColReorder = TRUE, buttons = list( 'copy', 'print', list( extend = 'collection', buttons = c('csv', 'excel', 'pdf'), text = 'Download' ), I('colvis') ) )) |
210 | cat("## Denoising statistics\n") |
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 | data_table <- read.csv(file = clustering, sep = "\t", check.names=FALSE) datatable(data_table, filter = 'top', rownames = FALSE, escape = FALSE, extensions = list("ColReorder" = NULL, "Buttons" = NULL), options = list( dom = 'BRrltpi', autoWidth=FALSE, scrollX = TRUE, lengthMenu = list(c(10, 50, -1), c('10', '50', 'All')), ColReorder = TRUE, buttons = list( 'copy', 'print', list( extend = 'collection', buttons = c('csv', 'excel', 'pdf'), text = 'Download' ), I('colvis') ) )) |
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 | data_table <- read.csv(file = blast_rep, sep = "\t", check.names=FALSE) #Process links data_table$blast_report <- paste0("<a href=", data_table$link_report, ">file</a>") data_table$link_report = NULL data_table$filtered_report <- paste0("<a href=", data_table$link_filtered, ">file</a>") data_table$link_filtered = NULL datatable(data_table, filter = 'top', rownames = FALSE, escape = FALSE, extensions = list("ColReorder" = NULL, "Buttons" = NULL), options = list( dom = 'BRrltpi', autoWidth=FALSE, scrollX = TRUE, lengthMenu = list(c(10, 50, -1), c('10', '50', 'All')), ColReorder = TRUE, buttons = list( 'copy', 'print', list( extend = 'collection', buttons = c('csv', 'excel', 'pdf'), text = 'Download' ), I('colvis') ), deferRender = TRUE, scroller = TRUE )) |
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 | data_table <- read.csv(file = taxonomy, sep = "\t", check.names=FALSE) datatable(data_table, filter = 'top', rownames = FALSE, escape = FALSE, extensions = list("ColReorder" = NULL, "Buttons" = NULL), options = list( dom = 'BRrltpi', autoWidth=FALSE, scrollX = TRUE, lengthMenu = list(c(10, 50, -1), c('10', '50', 'All')), ColReorder = TRUE, buttons = list( 'copy', 'print', list( extend = 'collection', buttons = c('csv', 'excel', 'pdf'), text = 'Download' ), I('colvis') ) )) |
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 | data_table <- read.csv(file = result, sep = "\t", check.names=FALSE) datatable(data_table, filter = 'top', rownames = FALSE, escape = FALSE, extensions = list("ColReorder" = NULL, "Buttons" = NULL), options = list( dom = 'BRrltpi', autoWidth=FALSE, scrollX = TRUE, lengthMenu = list(c(10, 50, -1), c('10', '50', 'All')), ColReorder = TRUE, buttons = list( 'copy', 'print', list( extend = 'collection', buttons = c('csv', 'excel', 'pdf'), text = 'Download' ), I('colvis') ), deferRender = TRUE, scroller = TRUE )) |
327 328 329 330 331 332 333 | if (snakemake@params[["sample"]] == "all") { krona_source <- "krona_chart.html" } else { krona_source <- paste0(snakemake@params[["sample"]], "_krona_chart.html") } htmltools::tags$iframe(title = "Krona chart", src = krona_source, width ="100%", height="800px") |
343 344 | db_table <- read.csv(file = db, sep = "\t", check.names=FALSE) knitr::kable(db_table) |
350 351 | soft_table <- read.csv(file = soft, sep = "\t", check.names=FALSE) knitr::kable(soft_table) |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Created: 1yr ago
Updated: 1yr ago
Maitainers:
public
URL:
https://cvua-rrw.github.io/FooDMe
Name:
foodme
Version:
1.6.6
Downloaded:
0
Copyright:
Public Domain
License:
BSD 3-Clause "New" or "Revised" License
Keywords:
- Future updates
Related Workflows

ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...

Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...

snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...

ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics

RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...

This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...