Pipeline for the manuscript 'Accurate detection of shared genetic architecture from GWAS summary statistics in the small-sample context'
This repository contains a
snakemake
pipeline for the reproduction of the results in the manuscript named above.
Running the pipeline to obtain the manuscript results
Running real data analyses
The file
workfl
Code Snippets
6 7 8 9 10 11 12 | run: if wildcards.chr == 'chrX': shell("wget -O resources/1000g/{wildcards.chr}.vcf.gz http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.{wildcards.chr}.phase3_shapeit2_mvncall_integrated_v1c.20130502.genotypes.vcf.gz") elif wildcards.chr == 'chrY': shell("wget -O resources/1000g/{wildcards.chr}.vcf.gz http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.chrY.phase3_integrated_v2b.20130502.genotypes.vcf.gz") else: shell("wget -O resources/1000g/{wildcards.chr}.vcf.gz http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.{wildcards.chr}.phase3_shapeit2_mvncall_integrated_v5b.20130502.genotypes.vcf.gz") |
18 19 20 21 22 | shell: """ wget -O resources/1000g/integrated_call_samples_v3.20130502.ALL.panel.txt http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/integrated_call_samples_v3.20130502.ALL.panel wget -O resources/1000g/integrated_call_samples_v3.20200731.ALL.ped.txt http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/integrated_call_samples_v3.20200731.ALL.ped """ |
37 38 | shell: "plink2 --memory {resources.mem_mb} --threads {threads} --vcf {input} --make-bed --out {params.out} --set-all-var-ids @:#:\$r:\$a --max-alleles 2 --new-id-max-allele-len 20 'truncate'" |
48 49 | script: "../scripts/1000g/get_euro_fam_file.R" |
65 66 | shell: "plink2 --memory {resources.mem_mb} --threads {threads} --bfile resources/1000g/{wildcards.chr} --keep resources/1000g/euro.fam --make-bed --silent --out resources/1000g/euro/{wildcards.chr}_euro" |
81 82 | shell: "plink2 --memory {resources.mem_mb} --threads {threads} --bfile resources/1000g/euro/{wildcards.chr}_euro --geno 0.1 --mind 0.1 --maf 0.005 --hwe 1e-50 --rm-dup 'force-first' --make-bed --silent --out resources/1000g/euro/qc/{wildcards.chr}_qc" |
93 | script: "../scripts/1000g/make_subset_ranges.R" |
105 | script: "../scripts/1000g/make_subset_ranges.R" |
124 125 | shell: "plink2 --memory {resources.mem_mb} --threads {threads} --bfile {params.bfile} --extract {input.range_file} --make-bed --out {params.out}" |
143 144 | shell: "plink --memory {resources.mem_mb} --threads {threads} --bfile {params.bfile} --indep-pairwise {wildcards.window} {wildcards.step} {params.r2} --out {params.prune_out}" |
152 153 | shell: "for x in {input}; do cat $x >>{output}; done" |
161 162 | shell: "for x in {input}; do cat $x >>{output}; done" |
180 181 | shell: "plink2 --memory {resources.mem_mb} --threads {threads} --bfile {params.input_stem} --snps-only --make-bed --silent --out {params.output_stem}" |
17 18 | shell: "workflow/scripts/gps_cpp/build/apps/computeGpsCLI -i {input} -a {params.a_colname} -b {params.b_colname} -c {wildcards.effect_blocks_A} -d {wildcards.effect_blocks_B} -p 0 -f naive -n {threads} -o {output.result_file} -j {output.timing_file}" |
34 35 | shell: "workflow/scripts/gps_cpp/build/apps/computeGpsCLI -i {input} -a {params.a_colname} -b {params.b_colname} -c {wildcards.effect_blocks_A} -d {wildcards.effect_blocks_B} -p {wildcards.no_of_pert_iterations} -f {wildcards.algorithm} -n {threads} -o {output.result_file} -j {output.timing_file}" |
46 47 48 49 50 51 52 53 54 55 56 57 58 59 | shell: """ for x in {input.naive}; do head -n 1 $x | sed 's/^ \(.*\)s wall,.*$/\1/' >>{output.naive} done for x in {input.pp}; do head -n 1 $x | sed 's/^ \(.*\)s wall,.*$/\1/' >>{output.pp} done for x in {input.lw}; do head -n 1 $x | sed 's/^ \(.*\)s wall,.*$/\1/' >>{output.lw} done """ |
77 78 | shell: "workflow/scripts/gps_cpp/build/apps/permuteTraitsCLI -i {input} -o {output} -a {params.a_colname} -b {params.b_colname} -c {threads} -n {wildcards.draws} -p {params.no_of_pert_iterations}" |
19 20 21 22 | shell: """ touch {output} """ |
6 7 | shell: "Rscript workflow/scripts/ukbb/fit_gev_to_increasing_n.R -a {wildcards.trait_A} -b {wildcards.trait_B} -p {input} -n 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 -o {output}" |
14 15 16 17 18 19 20 | shell: """ echo -e 'trait_A\ttrait_B\tn\tloc\tloc.sd\tscale\tscale.sd\tshape\tshape.sd' >> {output} for x in {input}; do cat <(tail -n +2 $x) >> {output} done """ |
27 28 | shell: "Rscript workflow/scripts/ukbb/plot_gev_estimates_for_increasing_n.R -f {input} -o {output}" |
41 42 | shell: "Rscript workflow/scripts/ukbb/plot_gev_estimates_for_increasing_no_snps.R -i {params.fit_file_string} -n 10000 50000 100000 200000 300000 400000 -o {output}" |
56 57 | shell: "Rscript workflow/scripts/ukbb/plot_null_dists_to_compare.R -f {input.fit_file} -p {input.perm_file} --exp1_null {output.exp1_null} --gev_null {output.gev_null} --exp1_gev_combined {output.exp1_gev_combined}" |
69 70 | shell: "Rscript workflow/scripts/ukbb/plot_gev_gof_plots.R -f {input.fit_file} -p {input.perm_file} -l {wildcards.trait_A}-{wildcards.trait_B} -o {output}" |
81 82 83 84 85 86 87 88 | shell: """ echo -e "Trait_A\tTrait_B\tGPS" >{output} for x in {input}; do tail -n 1 $x >>{output} done """ |
13 14 | shell: "workflow/scripts/gps_cpp/build/apps/fitAndEvaluateEcdfsCLI -i {input.sum_stats_file} -a {wildcards.trait_A} -b {wildcards.trait_B} -n {threads} -o {output} -f pp" |
26 | script: "../../scripts/gps/annotate_intermediate_gps_output.R" |
34 35 | shell: "workflow/scripts/gps/plot_gps_denom_heatmap.R -i {input} -o {output}" |
45 | script: "../../scripts/gps/compile_top_maximands_for_ukbb_traits.R" |
15 16 | script: "../../scripts/gps/simulate_correlated_p_values.R" |
27 28 | shell: "workflow/scripts/gps_cpp/build/apps/computeGpsCLI -i {input} -a {params.a_colname} -b {params.b_colname} -c {params.a_colname} -d {params.b_colname} -n {threads} -f pp -o {output}" |
43 44 | shell: "workflow/scripts/gps_cpp/build/apps/permuteTraitsCLI -i {input} -o {output} -a {params.a_colname} -b {params.b_colname} -c {threads} -n {wildcards.draws}" |
52 53 | script: "../../scripts/compute_li_gps_pvalue.R" |
66 67 | script: "../../scripts/fit_gev_and_compute_gps_pvalue.R" |
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 | run: gev = [] for x in input.gev: print(x.split('/')) rho, zmean_zsd, rep = x.split('/')[2:5] rho = float(rho.replace('_', '.')) zmean = int(zmean_zsd.split('_')[0]) zsd = int(zmean_zsd.split('_')[1]) rep = int(rep) with open(x, 'r') as infile: line = infile.readline() line = infile.readline() gps = line.split()[0] pvalue = line.split()[8] gev.append( { 'rho' : rho, 'zmean' : zmean, 'zsd' : zsd, 'rep' : rep, 'gps' : gps, 'pvalue' : pvalue, 'stat' : 'GPS-GEV' } ) gev_daf = pd.DataFrame(gev) li = [] for x in input.li: rho, zmean_zsd, rep = x.split('/')[2:5] rho = float(rho.replace('_', '.')) zmean = int(zmean_zsd.split('_')[0]) zsd = int(zmean_zsd.split('_')[1]) rep = int(rep) with open(x, 'r') as infile: line = infile.readline() line = infile.readline() gps = line.split()[0] pvalue = line.split()[1] li.append( { 'rho' : rho, 'zmean' : zmean, 'zsd' : zsd, 'rep' : rep, 'gps' : gps, 'pvalue' : pvalue, 'stat' : 'GPS-Exp' } ) li_daf = pd.DataFrame(li) pd.concat([gev_daf, li_daf]).to_csv(output[0], index = False, sep = '\t') |
155 156 | script: "../../scripts/gps/plot_fig_s10.R" |
16 17 | shell: "workflow/scripts/gps_cpp/build/apps/computeGpsCLI -i {input.sum_stats_file} -a {params.a_colname} -b {params.b_colname} -c {wildcards.effect_blocks_A} -d {wildcards.effect_blocks_B} -n {threads} -f pp -o {output}" |
32 33 | shell: "workflow/scripts/gps_cpp/build/apps/permuteTraitsCLI -i {input.sum_stats_file} -o {output} -a {params.a_colname} -b {params.b_colname} -c {threads} -n {wildcards.draws}" |
42 43 | script: "../../scripts/compute_li_gps_pvalue.R" |
56 57 | script: "../../scripts/fit_gev_and_compute_gps_pvalue.R" |
70 | script: "../../scripts/simgwas/compute_hoeffdings.R" |
18 19 | shell: "workflow/scripts/gps_cpp/build/apps/computeGpsCLI -i {input.sum_stats_file} -a {params.a_colname} -b {params.b_colname} -c {wildcards.effect_blocks_A} -d {wildcards.effect_blocks_B} -n {threads} -f pp -o {output}" |
35 36 | shell: "workflow/scripts/gps_cpp/build/apps/permuteTraitsCLI -i {input.sum_stats_file} -o {output} -a {params.a_colname} -b {params.b_colname} -c {threads} -n {wildcards.draws}" |
44 45 | script: "../../scripts/compute_li_gps_pvalue.R" |
59 60 | script: "../../scripts/fit_gev_and_compute_gps_pvalue.R" |
74 75 76 77 78 79 | shell: """ Rscript workflow/scripts/compute_hoeffdings.R -i {input.sum_stats_file} -a {params.a_colname} -b {params.b_colname} -o {output} -nt 1 sed -i 's/{params.a_colname}/{wildcards.effect_blocks_A}_{wildcards.shared_effect_blocks}/' {output} sed -i 's/{params.b_colname}/{wildcards.effect_blocks_B}_{wildcards.shared_effect_blocks}/' {output} """ |
93 94 | shell: "workflow/scripts/gps_cpp/build/apps/fitAndEvaluateEcdfsCLI -i {input.sum_stats_file} -a {params.a_colname} -b {params.b_colname} -n {threads} -o {output}" |
16 17 | shell: "workflow/scripts/gps_cpp/build/apps/computeGpsCLI -i {input.sum_stats_file} -a {wildcards.trait_A} -b {wildcards.trait_B} -c {wildcards.trait_A} -d {wildcards.trait_B} -n {threads} -f pp -o {output}" |
30 31 | shell: "workflow/scripts/gps_cpp/build/apps/permuteTraitsCLI -i {input.sum_stats_file} -o {output} -a {wildcards.trait_A} -b {wildcards.trait_B} -c {threads} -n {wildcards.draws}" |
44 45 | script: "../../scripts/fit_gev_and_compute_gps_pvalue.R" |
54 55 | script: "../../scripts/compute_li_gps_pvalue.R" |
25 26 27 28 | shell: """ python2 $ldsc/munge_sumstats.py --sumstats {input} --N-con-col ncontrols --N-cas-col ncases --snp id --out {params.output_filename} --signed-sumstats {params.signed_sumstats_col} --p {params.pvalue_col} --a1 a1 --a2 a0 --frq EUR; """ |
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 | run: block_files = get_randomised_block_files_for_pair(wildcards) # Probably too clever by half a_block_files = block_files[-(2*params.no_of_blocks_in_genome):-params.no_of_blocks_in_genome] b_block_files = block_files[-params.no_of_blocks_in_genome:] file_m = re.compile(params.file_regex) a_dicts = [] for x in a_block_files: print(x) m = file_m.match(x) a_dicts.append( { "chr" : m.group("chr"), "block" : m.group("block_no"), "effect" : m.group("effect"), "no_cvs" : cv_per_block_dict[m.group("effect")] } ) block_a_daf = pd.DataFrame(a_dicts) block_a_daf.sort_values(by = ['chr', 'block', 'effect', 'no_cvs'], inplace = True) b_dicts = [] for x in b_block_files: m = file_m.match(x) b_dicts.append( { "chr" : m.group("chr"), "block" : m.group("block_no"), "effect" : m.group("effect"), "no_cvs" : cv_per_block_dict[m.group("effect")] } ) block_b_daf = pd.DataFrame(b_dicts) block_b_daf.sort_values(by = ['chr', 'block', 'effect', 'no_cvs'], inplace = True) block_a_daf.to_csv(output.a_block_file, index = False, sep = '\t') block_b_daf.to_csv(output.b_block_file, index = False, sep = '\t') |
136 | script: "../../scripts/ldsc/calculate_theoretical_rg_randomised_blocks.R" |
22 23 24 25 | shell: """ python2 $ldsc/munge_sumstats.py --sumstats {input} --N-con-col ncontrols --N-cas-col ncases --snp id --out {params.output_filename} --signed-sumstats {params.signed_sumstats_col} --p {params.pvalue_col} --a1 a1 --a2 a0 --frq EUR; """ |
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 | run: block_files = get_randomised_block_files_for_pair(wildcards) # Probably too clever by half a_block_files = block_files[-(2*params.no_of_blocks_in_genome):-params.no_of_blocks_in_genome] b_block_files = block_files[-params.no_of_blocks_in_genome:] file_m = re.compile("results/simgwas/simulated_sum_stats/block_sum_stats/(?P<no_reps>\d+)_reps/(?P<effect>\w+)(/(?P<cv>\d+)_cv)?/(?P<ncases>\d+)_(?P<ncontrols>\d+)/chr(?P<chr>\d+)/block_(?P<block_no>\d+)_seed_(?P<seed>\d+)_sum_stats\.tsv\.gz") a_dicts = [] for x in a_block_files: print(x) m = file_m.match(x) a_dicts.append( { "chr" : m.group("chr"), "block" : m.group("block_no"), "effect" : m.group("effect"), "no_cvs" : cv_per_block_dict[m.group("effect")] } ) block_a_daf = pd.DataFrame(a_dicts) block_a_daf.sort_values(by = ['chr', 'block', 'effect', 'no_cvs'], inplace = True) b_dicts = [] for x in b_block_files: m = file_m.match(x) b_dicts.append( { "chr" : m.group("chr"), "block" : m.group("block_no"), "effect" : m.group("effect"), "no_cvs" : cv_per_block_dict[m.group("effect")] } ) block_b_daf = pd.DataFrame(b_dicts) block_b_daf.sort_values(by = ['chr', 'block', 'effect', 'no_cvs'], inplace = True) block_a_daf.to_csv(output.a_block_file, index = False, sep = '\t') block_b_daf.to_csv(output.b_block_file, index = False, sep = '\t') |
131 | script: "../../scripts/ldsc/calculate_theoretical_rg_randomised_blocks.R" |
11 12 | shell: "wget -O {output} https://storage.googleapis.com/broad-alkesgroup-public/LDSCORE/eur_w_ld_chr.tar.bz2" |
24 25 | shell: "tar -xjf {input} -C {params.output_root}" |
34 | script: "../../scripts/ldsc/write_out_ld_score_snps.R" |
16 | script: "../../scripts/ldsc/preprocess_ukbb_sum_stats_for_ldsc.R" |
38 39 40 41 | shell: """ python $ldsc/munge_sumstats.py --sumstats {input} --N-col {params.n_col} --snp {params.id_col} --out {params.output_filename} --signed-sumstats {params.signed_sumstats_col} --p {params.pvalue_col} --a1 a1 --a2 a2 --frq EUR; """ |
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | run: perm_gps = [] sim_gps = [] with open(input.perm_file, 'r') as perm_file: line = perm_file.readline() for i in range(len(input.gps_files)): line = perm_file.readline() perm_gps.append(float(line.strip())) for x in input.gps_files: with open(x, 'r') as gps_file: line = gps_file.readline() line = gps_file.readline() sim_gps.append(float(line.split('\t')[0])) pd.DataFrame({'sim_gps': sim_gps, 'perm_gps': perm_gps}).to_csv(output[0], sep = '\t', index = False) |
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | run: daf = pd.DataFrame(columns = ['ncases.A', 'ncontrols.A', 'ncases.B', 'ncontrols.B', 'blocks.A', 'blocks.B', 'shared_blocks', 'tag_pair', 'seed', 'gps', 'pval']) for x in r2_values: gps_daf = compile_gps_results_into_daf(get_test_files("results/simgwas/simulation_parameters.tsv", reps = 400, filetype = 'gps', subset = f"a_blocks == \'{wildcards.blocks}\' & shared_blocks == \'{wildcards.shared_blocks}\' & ncases_A == {wildcards.ncases}", r2 = x)) gps_daf.drop(columns = ['n', 'loc', 'loc.sd', 'scale', 'scale.sd', 'shape', 'shape.sd'], inplace = True) gps_daf = gps_daf.assign(r2 = x, dist = 'gev') li_gps_daf = compile_li_gps_results_into_daf(get_test_files("results/simgwas/simulation_parameters.tsv", reps = 400, filetype = 'li_gps', subset = f"a_blocks == \'{wildcards.blocks}\' & shared_blocks == \'{wildcards.shared_blocks}\' & ncases_A == {wildcards.ncases}", r2 = x)) li_gps_daf = li_gps_daf.assign(r2 = x, dist = 'exp') daf = pd.concat([daf, gps_daf, li_gps_daf]) daf.to_csv(output[0], sep = '\t', index = False) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 | from scipy.stats import chi2 import os import pandas as pd import re from numpy import nan def get_all_block_files(sample_sizes, effect): block_files = [] seed_label = f"{effect}_seed" for row in block_daf.itertuples(): for sample_size in sample_sizes: if effect == 'tiny': block_files.append(f"results/simgwas/simulated_sum_stats/block_sum_stats/400_reps/{effect}/2_cv/{sample_size[0]}_{sample_size[1]}/chr{row.chr}/block_{row.block}_seed_{getattr(row, seed_label)}_sum_stats.tsv.gz") else: block_files.append(f"results/simgwas/simulated_sum_stats/block_sum_stats/400_reps/{effect}/1_cv/{sample_size[0]}_{sample_size[1]}/chr{row.chr}/block_{row.block}_seed_{getattr(row, seed_label)}_sum_stats.tsv.gz") return block_files def get_all_simulation_done_files(simulation_pars_file, reps, subset = None): daf = pd.read_csv(simulation_pars_file, sep = '\t') if subset: daf = daf.query('a_blocks == @subset & b_blocks == @subset') return [f"results/simgwas/done/{reps}_reps/randomised/{row.ncases_A}_{row.ncontrols_A}_{row.ncases_B}_{row.ncontrols_B}/{row.a_blocks}_{row.b_blocks}_{row.shared_blocks}/seed_{row.seed}_tags_{row.tag_A}-{row.tag_B}.done" for row in daf.itertuples()] def get_all_randomised_block_files(simulation_pars_file, reps): daf = pd.read_csv(simulation_pars_file, sep = '\t') a_block_files = [f"results/simgwas/simulated_sum_stats/whole_genome_sum_stats/{reps}_reps/randomised/{row.ncases_A}_{row.ncontrols_A}_{row.ncases_B}_{row.ncontrols_B}/{row.a_blocks}_{row.b_blocks}_{row.shared_blocks}/seed_{row.seed}_sum_stats_A_tags_{row.tag_A}-{row.tag_B}_files.txt" for row in daf.itertuples()] b_block_files = [f"results/simgwas/simulated_sum_stats/whole_genome_sum_stats/{reps}_reps/randomised/{row.ncases_A}_{row.ncontrols_A}_{row.ncases_B}_{row.ncontrols_B}/{row.a_blocks}_{row.b_blocks}_{row.shared_blocks}/seed_{row.seed}_sum_stats_B_tags_{row.tag_A}-{row.tag_B}_files.txt" for row in daf.itertuples()] return a_block_files+b_block_files def get_test_files(simulation_pars_file, reps, filetype, subset = None, draws = "3000", window = "1000kb", step = 50, r2 = 0.2): daf = pd.read_csv(simulation_pars_file, sep = '\t') str_r2 = str(r2).replace('.', '_') if subset: daf = daf.query(subset) if filetype == 'ldsc': files = [f"results/ldsc/simgwas/{reps}_reps/randomised/{row.ncases_A}_{row.ncontrols_A}_{row.ncases_B}_{row.ncontrols_B}/{row.a_blocks}_{row.b_blocks}_{row.shared_blocks}/rg/fixed_h2_free_rg_intercept/seed_{row.seed}_tags_{row.tag_A}-{row.tag_B}.log" for row in daf.itertuples()] elif filetype == 'sumher': files = [f"results/ldak/ldak-thin/simgwas/{reps}_reps/randomised/rg/{row.ncases_A}_{row.ncontrols_A}_{row.ncases_B}_{row.ncontrols_B}/{row.a_blocks}_{row.b_blocks}_{row.shared_blocks}/seed_{row.seed}_tags_{row.tag_A}-{row.tag_B}.cors" for row in daf.itertuples()] elif filetype == 'hoeffdings': files = [f"results/hoeffdings/simgwas/{reps}_reps/randomised/{row.ncases_A}_{row.ncontrols_A}_{row.ncases_B}_{row.ncontrols_B}/{row.a_blocks}_{row.b_blocks}_{row.shared_blocks}/window_{window}_step_{step}_r2_{str_r2}/seed_{row.seed}_tags_{row.tag_A}-{row.tag_B}_hoeffdings.tsv" for row in daf.itertuples()] elif filetype == 'gps': files = [f"results/gps/simgwas/{reps}_reps/randomised/{row.ncases_A}_{row.ncontrols_A}_{row.ncases_B}_{row.ncontrols_B}/{row.a_blocks}_{row.b_blocks}_{row.shared_blocks}/window_{window}_step_{step}_r2_{str_r2}/{draws}_permutations/seed_{row.seed}_tags_{row.tag_A}-{row.tag_B}_gps_pvalue.tsv" for row in daf.itertuples()] elif filetype == 'theo': files = [f"results/ldsc/simgwas/{reps}_reps/randomised/{row.ncases_A}_{row.ncontrols_A}_{row.ncases_B}_{row.ncontrols_B}/{row.a_blocks}_{row.b_blocks}_{row.shared_blocks}/theoretical_rg/seed_{row.seed}_{row.tag_A}-{row.tag_B}_theo_rg.tsv" for row in daf.itertuples()] elif filetype == 'li_gps': files = [f"results/gps/simgwas/{reps}_reps/randomised/{row.ncases_A}_{row.ncontrols_A}_{row.ncases_B}_{row.ncontrols_B}/{row.a_blocks}_{row.b_blocks}_{row.shared_blocks}/window_{window}_step_{step}_r2_{str_r2}/seed_{row.seed}_tags_{row.tag_A}-{row.tag_B}_li_gps_pvalue.tsv" for row in daf.itertuples()] elif filetype == 'mean_stat': files = [f"results/gps/simgwas/{reps}_reps/randomised/{row.ncases_A}_{row.ncontrols_A}_{row.ncases_B}_{row.ncontrols_B}/{row.a_blocks}_{row.b_blocks}_{row.shared_blocks}/window_{window}_step_{step}_r2_{str_r2}/seed_{row.seed}_tags_{row.tag_A}-{row.tag_B}/mean_stat/{draws}_permutations/pp_pert_1_pvalue.tsv" for row in daf.itertuples()] elif filetype == 'done': files = [f"results/simgwas/done/{reps}_reps/randomised/{row.ncases_A}_{row.ncontrols_A}_{row.ncases_B}_{row.ncontrols_B}/{row.a_blocks}_{row.b_blocks}_{row.shared_blocks}/seed_{row.seed}_tags_{row.tag_A}-{row.tag_B}.done" for row in daf.itertuples()] else: raise Exception(f"Invalid filetype specified: {filetype}") return files def compile_sumher_results_into_daf(input_files): d = [] for x in input_files: m = re.match(r"results/ldak/ldak-thin/simgwas/(?P<no_reps>\d+)_reps/randomised/rg(/chr\d+)?/(?P<ncases_A>\d+)_(?P<ncontrols_A>\d+)_(?P<ncases_B>\d+)_(?P<ncontrols_B>\d+)/(?P<a_blocks>[\w-]+)_(?P<b_blocks>[\w-]+)_(?P<shared_blocks>[\w-]+)/seed_(?P<seed>\w+)_tags_(?P<tag_a>\d+)-(?P<tag_b>\d+)\.cors", x) try: with open(x, 'r') as infile: line = infile.readline() while re.match("^Her1_All", line) is None: line = infile.readline() h2_A, h2_A_se = re.match("Her1_All (-?\d+\.\d+|-?nan) (\d+\.\d+|nan)", line).groups() line = infile.readline() h2_B, h2_B_se = re.match("Her2_All (-?\d+\.\d+|-?nan) (\d+\.\d+|nan)", line).groups() line = infile.readline() cov, cov_se = re.match("Coher_All (-?\d+\.\d+|-?nan) (\d+\.\d+|nan)", line).groups() line = infile.readline() rg, rg_se = re.match("Cor_All (-?\d+\.\d+|-?nan) (\d+\.\d+|nan)", line).groups() rg_z = float(rg)/float(rg_se) rg_p = chi2.sf(rg_z**2, df = 1, loc = 0, scale = 1) d.append( { 'ncases.A' : m.group('ncases_A'), 'ncontrols.A' : m.group('ncontrols_A'), 'ncases.B' : m.group('ncases_B'), 'ncontrols.B' : m.group('ncontrols_B'), 'blocks.A' : m.group('a_blocks'), 'blocks.B' : m.group('b_blocks'), 'shared_blocks' : m.group('shared_blocks'), 'tag_pair' : f"{m.group('tag_a')}-{m.group('tag_b')}", 'seed' : f"{m.group('seed')}", 'h2.A' : float(h2_A), 'h2.A.se' : float(h2_A_se), 'h2.B' : float(h2_B), 'h2.B.se' : float(h2_B_se), 'gcov' : float(cov), 'gcov.se' : float(cov_se), 'rg' : float(rg), 'rg.se' : float(rg_se), 'rg.z' : float(rg_z), 'rg.p' : float(rg_p) } ) except FileNotFoundError: continue return pd.DataFrame(d) def compile_ldsc_results_into_daf(input_files): d = [] h2_regex = r"Total Liability scale h2: (.+)\s+\((.+)\)" int_regex = r"Intercept: (.+)\s+\((.+)\)" gcov_regex = r"Total Liability scale gencov: (.+)\s+\((.+)\)" gcov_zprod_regex = r"Mean z1\*z2: (.+)" for x in input_files: m = re.match(r"results/ldsc/simgwas/(?P<no_reps>\d+)_reps/randomised/(chr\d+/)?(?P<ncases_A>\d+)_(?P<ncontrols_A>\d+)_(?P<ncases_B>\d+)_(?P<ncontrols_B>\d+)/(?P<a_blocks>[\w-]+)_(?P<b_blocks>[\w-]+)_(?P<shared_blocks>[\w-]+)/rg/fixed_h2_free_rg_intercept/seed_(?P<seed>\w+)_tags_(?P<tag_a>\d+)-(?P<tag_b>\d+)\.log", x) try: with open(x, 'r') as infile: line = infile.readline() # TODO fix these for the null case while re.match(h2_regex, line) is None and re.match('ERROR', line) is None: line = infile.readline() if re.match('ERROR', line): d.append( { 'ncases.A' : m.group('ncases_A'), 'ncontrols.A' : m.group('ncontrols_A'), 'ncases.B' : m.group('ncases_B'), 'ncontrols.B' : m.group('ncontrols_B'), #'odds_ratio.A': odds_ratios_A, #'odds_ratio.B': odds_ratios_B, 'blocks.A' : m.group('a_blocks'), 'blocks.B' : m.group('b_blocks'), 'shared_blocks' : m.group('shared_blocks'), 'tag_pair' : f"{m.group('tag_a')}-{m.group('tag_b')}", 'seed' : f"{m.group('seed')}", 'h2.A' : nan, 'h2.A.se' : nan, 'h2.B' : nan, 'h2.B.se' : nan, 'gcov' : nan, 'gcov.se' : nan, 'rg' : nan, 'rg.se' : nan, 'rg.z' : nan, 'rg.p' : nan } ) else: h2_match_A = re.match(h2_regex, line) h2_A = float(h2_match_A.group(1)) h2_A_se = float(h2_match_A.group(2)) line = infile.readline() line = infile.readline() line = infile.readline() h2_int_A_match = re.match(int_regex, line) if h2_int_A_match: h2_int_A = float(h2_int_A_match.group(1)) h2_int_A_se = float(h2_int_A_match.group(2)) elif 'constrained to 1.' in line: h2_int_A = 1.0 h2_int_A_se = nan else: raise Exception("No match for h2_B int_regex") while re.match(h2_regex, line) is None: line = infile.readline() h2_match_B = re.match(h2_regex, line) h2_B = float(h2_match_B.group(1)) h2_B_se = float(h2_match_B.group(2)) line = infile.readline() line = infile.readline() line = infile.readline() h2_int_B_match = re.match(int_regex, line) if h2_int_B_match: h2_int_B = float(h2_int_B_match.group(1)) h2_int_B_se = float(h2_int_B_match.group(2)) elif 'constrained to 1.' in line: h2_int_B = 1.0 h2_int_B_se = nan else: raise Exception("No match for h2_A int_regex") while re.match(gcov_regex, line) is None: line = infile.readline() gcov_match = re.match(gcov_regex, line) gcov = float(gcov_match.group(1)) gcov_se = float(gcov_match.group(2)) line = infile.readline() gcov_zprod_match = re.match(gcov_zprod_regex, line) gcov_zprod = float(gcov_zprod_match.group(1)) line = infile.readline() gcov_int_match = re.match(int_regex, line) if gcov_int_match: gcov_int = float(gcov_int_match.group(1)) gcov_int_se = float(gcov_int_match.group(2)) elif 'constrained to 0.' in line: gcov_int = 0.0 gcov_int_se = nan else: raise Exception("No match for gcov_int_regex") line = infile.readline() while re.match("^p1\s", line) is None: line = infile.readline() line = infile.readline() rg, rg_se, rg_z, rg_p = [float(z) if z != 'NA' else nan for z in line.split()[2:6]] d.append( { 'ncases.A' : m.group('ncases_A'), 'ncontrols.A' : m.group('ncontrols_A'), 'ncases.B' : m.group('ncases_B'), 'ncontrols.B' : m.group('ncontrols_B'), #'odds_ratio.A': odds_ratios_A, #'odds_ratio.B': odds_ratios_B, 'blocks.A' : m.group('a_blocks'), 'blocks.B' : m.group('b_blocks'), 'shared_blocks' : m.group('shared_blocks'), 'tag_pair' : f"{m.group('tag_a')}-{m.group('tag_b')}", 'seed' : f"{m.group('seed')}", 'h2.A' : h2_A, 'h2.A.se' : h2_A_se, 'h2.B' : h2_B, 'h2.B.se' : h2_B_se, 'gcov' : gcov, 'gcov.se' : gcov_se, 'rg' : rg, 'rg.se' : rg_se, 'rg.z' : rg_z, 'rg.p' : rg_p } ) except FileNotFoundError: continue except AttributeError: print(x) return pd.DataFrame(d) def compile_hoeffdings_results_into_daf(input_files): d = [] for x in input_files: m = re.match(r"results/hoeffdings/simgwas/(?P<no_reps>\d+)_reps/randomised(/chr\d+)?/(?P<ncases_A>\d+)_(?P<ncontrols_A>\d+)_(?P<ncases_B>\d+)_(?P<ncontrols_B>\d+)/(?P<a_blocks>[\w-]+)_(?P<b_blocks>[\w-]+)_(?P<shared_blocks>[\w-]+)/window_(?P<window>\d+kb)_step_(?P<step>\d+)_r2_(?P<r2>\d+_\d+)/seed_(?P<seed>\w+)_tags_(?P<tag_a>\d+)-(?P<tag_b>\d+)_hoeffdings\.tsv", x) try: with open(x, 'r') as infile: lines = [x.strip() for x in infile.readlines()] # NB: The 'n' here is no. of SNPs, not no. of permutations as with GPS _, _, n, Dn, scaled, pval = lines[1].split('\t') d.append( { 'ncases.A' : m.group('ncases_A'), 'ncontrols.A' : m.group('ncontrols_A'), 'ncases.B' : m.group('ncases_B'), 'ncontrols.B' : m.group('ncontrols_B'), 'blocks.A' : m.group('a_blocks'), 'blocks.B' : m.group('b_blocks'), 'shared_blocks' : m.group('shared_blocks'), 'tag_pair' : f"{m.group('tag_a')}-{m.group('tag_b')}", 'seed' : f"{m.group('seed')}", 'window': m.group('window'), 'step': m.group('step'), 'r2': float(m.group('r2').replace('_', '.')), 'hoeff.p' : pval } ) except ValueError: _, _, n, Dn, scaled = lines[1].split('\t') pval = nan d.append( { 'ncases.A' : m.group('ncases_A'), 'ncontrols.A' : m.group('ncontrols_A'), 'ncases.B' : m.group('ncases_B'), 'ncontrols.B' : m.group('ncontrols_B'), 'blocks.A' : m.group('a_blocks'), 'blocks.B' : m.group('b_blocks'), 'shared_blocks' : m.group('shared_blocks'), 'tag_pair' : f"{m.group('tag_a')}-{m.group('tag_b')}", 'seed' : f"{m.group('seed')}", 'window': m.group('window'), 'step': m.group('step'), 'r2': float(m.group('r2').replace('_', '.')), 'hoeff.p' : pval } ) continue except FileNotFoundError: continue return pd.DataFrame(d) def compile_gps_results_into_daf(input_files): d = [] for x in input_files: m = re.match(r"results/gps/simgwas/(?P<no_reps>\d+)_reps/randomised/(chr\d+/)?(?P<ncases_A>\d+)_(?P<ncontrols_A>\d+)_(?P<ncases_B>\d+)_(?P<ncontrols_B>\d+)/(?P<a_blocks>[\w-]+)_(?P<b_blocks>[\w-]+)_(?P<shared_blocks>[\w-]+)/window_(?P<window>\d+kb)_step_(?P<step>\d+)_r2_(?P<r2>\d+_\d+)/(?P<draws>\d+)_permutations/seed_(?P<seed>\w+)_tags_(?P<tag_a>\d+)-(?P<tag_b>\d+)_gps_pvalue\.tsv", x) try: with open(x, 'r') as infile: lines = [x.strip() for x in infile.readlines()] gps, n, loc, loc_sd, scale, scale_sd, shape, shape_sd, pval = lines[1].split('\t') d.append( { 'ncases.A' : m.group('ncases_A'), 'ncontrols.A' : m.group('ncontrols_A'), 'ncases.B' : m.group('ncases_B'), 'ncontrols.B' : m.group('ncontrols_B'), 'blocks.A' : m.group('a_blocks'), 'blocks.B' : m.group('b_blocks'), 'shared_blocks' : m.group('shared_blocks'), 'tag_pair' : f"{m.group('tag_a')}-{m.group('tag_b')}", 'seed' : f"{m.group('seed')}", 'window': m.group('window'), 'step': m.group('step'), 'r2': float(m.group('r2').replace('_', '.')), 'gps' : gps, 'n' : n, 'loc' : loc, 'loc.sd' : loc_sd, 'scale' : scale, 'scale.sd' : scale_sd, 'shape' : shape, 'shape.sd' : shape_sd, 'pval' : pval, } ) except FileNotFoundError: continue return pd.DataFrame(d) def compile_li_gps_results_into_daf(input_files): d = [] for x in input_files: m = re.match(r"results/gps/simgwas/(?P<no_reps>\d+)_reps/randomised/(chr\d+/)?(?P<ncases_A>\d+)_(?P<ncontrols_A>\d+)_(?P<ncases_B>\d+)_(?P<ncontrols_B>\d+)/(?P<a_blocks>[\w-]+)_(?P<b_blocks>[\w-]+)_(?P<shared_blocks>[\w-]+)/window_(?P<window>\d+kb)_step_(?P<step>\d+)_r2_(?P<r2>\d+_\d+)/seed_(?P<seed>\w+)_tags_(?P<tag_a>\d+)-(?P<tag_b>\d+)_li_gps_pvalue\.tsv", x) try: with open(x, 'r') as infile: lines = [x.strip() for x in infile.readlines()] gps, pval = lines[1].split('\t') d.append( { 'ncases.A' : m.group('ncases_A'), 'ncontrols.A' : m.group('ncontrols_A'), 'ncases.B' : m.group('ncases_B'), 'ncontrols.B' : m.group('ncontrols_B'), 'blocks.A' : m.group('a_blocks'), 'blocks.B' : m.group('b_blocks'), 'shared_blocks' : m.group('shared_blocks'), 'tag_pair' : f"{m.group('tag_a')}-{m.group('tag_b')}", 'seed' : f"{m.group('seed')}", 'window': m.group('window'), 'step': m.group('step'), 'r2': float(m.group('r2').replace('_', '.')), 'gps' : gps, 'pval' : pval } ) except FileNotFoundError: continue return pd.DataFrame(d) def compile_theo_results_into_daf(input_files): d = [] for x in input_files: m = re.match(r"results/ldsc/simgwas/(?P<no_reps>\d+)_reps/randomised/(chr\d+/)?(?P<ncases_A>\d+)_(?P<ncontrols_A>\d+)_(?P<ncases_B>\d+)_(?P<ncontrols_B>\d+)/(?P<a_blocks>[\w-]+)_(?P<b_blocks>[\w-]+)_(?P<shared_blocks>[\w-]+)/theoretical_rg/seed_(?P<seed>\w+)_(?P<tag_a>\d+)-(?P<tag_b>\d+)_theo_rg\.tsv", x) with open(x, 'r') as infile: lines = [x.strip() for x in infile.readlines()] _, _, _, _, _, h2_theo_obs_A, h2_theo_obs_B, h2_theo_liab_A, h2_theo_liab_B, V_A_A, V_A_B, C_A_AB, r_A_AB = lines[1].split('\t') d.append( { 'ncases.A' : m.group('ncases_A'), 'ncontrols.A' : m.group('ncontrols_A'), 'ncases.B' : m.group('ncases_B'), 'ncontrols.B' : m.group('ncontrols_B'), 'blocks.A' : m.group('a_blocks'), 'blocks.B' : m.group('b_blocks'), 'shared_blocks' : m.group('shared_blocks'), 'tag_pair' : f"{m.group('tag_a')}-{m.group('tag_b')}", 'seed' : f"{m.group('seed')}", "h2.theo.obs.A" : float(h2_theo_obs_A), "h2.theo.obs.B" : float(h2_theo_obs_B), "h2.theo.liab.A" : float(h2_theo_liab_A), "h2.theo.liab.B" : float(h2_theo_liab_B), "V_A.A" : float(V_A_A), "V_A.B" : float(V_A_B), "C_A.AB" : float(C_A_AB), "r_A.AB" : float(r_A_AB) } ) return pd.DataFrame(d) |
49 | shell: "touch {output}" |
61 | shell: "touch {output}" |
68 | shell: "touch {output}" |
75 | shell: "touch {output}" |
82 | shell: "touch {output}" |
89 | shell: "touch {output}" |
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 | run: ldsc_daf = compile_ldsc_results_into_daf(input.ldsc_files) ldsc_daf.to_csv(output.ldsc_out, sep = '\t', index = False) sumher_daf = compile_sumher_results_into_daf(input.sumher_files) sumher_daf.to_csv(output.sumher_out, sep = '\t', index = False) hoeffdings_daf = compile_hoeffdings_results_into_daf(input.hoeffdings_files) hoeffdings_daf.to_csv(output.hoeffdings_out, sep = '\t', index = False) gps_daf = compile_gps_results_into_daf(input.gps_files) gps_daf.to_csv(output.gps_out, sep = '\t', index = False) li_gps_daf = compile_li_gps_results_into_daf(input.li_gps_files) li_gps_daf.to_csv(output.li_gps_out, sep = '\t', index = False) theo_daf = compile_theo_rg_results_into_daf(input.theo_files) theo_daf.to_csv(output[0], sep = '\t', index = False) shell("touch {output.done_out}") |
149 | shell: "touch {output}" |
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 | run: ldsc_daf = compile_ldsc_results_into_daf(input.ldsc_files) ldsc_daf.to_csv(output.ldsc_out, sep = '\t', index = False) sumher_daf = compile_sumher_results_into_daf(input.sumher_files) sumher_daf.to_csv(output.sumher_out, sep = '\t', index = False) hoeffdings_daf = compile_hoeffdings_results_into_daf(input.hoeffdings_files) hoeffdings_daf.to_csv(output.hoeffdings_out, sep = '\t', index = False) gps_daf = compile_gps_results_into_daf(input.gps_files) gps_daf.to_csv(output.gps_out, sep = '\t', index = False) li_gps_daf = compile_li_gps_results_into_daf(input.li_gps_files) li_gps_daf.to_csv(output.li_gps_out, sep = '\t', index = False) theo_daf = compile_theo_rg_results_into_daf(input.theo_files) theo_daf.to_csv(output[0], sep = '\t', index = False) shell("touch {output.done_out}") |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 | def get_simulation_runtime(wildcards, attempt): return 10 + attempt*5 def get_null_block_files(wildcards): effect_block_files = get_effect_block_files(wildcards) null_block_files_to_omit = [re.sub('tiny|small|medium|large|vlarge|huge|intermediate|random_\d+-\d+', 'null', x) for x in effect_block_files] null_block_files = [f"results/simgwas/simulated_sum_stats/block_sum_stats/{{no_reps}}_reps/null/{{ncases}}_{{ncontrols}}/chr{row.chr}/block_{row.block}_seed_{row.null_seed}_sum_stats.tsv.gz" for row in block_daf.itertuples()] for x in null_block_files_to_omit: if x in null_block_files: null_block_files.remove(x) return null_block_files def get_effect_block_files(wildcards): if wildcards.effect_blocks == 'null': return [] block_file_format = "results/simgwas/simulated_sum_stats/block_sum_stats/{no_reps}_reps/%s/{ncases}_{ncontrols}/chr%d/block_%d_seed_%d_sum_stats.tsv.gz" effect_block_files = [] for x in wildcards.effect_blocks.split('/')[-1].split('+'): block_match = re.match('^(\d+)-(.+)', x) chrom = int(block_match.group(1)) if ':' in block_match.group(2): range_match = re.match('([tsmlvhi]|r\d+-\d+-)(\d+):(\d+)', block_match.group(2)) # random effect # TODO no handling of seed in this atm if 'r' in range_match.group(1): effect = 'random_' + range_match.group(1)[1:-1] effect_block_files += [block_file_format % (chrom, effect, y) for y in range(int(range_match.group(2)), int(range_match.group(3))+1) if y in block_dict[chrom]] # non-random effect else: effect = effect_size_dict[range_match.group(1)] seed_col = effect + "_seed" for block in range(int(range_match.group(2)), int(range_match.group(3))+1): if block in block_daf.query('chr == @chrom')['block']: seed = block_daf.query('chr == @chrom & block == @block')[seed_col].values[0] effect_block_files.append(block_file_format % (effect, chrom, block, seed)) else: singleton_match = re.match('([tsmlvhi]|r\d+-\d+-)(\d+)', x) block = int(singleton_match.group(2)) # random effect # TODO no handling of seed in this atm if 'r' in x: effect = 'random_' + singleton_match.group(1)[1:-1] if int(singleton_match.group(2)) in block_dict[chrom]: effect_block_files += [block_file_format % (chrom, effect, int(singleton_match.group(2)))] # non-random effect else: effect = effect_size_dict[singleton_match.group(1)] seed_col = effect + "_seed" seed = block_daf.query('chr == @chrom & block == @block')[seed_col].values[0] if block in block_daf.query('chr == @chrom')['block']: effect_block_files.append(block_file_format % (effect, chrom, block, seed)) return effect_block_files |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | import pandas as pd def get_one_chrom_simulation_done_files(simulation_pars_file, reps, subset = None): daf = pd.read_csv(simulation_pars_file, sep = '\t') if subset: daf = daf.query(subset) #daf.assign(r2 = lambda dataframe: dataframe['r2'].map(lambda r2: float(r2.replace('_', '.')))) daf['r2'] = daf['r2'].apply(lambda x: str(x).replace('.', '_')) return [f"results/simgwas/done/{reps}_reps/randomised/{row.chr}/{row.ncases_A}_{row.ncontrols_A}_{row.ncases_B}_{row.ncontrols_B}/{row.a_blocks}_{row.b_blocks}_{row.shared_blocks}/window_{row.window}_step_{row.step}_r2_{row.r2}/seed_{row.seed}_tags_{row.tag_A}-{row.tag_B}.done" for row in daf.itertuples()] def get_one_chrom_test_files(simulation_pars_file, reps, filetype, subset = None, draws = None): daf = pd.read_csv(simulation_pars_file, sep = '\t') if subset: daf = daf.query('a_blocks == @subset & b_blocks == @subset') daf['r2'] = daf['r2'].apply(lambda x: str(x).replace('.', '_')) if filetype == 'ldsc': files = [f"results/ldsc/simgwas/{reps}_reps/randomised/{row.chr}/{row.ncases_A}_{row.ncontrols_A}_{row.ncases_B}_{row.ncontrols_B}/{row.a_blocks}_{row.b_blocks}_{row.shared_blocks}/rg/fixed_h2_free_rg_intercept/seed_{row.seed}_tags_{row.tag_A}-{row.tag_B}.log" for row in daf.itertuples()] elif filetype == 'sumher': files = [f"results/ldak/ldak-thin/simgwas/{reps}_reps/randomised/rg/{row.chr}/{row.ncases_A}_{row.ncontrols_A}_{row.ncases_B}_{row.ncontrols_B}/{row.a_blocks}_{row.b_blocks}_{row.shared_blocks}/seed_{row.seed}_tags_{row.tag_A}-{row.tag_B}.cors" for row in daf.itertuples()] elif filetype == 'hoeffdings': files = [f"results/hoeffdings/simgwas/{reps}_reps/randomised/{row.chr}/{row.ncases_A}_{row.ncontrols_A}_{row.ncases_B}_{row.ncontrols_B}/{row.a_blocks}_{row.b_blocks}_{row.shared_blocks}/window_{row.window}_step_{row.step}_r2_{row.r2}/seed_{row.seed}_tags_{row.tag_A}-{row.tag_B}_hoeffdings.tsv" for row in daf.itertuples()] elif filetype == 'gps': files = [f"results/gps/simgwas/{reps}_reps/randomised/{row.chr}/{row.ncases_A}_{row.ncontrols_A}_{row.ncases_B}_{row.ncontrols_B}/{row.a_blocks}_{row.b_blocks}_{row.shared_blocks}/window_{row.window}_step_{row.step}_r2_{row.r2}/{draws}_permutations/seed_{row.seed}_tags_{row.tag_A}-{row.tag_B}_gps_pvalue.tsv" for row in daf.itertuples()] elif filetype == 'theo': files = [f"results/ldsc/simgwas/{reps}_reps/randomised/{row.chr}/{row.ncases_A}_{row.ncontrols_A}_{row.ncases_B}_{row.ncontrols_B}/{row.a_blocks}_{row.b_blocks}_{row.shared_blocks}/theoretical_rg/seed_{row.seed}_{row.tag_A}-{row.tag_B}_theo_rg.tsv" for row in daf.itertuples()] elif filetype == 'li_gps': files = [f"results/gps/simgwas/{reps}_reps/randomised/{row.chr}/{row.ncases_A}_{row.ncontrols_A}_{row.ncases_B}_{row.ncontrols_B}/{row.a_blocks}_{row.b_blocks}_{row.shared_blocks}/window_{row.window}_step_{row.step}_r2_{row.r2}/seed_{row.seed}_tags_{row.tag_A}-{row.tag_B}_li_gps_pvalue.tsv" for row in daf.itertuples()] elif filetype == 'done': files = [f"results/simgwas/done/{reps}_reps/randomised/{row.chr}/{row.ncases_A}_{row.ncontrols_A}_{row.ncases_B}_{row.ncontrols_B}/{row.a_blocks}_{row.b_blocks}_{row.shared_blocks}/seed_{row.seed}_tags_{row.tag_A}-{row.tag_B}.done" for row in daf.itertuples()] else: raise Exception(f"Invalid filetype specified: {filetype}") return files |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 | import pandas as pd # TODO why do we store block nos in a list rather than in the dict? # TODO should probably store no of causal variants per block, too def get_randomised_chrom_block_tuples_for_pair(wildcards): random.seed(wildcards.seed) shared_chrom_block_nos = [] shared_chrom_block_dict = {} if wildcards.shared_effect_blocks != 'null': for token in wildcards.shared_effect_blocks.split('-'): block_match = re.match('([tsmlvhi])(\d+)', token) if not block_match: raise ValueError("Invalid block format: %s" % token) shared_effect = effect_size_dict[block_match.group(1)] no_of_shared_blocks = int(block_match.group(2)) no_of_cvs_per_block = cv_per_block_dict[shared_effect] no_of_shared_blocks /= no_of_cvs_per_block i = 0 shared_chrom_block_dict[shared_effect] = [] while i < max(no_of_shared_blocks, 0): chrom = random.choice(range(1, 23)) block_no = random.choice(block_daf.query('chr == @chrom')[['block']].values.transpose().tolist()[0]) if (chrom, block_no) not in shared_chrom_block_nos: shared_chrom_block_nos.append((chrom, block_no)) shared_chrom_block_dict[shared_effect].append((chrom, block_no, no_of_cvs_per_block)) i += 1 a_chrom_block_nos = [] a_chrom_block_dict = {} if wildcards.effect_blocks_A != 'null': for token in wildcards.effect_blocks_A.split('-'): block_match_a = re.match('([tsmlvhi])(\d+)', token) if not block_match_a: raise ValueError("Invalid block format: %s" % token) effect_a = effect_size_dict[block_match_a.group(1)] no_of_blocks_a = int(block_match_a.group(2)) no_of_cvs_per_block_a = cv_per_block_dict[effect_a] no_of_blocks_a /= no_of_cvs_per_block_a i = 0 a_chrom_block_dict[effect_a] = [] if effect_a not in shared_chrom_block_dict.keys(): shared_chrom_block_dict[effect_a] = [] while i < max(no_of_blocks_a-len(shared_chrom_block_dict[effect_a]), 0): chrom = random.choice(range(1, 23)) block_no = random.choice(block_daf.query('chr == @chrom')[['block']].values.transpose().tolist()[0]) if (chrom, block_no) not in shared_chrom_block_nos and (chrom, block_no) not in a_chrom_block_nos: a_chrom_block_nos.append((chrom, block_no)) a_chrom_block_dict[effect_a].append((chrom, block_no, no_of_cvs_per_block_a)) i += 1 b_chrom_block_nos = [] b_chrom_block_dict = {} if wildcards.effect_blocks_B != 'null': for token in wildcards.effect_blocks_B.split('-'): block_match_b = re.match('([tismlvh])(\d+)', token) if not block_match_b: raise ValueError("Invalid block format: %s" % token) effect_b = effect_size_dict[block_match_b.group(1)] no_of_blocks_b = int(block_match_b.group(2)) no_of_cvs_per_block_b = cv_per_block_dict[effect_b] no_of_blocks_b /= no_of_cvs_per_block_b i = 0 b_chrom_block_dict[effect_b] = [] if effect_b not in shared_chrom_block_dict.keys(): shared_chrom_block_dict[effect_b] = [] while i < max(no_of_blocks_b-len(shared_chrom_block_dict[effect_b]), 0): chrom = random.choice(range(1, 23)) block_no = random.choice(block_daf.query('chr == @chrom')[['block']].values.transpose().tolist()[0]) if (chrom, block_no) not in shared_chrom_block_nos and (chrom, block_no) not in a_chrom_block_nos and (chrom, block_no) not in b_chrom_block_nos: b_chrom_block_nos.append((chrom, block_no)) b_chrom_block_dict[effect_b].append((chrom, block_no, no_of_cvs_per_block_b)) i += 1 return (shared_chrom_block_nos, a_chrom_block_nos, b_chrom_block_nos, shared_chrom_block_dict, a_chrom_block_dict, b_chrom_block_dict) def get_randomised_block_files_for_pair(wildcards): shared_chrom_block_nos, a_chrom_block_nos, b_chrom_block_nos, shared_chrom_block_dict, a_chrom_block_dict, b_chrom_block_dict = get_randomised_chrom_block_tuples_for_pair(wildcards) block_files = [] a_block_files = [] b_block_files = [] for k in shared_chrom_block_dict.keys(): seed_label = k + '_seed' for v in shared_chrom_block_dict[k]: seed = block_daf.query('chr == @v[0] & block == @v[1]')[seed_label].values[0] a_file = f"results/simgwas/simulated_sum_stats/block_sum_stats/400_reps/{k}/{v[2]}_cv/{wildcards.ncases_A}_{wildcards.ncontrols_A}/chr{v[0]}/block_{v[1]}_seed_{seed}_sum_stats.tsv.gz" b_file = f"results/simgwas/simulated_sum_stats/block_sum_stats/400_reps/{k}/{v[2]}_cv/{wildcards.ncases_B}_{wildcards.ncontrols_B}/chr{v[0]}/block_{v[1]}_seed_{seed}_sum_stats.tsv.gz" block_files.append(a_file) a_block_files.append(a_file) b_block_files.append(b_file) if wildcards.ncases_A != wildcards.ncases_B or wildcards.ncontrols_A != wildcards.ncontrols_B: block_files.append(b_file) for k in a_chrom_block_dict.keys(): seed_label = k + '_seed' for v in a_chrom_block_dict[k]: seed = block_daf.query('chr == @v[0] & block == @v[1]')[seed_label].values[0] a_file = f"results/simgwas/simulated_sum_stats/block_sum_stats/400_reps/{k}/{v[2]}_cv/{wildcards.ncases_A}_{wildcards.ncontrols_A}/chr{v[0]}/block_{v[1]}_seed_{seed}_sum_stats.tsv.gz" block_files.append(a_file) a_block_files.append(a_file) for k in b_chrom_block_dict.keys(): seed_label = k + '_seed' for v in b_chrom_block_dict[k]: seed = block_daf.query('chr == @v[0] & block == @v[1]')[seed_label].values[0] b_file = f"results/simgwas/simulated_sum_stats/block_sum_stats/400_reps/{k}/{v[2]}_cv/{wildcards.ncases_B}_{wildcards.ncontrols_B}/chr{v[0]}/block_{v[1]}_seed_{seed}_sum_stats.tsv.gz" b_block_files.append(b_file) if b_file not in block_files: block_files.append(b_file) for chrom in range(1,23): for block in block_daf.query('chr == @chrom')['block']: seed = block_daf.query('chr == @chrom & block == @block')['null_seed'].values[0] if (chrom, block) not in a_chrom_block_nos and (chrom, block) not in shared_chrom_block_nos: a_file = f"results/simgwas/simulated_sum_stats/block_sum_stats/400_reps/null/0_cv/{wildcards.ncases_A}_{wildcards.ncontrols_A}/chr{chrom}/block_{block}_seed_{seed}_sum_stats.tsv.gz" block_files.append(a_file) a_block_files.append(a_file) if (chrom, block) not in b_chrom_block_nos and (chrom, block) not in shared_chrom_block_nos: b_file = f"results/simgwas/simulated_sum_stats/block_sum_stats/400_reps/null/0_cv/{wildcards.ncases_B}_{wildcards.ncontrols_B}/chr{chrom}/block_{block}_seed_{seed}_sum_stats.tsv.gz" b_block_files.append(b_file) if b_file not in block_files: block_files.append(b_file) all_files = block_files+a_block_files+b_block_files return all_files |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 | import pandas as pd def get_randomised_chrom_block_tuples_for_chrom_for_pair(wildcards): random.seed(wildcards.seed) chrom = int(wildcards.chr.replace('chr', '')) shared_chrom_block_nos = [] shared_chrom_block_dict = {} if wildcards.shared_effect_blocks != 'null': for token in wildcards.shared_effect_blocks.split('-'): block_match = re.match('([tsmlvhi])(\d+)', token) if not block_match: raise ValueError("Invalid block format: %s" % token) shared_effect = effect_size_dict[block_match.group(1)] no_of_shared_blocks = int(block_match.group(2)) no_of_cvs_per_block = cv_per_block_dict[shared_effect] no_of_shared_blocks /= no_of_cvs_per_block i = 0 shared_chrom_block_dict[shared_effect] = [] while i < max(no_of_shared_blocks, 0): block_no = random.choice(block_daf.query('chr == @chrom')[['block']].values.transpose().tolist()[0]) if (chrom, block_no) not in shared_chrom_block_nos: shared_chrom_block_nos.append((chrom, block_no)) shared_chrom_block_dict[shared_effect].append((chrom, block_no, no_of_cvs_per_block)) i += 1 a_chrom_block_nos = [] a_chrom_block_dict = {} if wildcards.effect_blocks_A != 'null': for token in wildcards.effect_blocks_A.split('-'): block_match_a = re.match('([tsmlvhi])(\d+)', token) if not block_match_a: raise ValueError("Invalid block format: %s" % token) effect_a = effect_size_dict[block_match_a.group(1)] no_of_blocks_a = int(block_match_a.group(2)) no_of_cvs_per_block_a = cv_per_block_dict[effect_a] no_of_blocks_a /= no_of_cvs_per_block_a i = 0 a_chrom_block_dict[effect_a] = [] if effect_a not in shared_chrom_block_dict.keys(): shared_chrom_block_dict[effect_a] = [] while i < max(no_of_blocks_a-len(shared_chrom_block_dict[effect_a]), 0): block_no = random.choice(block_daf.query('chr == @chrom')[['block']].values.transpose().tolist()[0]) if (chrom, block_no) not in shared_chrom_block_nos and (chrom, block_no) not in a_chrom_block_nos: a_chrom_block_nos.append((chrom, block_no)) a_chrom_block_dict[effect_a].append((chrom, block_no, no_of_cvs_per_block_a)) i += 1 b_chrom_block_nos = [] b_chrom_block_dict = {} if wildcards.effect_blocks_B != 'null': for token in wildcards.effect_blocks_B.split('-'): block_match_b = re.match('([tismlvh])(\d+)', token) if not block_match_b: raise ValueError("Invalid block format: %s" % token) effect_b = effect_size_dict[block_match_b.group(1)] no_of_blocks_b = int(block_match_b.group(2)) no_of_cvs_per_block_b = cv_per_block_dict[effect_b] no_of_blocks_b /= no_of_cvs_per_block_b i = 0 b_chrom_block_dict[effect_b] = [] if effect_b not in shared_chrom_block_dict.keys(): shared_chrom_block_dict[effect_b] = [] while i < max(no_of_blocks_b-len(shared_chrom_block_dict[effect_b]), 0): block_no = random.choice(block_daf.query('chr == @chrom')[['block']].values.transpose().tolist()[0]) if (chrom, block_no) not in shared_chrom_block_nos and (chrom, block_no) not in a_chrom_block_nos and (chrom, block_no) not in b_chrom_block_nos: b_chrom_block_nos.append((chrom, block_no)) b_chrom_block_dict[effect_b].append((chrom, block_no, no_of_cvs_per_block_b)) i += 1 return (shared_chrom_block_nos, a_chrom_block_nos, b_chrom_block_nos, shared_chrom_block_dict, a_chrom_block_dict, b_chrom_block_dict) def get_randomised_block_files_for_chrom_for_pair(wildcards): shared_chrom_block_nos, a_chrom_block_nos, b_chrom_block_nos, shared_chrom_block_dict, a_chrom_block_dict, b_chrom_block_dict = get_randomised_chrom_block_tuples_for_chrom_for_pair(wildcards) block_files = [] a_block_files = [] b_block_files = [] chrom = int(wildcards.chr.replace('chr', '')) for k in shared_chrom_block_dict.keys(): seed_label = k + '_seed' for v in shared_chrom_block_dict[k]: seed = block_daf.query('chr == @v[0] & block == @v[1]')[seed_label].values[0] a_file = f"results/simgwas/simulated_sum_stats/block_sum_stats/400_reps/{k}/{v[2]}_cv/{wildcards.ncases_A}_{wildcards.ncontrols_A}/chr{v[0]}/block_{v[1]}_seed_{seed}_sum_stats.tsv.gz" b_file = f"results/simgwas/simulated_sum_stats/block_sum_stats/400_reps/{k}/{v[2]}_cv/{wildcards.ncases_B}_{wildcards.ncontrols_B}/chr{v[0]}/block_{v[1]}_seed_{seed}_sum_stats.tsv.gz" block_files.append(a_file) a_block_files.append(a_file) b_block_files.append(b_file) if wildcards.ncases_A != wildcards.ncases_B or wildcards.ncontrols_A != wildcards.ncontrols_B: block_files.append(b_file) for k in a_chrom_block_dict.keys(): seed_label = k + '_seed' for v in a_chrom_block_dict[k]: seed = block_daf.query('chr == @v[0] & block == @v[1]')[seed_label].values[0] a_file = f"results/simgwas/simulated_sum_stats/block_sum_stats/400_reps/{k}/{v[2]}_cv/{wildcards.ncases_A}_{wildcards.ncontrols_A}/chr{v[0]}/block_{v[1]}_seed_{seed}_sum_stats.tsv.gz" block_files.append(a_file) a_block_files.append(a_file) for k in b_chrom_block_dict.keys(): seed_label = k + '_seed' for v in b_chrom_block_dict[k]: seed = block_daf.query('chr == @v[0] & block == @v[1]')[seed_label].values[0] b_file = f"results/simgwas/simulated_sum_stats/block_sum_stats/400_reps/{k}/{v[2]}_cv/{wildcards.ncases_B}_{wildcards.ncontrols_B}/chr{v[0]}/block_{v[1]}_seed_{seed}_sum_stats.tsv.gz" b_block_files.append(b_file) if b_file not in block_files: block_files.append(b_file) # Fill in null files for block in block_daf.query('chr == @chrom')['block']: seed = block_daf.query('chr == @chrom & block == @block')['null_seed'].values[0] if (chrom, block) not in a_chrom_block_nos and (chrom, block) not in shared_chrom_block_nos: a_file = f"results/simgwas/simulated_sum_stats/block_sum_stats/400_reps/null/0_cv/{wildcards.ncases_A}_{wildcards.ncontrols_A}/chr{chrom}/block_{block}_seed_{seed}_sum_stats.tsv.gz" block_files.append(a_file) a_block_files.append(a_file) if (chrom, block) not in b_chrom_block_nos and (chrom, block) not in shared_chrom_block_nos: b_file = f"results/simgwas/simulated_sum_stats/block_sum_stats/400_reps/null/0_cv/{wildcards.ncases_B}_{wildcards.ncontrols_B}/chr{chrom}/block_{block}_seed_{seed}_sum_stats.tsv.gz" b_block_files.append(b_file) if b_file not in block_files: block_files.append(b_file) all_files = block_files+a_block_files+b_block_files return all_files |
24 25 26 27 28 29 30 31 32 | run: a_block_files = input.block_files[-(2*params.no_of_blocks_in_chrom):-params.no_of_blocks_in_chrom] b_block_files = input.block_files[-params.no_of_blocks_in_chrom:] with open(output.a_block_file, 'w') as a_out: a_out.writelines([f"{x}\n" for x in a_block_files]) with open(output.b_block_file, 'w') as b_out: b_out.writelines([f"{x}\n" for x in b_block_files]) |
51 52 53 54 55 56 57 58 59 60 61 62 63 64 | shell: """ split --numeric-suffixes=1 -nl/{params.no_of_splits} {input.a_block_file} {params.a_file_prefix} --additional-suffix={params.suffix} split --numeric-suffixes=1 -nl/{params.no_of_splits} {input.b_block_file} {params.b_file_prefix} --additional-suffix={params.suffix} # TODO hard-coding bad for i in {{1..9}}; do mv {params.a_file_prefix}"0"$i"-of-12.txt" {params.a_file_prefix}$i"-of-12.txt" done for i in {{1..9}}; do mv {params.b_file_prefix}"0"$i"-of-12.txt" {params.b_file_prefix}$i"-of-12.txt" done """ |
79 | script: "../../scripts/simgwas/combine_randomised_block_sum_stats.R" |
93 | script: "../../scripts/simgwas/gather_split_block_files.R" |
109 | script: "../../scripts/simgwas/merge_sim_sum_stats.R" |
122 123 | shell: "Rscript workflow/scripts/simgwas/prune_sim_sum_stats.R --sum_stats_file {input.sum_stats_file} --bim_file {input.bim_file} --prune_file {input.pruned_range_file} -o {output} -nt {threads}" |
135 136 | shell: "gunzip -c {input} >{output}" |
145 146 | shell: "zcat {input} | tail -n +2 | wc -l >{output}" |
155 156 | shell: "zcat {input} | tail -n +2 | wc -l >{output}" |
21 22 23 24 25 26 27 28 29 30 | run: # Probably too clever by half a_block_files = input.block_files[-(2*params.no_of_blocks_in_genome):-params.no_of_blocks_in_genome] b_block_files = input.block_files[-params.no_of_blocks_in_genome:] with open(output.a_block_file, 'w') as a_out: a_out.writelines([f"{x}\n" for x in a_block_files]) with open(output.b_block_file, 'w') as b_out: b_out.writelines([f"{x}\n" for x in b_block_files]) |
49 50 51 52 53 54 55 56 57 58 59 60 61 62 | shell: """ split --numeric-suffixes=1 -nl/{params.no_of_splits} {input.a_block_file} {params.a_file_prefix} --additional-suffix={params.suffix} split --numeric-suffixes=1 -nl/{params.no_of_splits} {input.b_block_file} {params.b_file_prefix} --additional-suffix={params.suffix} # TODO hard-coding bad for i in {{1..9}}; do mv {params.a_file_prefix}"0"$i"-of-12.txt" {params.a_file_prefix}$i"-of-12.txt" done for i in {{1..9}}; do mv {params.b_file_prefix}"0"$i"-of-12.txt" {params.b_file_prefix}$i"-of-12.txt" done """ |
79 | script: "../../scripts/simgwas/combine_randomised_block_sum_stats.R" |
96 | script: "../../scripts/simgwas/gather_split_block_files.R" |
112 | script: "../../scripts/simgwas/merge_sim_sum_stats.R" |
125 126 | shell: "Rscript workflow/scripts/simgwas/prune_sim_sum_stats.R --sum_stats_file {input.sum_stats_file} --bim_file {input.bim_file} --prune_file {input.pruned_range_file} -o {output} -nt {threads}" |
138 139 | shell: "gunzip -c {input} >{output}" |
149 | script: "../scripts/write_out_summary_statistics_per_chromosome.R" |
156 157 | shell: "zcat {input} | tail -n +2 | wc -l >{output}" |
164 165 | shell: "zcat {input} | tail -n +2 | wc -l >{output}" |
23 24 25 26 27 | shell: """ zcat {input} | awk -F' ' '($9 >= 0.01 && $9 <= 0.99) || NR == 1' >{params}; gzip {params} """ |
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | shell: """ paste -d' ' <(zcat {input.hap_file}) <(zcat {input.legend_file} | cut -d' ' -f9 | tail -n +2) >{params.temp_hap_with_maf_file} awk -F' ' '$5009 >= 0.01 && $5009 <= 0.99' {params.temp_hap_with_maf_file} | cut -d' ' -f1-5008 >>{params.temp_hap_filtered_maf_file} for j in {{1..4}}; do for i in $(tail -n +2 {input.samples_file} | cut -f"$j" -d' ' | tr '\n' ' '); do echo -n "$i $i "; done >>{params.temp_hap_file} echo "" >>{params.temp_hap_file}; done cat {params.temp_hap_filtered_maf_file} >>{params.temp_hap_file} head -n 3 {params.temp_hap_file} | tail -n 1 | awk -F' ' '{{for(i=1; i<=NF; i++){{ if($i == "EUR") {{printf "%s ", i}} }}}}'| sed 's/ /,/g' | sed 's/,$//g' > {params.temp_eur_cols_file} cut -d' ' -f$(cat {params.temp_eur_cols_file}) {params.temp_hap_file} >{params.uncomp_hap_file}; gzip {params.uncomp_hap_file}; rm {params.temp_eur_cols_file} {params.temp_hap_file} {params.temp_hap_filtered_maf_file} {params.temp_hap_with_maf_file} """ |
79 80 | shell: "Rscript workflow/scripts/simgwas/write_out_ld_block_files.R --hap_file {input.haplotype_file} --leg_file {input.legend_file} -b {input.block_file} --chr_no {params.chr_no} -o {params.output_root} -nt {threads}" |
93 94 | shell: "Rscript workflow/scripts/simgwas/compute_block_ld_matrix.R --hap_file {input.block_haplotype_file} --leg_file {input.block_legend_file} --output_file {output} -nt {threads}" |
115 116 | script: "../../scripts/simgwas/simulate_sum_stats_by_ld_block.R" |
134 135 | script: "../../scripts/simgwas/get_causal_variants_by_ld_block.R" |
142 143 144 145 146 147 | run: for i,x in enumerate(input): if i == 0: shell("cat %s > %s" % (x, output[0])) else: shell("cat %s | tail -n +2 >> %s" % (x, output[0])) |
156 157 158 159 160 161 162 163 164 165 | run: header_string = "position\ta0\ta1\tid\tTYPE\tEUR\tchr" shell(f"echo -e \"{header_string}\" > {params.uncomp_output}") for x in input: print(x) shell(f"zcat {x} | cut -f1-4,6-7,92 >> {params.uncomp_output}") shell("gzip {params.uncomp_output}") |
20 21 | script: "../../scripts/process_combined_simgwas_sum_stats_for_sumher.R" |
42 43 44 45 | shell: """ $ldakRoot/ldak --sum-cors {params.output_stem} --tagfile {input.tagging_file} --summary {input.sum_stats_file_A} --summary2 {input.sum_stats_file_B} --allow-ambiguous YES --check-sums NO --cutoff 0.01 > {log.log_file} """ |
19 20 21 22 23 | shell: """ $ldakRoot/ldak --thin {params.output_stem} --bfile {params.input_stem} --window-prune .98 --window-kb 100 --max-threads {threads} > {log.log_file}; awk < {output.thin_file} '{{print $1, 1}}' > {output.weights_file} """ |
41 42 | shell: "$ldakRoot/ldak --calc-tagging {params.output_stem} --bfile {params.input_stem} --weights {input.weights_file} --chr {wildcards.chr} --window-kb 1000 --power -.25 --max-threads {threads} > {log.log_file}" |
56 57 58 59 60 61 62 63 | shell: """ for x in {input}; do echo $x >> {output.chrom_taggings_file} done; $ldakRoot/ldak --join-tagging {params.output_stem} --taglist {output.chrom_taggings_file} > {log.log_file} """ |
83 84 | script: "../../scripts/process_combined_simgwas_sum_stats_for_sumher.R" |
105 106 107 108 | shell: """ $ldakRoot/ldak --sum-cors {params.output_stem} --tagfile {input.wg_tagging_file} --summary {input.sum_stats_file_A} --summary2 {input.sum_stats_file_B} --allow-ambiguous YES --check-sums NO --cutoff 0.01 > {log.log_file} """ |
16 17 | script: "../../scripts/process_ukbb_sum_stats.R" |
33 34 35 36 | shell: """ $ldakRoot/ldak --sum-cors {params.output_stem} --tagfile {input.wg_tagging_file} --summary {input.sum_stats_file_A} --summary2 {input.sum_stats_file_B} --allow-ambiguous YES --check-sums NO --cutoff 0.01 > {log.log_file} """ |
8 9 | script: "../../scripts/ukbb/compute_hoeffdings.R" |
20 21 22 23 24 25 26 27 28 29 | run: manifest = pd.read_csv(input.manifest, sep = '\t', header = 0) manifest = manifest.query('Sex == \'both_sexes\'') manifest = manifest.assign(field = manifest['UK Biobank Data Showcase Link'].str.split("field\.cgi\?id=", expand = True)[[1]]) trait_metadata = pd.read_csv(input.trait_metadata, sep = '\t', header = 0) merged = manifest.merge(trait_metadata, left_on = 'Phenotype Code', right_on = 'code') merged.to_csv(output[0], sep = '\t', index = False) |
41 42 43 | shell: """ cut -f6019-6023,6762-6795,10124,15054-15133 -d$'\t' {input} >{output} """ |
53 | script: "../../scripts/recode_ukbb_fields.R" |
64 65 66 67 68 69 70 71 72 73 | run: a_cases = int(shell("tail -n +2 {input} | grep -c {params.trait_A_token}", read = True)) b_cases = int(shell("tail -n +2 {input} | grep -c {params.trait_B_token}", read = True)) ab_cases = int(shell("tail -n +2 {input} | grep {params.trait_A_token} | grep -c {params.trait_B_token}", read = True)) a_controls = int(shell("tail -n +2 {input} | grep -v -c {params.trait_A_token}", read = True)) b_controls = int(shell("tail -n +2 {input} | grep -v -c {params.trait_B_token}", read = True)) ab_controls = int(shell("tail -n +2 {input} | grep -v {params.trait_A_token} | grep -v -c {params.trait_B_token}", read = True)) with open(output[0], 'w') as out: out.write(f"{wildcards.trait_A}\t{wildcards.trait_B}\t{a_cases}\t{b_cases}\t{ab_cases}\t{a_controls}\t{b_controls}\t{ab_controls}\n") |
85 86 87 88 | shell:""" echo -e "trait_A\ttrait_B\tA_cases\tB_cases\tAB_cases\tA_controls\tB_controls\tAB_controls" >>{output} cat {input} >>{output} """ |
100 | script: "../../scripts/ukbb/annotate_overlap_results.R" |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 | import pandas as pd def compile_ukbb_gps_results_into_daf(input_files): d = [] for x in input_files: m = re.match(r"results/gps/(?P<snp_set>\w+)/(?P<variant_set>\w+)/window_(?P<window>\d+kb)_step_(?P<step>\d+)_r2_(?P<r2>0_\d+)/(?P<trait_A>\w+)-(?P<trait_B>\w+)_(?P<draws>\d+)_permutations_gps_pvalue.tsv", x) try: with open(x, 'r') as infile: lines = [x.strip() for x in infile.readlines()] gps, n, loc, loc_sd, scale, scale_sd, shape, shape_sd, pval = lines[1].split('\t') d.append( { 'snp_set' : m.group('snp_set'), 'variant_set' : m.group('variant_set'), 'window' : m.group('window'), 'step' : m.group('step'), 'r2' : m.group('r2').replace('_', '.'), 'trait_A' : m.group('trait_A'), 'trait_B' : m.group('trait_B'), 'draws' : m.group('draws'), 'gps' : gps, 'n' : n, 'loc' : loc, 'loc.sd' : loc_sd, 'scale' : scale, 'scale.sd' : scale_sd, 'shape' : shape, 'shape.sd' : shape_sd, 'pval' : pval, } ) except FileNotFoundError: continue return pd.DataFrame(d) def compile_ukbb_li_gps_results_into_daf(input_files): d = [] for x in input_files: m = re.match(r"results/gps/(?P<snp_set>\w+)/(?P<variant_set>\w+)/window_(?P<window>\d+kb)_step_(?P<step>\d+)_r2_(?P<r2>0_\d+)/(?P<trait_A>\w+)-(?P<trait_B>\w+)_li_gps_pvalue.tsv", x) try: with open(x, 'r') as infile: lines = [x.strip() for x in infile.readlines()] gps, pval = lines[1].split('\t') d.append( { 'snp_set' : m.group('snp_set'), 'variant_set' : m.group('variant_set'), 'window' : m.group('window'), 'step' : m.group('step'), 'r2' : m.group('r2').replace('_', '.'), 'trait_A' : m.group('trait_A'), 'trait_B' : m.group('trait_B'), 'gps' : gps, 'pval' : pval } ) except FileNotFoundError: continue return pd.DataFrame(d) def compile_ukbb_ldsc_results_into_daf(input_files): d = [] h2_regex = r"Total \w+ scale h2: (.+)\s+\((.+)\)" int_regex = r"Intercept: (.+)\s+\((.+)\)" gcov_regex = r"Total \w+ scale gencov: (.+)\s+\((.+)\)" gcov_zprod_regex = r"Mean z1\*z2: (.+)" for x in input_files: m = re.match(r"results/ldsc/rg/ukbb/(?P<snp_set>\w+)/fixed_h2_free_rg_intercept/(?P<trait_A>\w+)-(?P<trait_B>\w+)\.log", x) try: with open(x, 'r') as infile: line = infile.readline() # TODO fix these for the null case while re.match(h2_regex, line) is None and re.match('ERROR', line) is None: line = infile.readline() if re.match('ERROR', line): d.append( { 'trait_A' : m.group('trait_A'), 'trait_B' : m.group('trait_B'), 'snp_set' : m.group('snp_set'), 'h2.A.obs.ldsc' : nan, 'h2.A.obs.se.ldsc' : nan, 'h2.B.obs.ldsc' : nan, 'h2.B.obs.se.ldsc' : nan, 'gcov.obs.ldsc' : nan, 'gcov.obs.se.ldsc' : nan, 'rg.ldsc' : nan, 'rg.se.ldsc' : nan, 'rg.z.ldsc' : nan, 'rg.p.ldsc' : nan } ) else: h2_match_A = re.match(h2_regex, line) h2_A = float(h2_match_A.group(1)) h2_A_se = float(h2_match_A.group(2)) line = infile.readline() line = infile.readline() line = infile.readline() h2_int_A_match = re.match(int_regex, line) if h2_int_A_match: h2_int_A = float(h2_int_A_match.group(1)) h2_int_A_se = float(h2_int_A_match.group(2)) elif 'constrained to 1.' in line: h2_int_A = 1.0 h2_int_A_se = nan else: raise Exception("No match for h2_B int_regex") while re.match(h2_regex, line) is None: line = infile.readline() h2_match_B = re.match(h2_regex, line) h2_B = float(h2_match_B.group(1)) h2_B_se = float(h2_match_B.group(2)) line = infile.readline() line = infile.readline() line = infile.readline() h2_int_B_match = re.match(int_regex, line) if h2_int_B_match: h2_int_B = float(h2_int_B_match.group(1)) h2_int_B_se = float(h2_int_B_match.group(2)) elif 'constrained to 1.' in line: h2_int_B = 1.0 h2_int_B_se = nan else: raise Exception("No match for h2_A int_regex") while re.match(gcov_regex, line) is None: line = infile.readline() gcov_match = re.match(gcov_regex, line) gcov = float(gcov_match.group(1)) gcov_se = float(gcov_match.group(2)) line = infile.readline() gcov_zprod_match = re.match(gcov_zprod_regex, line) gcov_zprod = float(gcov_zprod_match.group(1)) line = infile.readline() gcov_int_match = re.match(int_regex, line) if gcov_int_match: gcov_int = float(gcov_int_match.group(1)) gcov_int_se = float(gcov_int_match.group(2)) elif 'constrained to 0.' in line: gcov_int = 0.0 gcov_int_se = nan else: raise Exception("No match for gcov_int_regex") line = infile.readline() while re.match("^p1\s", line) is None: line = infile.readline() line = infile.readline() rg, rg_se, rg_z, rg_p = [float(z) if z != 'NA' else nan for z in line.split()[2:6]] d.append( { 'trait_A' : m.group('trait_A'), 'trait_B' : m.group('trait_B'), 'snp_set' : m.group('snp_set'), 'h2.A.obs.ldsc' : h2_A, 'h2.A.obs.se.ldsc' : h2_A_se, 'h2.B.obs.ldsc' : h2_B, 'h2.B.obs.se.ldsc' : h2_B_se, 'gcov.obs.ldsc' : gcov, 'gcov.obs.se.ldsc' : gcov_se, 'rg.ldsc' : rg, 'rg.se.ldsc' : rg_se, 'rg.z.ldsc' : rg_z, 'rg.p.ldsc' : rg_p } ) except FileNotFoundError: continue except AttributeError: print(x) return pd.DataFrame(d) def compile_ukbb_sumher_results_into_daf(input_files): d = [] for x in input_files: m = re.match(r"results/ldak/ldak-thin/(?P<snp_set>\w+)/rg/(?P<trait_A>\w+)-(?P<trait_B>\w+).cors.full", x) with open(x, 'r') as infile: line = infile.readline() line = infile.readline() # Category Trait1_Her SD Trait2_Her SD Both_Coher SD Correlation SD _, h2_A, h2_A_se, h2_B, h2_B_se, cov, cov_se, rg, rg_se = line.split() rg_z = float(rg)/float(rg_se) rg_p = chi2.sf(rg_z**2, df = 1, loc = 0, scale = 1) d.append( { 'trait_A' : m.group('trait_A'), 'trait_B' : m.group('trait_B'), 'snp_set' : m.group('snp_set'), 'h2.A.obs.sr' : float(h2_A), 'h2.A.obs.se.sr' : float(h2_A_se), 'h2.B.obs.sr' : float(h2_B), 'h2.B.obs.se.sr' : float(h2_B_se), 'gcov.obs.sr' : float(cov), 'gcov.obs.se.sr' : float(cov_se), 'rg.sr' : float(rg), 'rg.se.sr' : float(rg_se), 'rg.z.sr' : rg_z, 'rg.p.sr' : rg_p } ) return pd.DataFrame(d) def compile_ukbb_hoeffdings_results_into_daf(input_files): d = [] for x in input_files: m = re.match(r"results/(?P<snp_set>\w+)/(?P<variant_set>\w+)/window_(?P<window>\d+kb)_step_(?P<step>\d+)_r2_(?P<r2>0_\d+)/(?P<trait_A>\w+)-(?P<trait_B>\w+)_hoeffdings.tsv", x) with open(x, 'r') as infile: line = infile.readline() line = infile.readline() trait_A, trait_B, n, Dn, scaled, pvalue = line.split() d.append( { 'trait_A' : m.group('trait_A'), 'trait_B' : m.group('trait_B'), 'snp_set' : m.group('snp_set'), 'variant_set' : m.group('variant_set'), 'window' : m.group('window'), 'step' : m.group('step'), 'r2' : m.group('r2'), 'pval': pvalue } ) return pd.DataFrame(d) |
11 12 13 | run: daf = compile_ukbb_gps_results_into_daf(input) daf.to_csv(output[0], sep = '\t', index = False) |
20 21 22 | run: daf = compile_ukbb_li_gps_results_into_daf(input) daf.to_csv(output[0], sep = '\t', index = False) |
29 30 31 | run: daf = compile_ukbb_ldsc_results_into_daf(input) daf.to_csv(output[0], sep = '\t', index = False) |
38 39 40 | run: daf = compile_ukbb_sumher_results_into_daf(input) daf.to_csv(output[0], sep = '\t', index = False) |
47 48 49 | run: daf = compile_ukbb_hoeffdings_results_into_daf(input) daf.to_csv(output[0], sep = '\t', index = False) |
7 8 9 10 | shell: """ wget https://broad-ukb-sumstats-us-east-1.s3.amazonaws.com/round2/additive-tsvs/{wildcards.id}.gwas.imputed_v3.both_sexes.tsv.bgz -O resources/ukbb_sum_stats/{wildcards.id}.gwas.imputed_v3.both_sexes.tsv.bgz """ |
21 22 23 24 | shell: """ gunzip -c {input} >{output.decomp_file} && touch {output.flag_file} """ |
38 | script: "../../scripts/ukbb/merge_ukbb_sum_stats.R" |
51 | script: "../../scripts/ukbb/prune_merged_sum_stats.R" |
62 | script: "../../scripts/ukbb/remove_mhc_from_pruned_merged_sum_stats.R" |
71 72 | script: "../../scripts/ukbb/downsample_sum_stats.R" |
79 80 | shell: "tail -n +2 {input} | wc -l >{output}" |
87 88 | shell: "tail -n +2 {input} | wc -l >{output}" |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | panel <- read.table(snakemake@input[['panel_file']], header = T) ped <- read.table(snakemake@input[['ped_file']], header = T, sep = '\t') merged <- merge(panel, ped[c('Individual.ID', 'Paternal.ID', 'Maternal.ID')], by.x = 'sample', by.y = 'Individual.ID', all.x = T) # Get unrelated European samples euro <- subset(merged, super_pop == 'EUR' & Paternal.ID == 0 & Maternal.ID == 0) euro <- euro[c('sample', 'sample', 'Paternal.ID', 'Maternal.ID', 'gender')] names(euro) <- c('SampleID', 'SampleID', 'FatherID', 'MotherID', 'Sex') # Fix to work with keep as implemented in plink2 write.table(euro[, c('SampleID')], file = snakemake@output[[1]], sep = ' ', col.names = F, row.names = F, quote = F) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | library(data.table) setDTthreads(snakemake@threads) bim <- fread(snakemake@input[['bim']], sep = '\t', header = F, col.names = c('chr', 'ID', 'Cm', 'bp', 'A1', 'A2')) if(snakemake@wildcards[['snp_set']] == 'ukbb_sans_mhc') { bim <- bim[!(chr == 6 & bp %between% c(24e6, 45e6))] } if(snakemake@wildcards[['snp_set']] == 'ukbb_sans_mhc' | snakemake@wildcards[['snp_set']] == 'ukbb') { ukbb <- fread(snakemake@input[['ukbb']], sep = '\t', header = T, select = 'variant') bim[, variant_12 := paste(chr, bp, A1, A2, sep = ':')] bim[, variant_21 := paste(chr, bp, A2, A1, sep = ':')] bim <- bim[variant_12 %in% ukbb$variant | variant_21 %in% ukbb$variant] } fwrite(bim, sep = '\t', col.names = F, file = snakemake@output[[1]]) |
1 2 3 4 5 | daf <- read.table(snakemake@input[[1]], sep = '\t', header = T) out_daf <- data.frame(gps = daf$GPS, pval = pexp(daf$GPS^-2)) write.table(out_daf, file = snakemake@output[[1]], sep = '\t', row.names = F, quote = F) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | library(data.table) library(evd) library(fitdistrplus) gps_dat <- fread(snakemake@input[['gps_file']], sep = '\t', header = T) gps <- gps_dat[Trait_A == snakemake@params[['trait_A']] & Trait_B == snakemake@params[['trait_B']], GPS] perm_dat <- fread(snakemake@input[['perm_file']], sep = '\t', header = T) if(perm_dat[is.infinite(GPS), .N] > 0) { stop(sprintf("%d infinite-valued permuted GPS realisations", perm_dat[is.infinite(GPS), .N])) } fgev.fit <- tryCatch( fgev(perm_dat$GPS), error = function(c) { msg <- conditionMessage(c) if(msg == "observed information matrix is singular; use std.err = FALSE"){ fgev(perm_dat$GPS, std.err = F) } else { stop(msg) } } ) fgev.fitdist <- fitdist(perm_dat$GPS, 'gev', start = list(loc = fgev.fit$estimate[['loc']], scale = fgev.fit$estimate[['scale']], shape = fgev.fit$estimate[['shape']])) loc <- fgev.fitdist$estimate[['loc']] loc.sd <- fgev.fitdist$sd[['loc']] scale <- fgev.fitdist$estimate[['scale']] scale.sd <- fgev.fitdist$sd[['scale']] shape <- fgev.fitdist$estimate[['shape']] shape.sd <- fgev.fitdist$sd[['shape']] pvalue <- pgev(gps, loc = loc, scale = scale, shape = shape, lower.tail = F) fwrite(data.table(gps = gps, n = nrow(perm_dat), loc = loc, loc.sd = loc.sd, scale = scale, scale.sd = scale.sd, shape = shape, shape.sd = shape.sd, pval = pvalue), sep = '\t', file = snakemake@output[[1]]) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | library(data.table) setDTthreads(snakemake@threads) intermediates_dat <- fread(snakemake@input[['intermediates_file']], sep = '\t', header = T) sum_stats_dat <- fread(snakemake@input[['sum_stats_file']], sep = '\t', header = T, select = 'variant') sum_stats_dat[, c('CHR19', 'BP19', 'ALT', 'REF') := tstrsplit(variant, split = ':', keep = 1:4)] if(sum_stats_dat[, .N] != intermediates_dat[, .N]) stop("No. of rows in sum stats and intermediate output files differs") out_dat <- cbind(sum_stats_dat, intermediates_dat) fwrite(out_dat, file = snakemake@output[[1]], sep = '\t', col.names = T) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | library(data.table) library(magrittr) library(stringr) setDTthreads(snakemake@threads) for(i in seq_along(snakemake@input[['annot_files']])) { base <- basename(snakemake@input[['annot_files']][i]) str_replace(base, pattern = '_intermediates_annot.tsv', replacement = '')[[1]] %>% str_split(., pattern = '-') %>% unlist -> trait_pair dat <- fread(snakemake@input[['annot_files']][i], sep = '\t', header = T) dat <- dat[order(maximand, decreasing = T)][1] dat[, `:=` (trait_A = trait_pair[[1]], trait_B = trait_pair[[2]])] pval_dat <- fread(snakemake@input[['pvalue_files']][i], sep = '\t', header = T) if(i == 1) { out_dat <- cbind(dat, pval_dat[, .(gps, pval)]) } else { out_dat <- rbind(out_dat, cbind(dat, pval_dat[, .(gps, pval)])) } } fwrite(out_dat, file = snakemake@output[[1]], sep = '\t', col.names = T) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 | library(data.table) library(ggplot2) library(patchwork) library(Hmisc) library(scales) library(mvtnorm) theme_set( theme_bw()+ theme( #text = element_text(family = 'LM Roman 10'), axis.title = element_text(size = 12), plot.title = element_text(hjust = 0.5, size = 18), strip.text = element_text(size = 10), axis.text.x = element_text(size = 8, angle = 90, color = "black"), axis.text.y = element_text(size = 8, color = "black"), legend.title = element_text(size = 10), legend.text = element_text(size = 10), plot.tag = element_text(size = 10), strip.background = element_rect(fill = 'white') ) ) stat_palette <- hue_pal()(5) gps_col <- stat_palette[1] li_gps_col <- stat_palette[5] test_stats <- fread(snakemake@input[['test_statistics']], sep = '\t', header = T) t1e_dat <- test_stats[, .(true = sum(pvalue <= 0.05), false = sum(pvalue > 0.05)), by = .(rho, zmean, zsd, stat)] t1e_dat <- t1e_dat[, .(rho, zmean, zsd, stat, true, n = true+false, binconf(x = true, n = true+false, alpha = 0.05, method = 'wilson', return.df = T))] t1e_dat[, propsig := pnorm(qnorm(5e-8/2), mean = -zmean, sd = sqrt(1+zsd^2))] t1e_dat[, nsig := pnorm(qnorm(5e-8/2), mean = -zmean, sd = sqrt(1+zsd^2))*400] #pval_dats <- lapply(snakemake@input[['pvalue_files']], fread, sep = '\t', header = T, col.names = c('p.1', 'p.2')) # #zmeans <- c(1, 2, 3, 1, 2, 3) #zsds <- c(1, 1, 1, 2, 2, 2) # #for(i in 1:6) { # pval_dats[[i]][, `:=` (zmean = zmeans[i], zsd = zsds[i])] # pval_dats[[i]][1:40000, `:=` (null.1 = F, null.2 = F)] # pval_dats[[i]][40001:40400, `:=` (null.1 = T, null.2 = F)] # pval_dats[[i]][40401:40800, `:=` (null.1 = F, null.2 = T)] #} # #pval_dat <- rbindlist(pval_dats) simp=function(N00, N01, N10, rho, zmean=ZM, zsd=ZS) { S=matrix(c(1, rho, rho, 1), 2, 2) Z=rmvnorm(N00+N01+N10, sigma=S) if(N01>0) Z[ N00+(1:N01), 2]= Z[ N00+(1:N01), 2] + rnorm(N01,zmean,sd=zsd) if(N10>0) Z[ N00+N01+(1:N10), 1]= Z[ N00+N01+(1:N10), 1] + rnorm(N10,zmean,sd=zsd) P=2 * pnorm(-abs(Z)) if(which.max(P[,1])==which.max(P[,2])) { # catch rare complication return(simz(N00, N01, N10, rho=r,zmean=5)) } P } p11=simp(40000, 400, 400, rho=0, zmean=1, zsd=1)[,2] dt=data.table(p=p11, lp=-log10(p11), assoc=rep(c("null","assoc"), times=c(40400, 400))) lp=function(zmean, zsd, w=400/41200) { x=seq(-10,0,by=0.1) y0=2*dnorm(x, mean=0, sd=1) #* (1-w) y1=2*dnorm(x, mean=-zmean, sd=sqrt(zsd^2 + 1)) #* w lp=-log10(pnorm(x)*2) data.table(z=x, prob0=y0, prob1=y1, prob=y0+y1, lp=lp, zmean=zmean, zsd=zsd) } dt <- melt(rbind(lp(1,1), lp(1,2), lp(2,1), lp(2,2), lp(3,1), lp(3,2)), measure.vars=c("prob0","prob1"), variable.name="associated") dt[,associated:=c("null","associated")[associated]] pl1 <- ggplot(dt[zmean > 0]) + geom_path(aes(x=lp,y=value,col=associated)) + facet_grid(zmean ~ zsd, labeller=label_both) + labs(x="-log10 p-value", y="Density") + scale_colour_manual(name = '', values=c(null="grey20",associated="slateblue")) + geom_vline(xintercept=-log10(5e-8), linetype="dashed", colour="black") + geom_text(aes(label=paste0(100*round(propsig,3),"%")),x=15,y=0.4, data = t1e_dat[zmean > 0], col="slateblue") + theme(legend.position="bottom") pl2 <- ggplot(data = t1e_dat[zmean > 0], aes(x = rho, y = PointEst, ymin = Lower, ymax = Upper, col = stat, group = stat)) + geom_pointrange(size = 0.05)+ geom_path()+ geom_hline(yintercept = 0.05, linetype = 2) + scale_colour_discrete("Method")+ labs(x="between dataset correlation, rho", y="estimated type 1 error rate") + facet_grid(zmean ~ zsd, labeller=label_both) + ylim(c(0, .375))+ scale_colour_manual(name = '', values = c('GPS-Exp' = li_gps_col, 'GPS-GEV' = gps_col))+ theme(legend.position="bottom")+ ylab('Type 1 error rate')+ xlab('Between-data set effect estimate correlation') fig_s10 <- pl1 / pl2+ plot_annotation(tag_levels = 'A') ggsave(fig_s10, file = snakemake@output[[1]], width = 8, height = 10) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | library(data.table) library(argparse) library(ggplot2) parser <- ArgumentParser(description = 'Plot heatmap of GPS statistic denominator') parser$add_argument('-i', '--input_file', type = 'character', help = 'Path to input file') parser$add_argument('-o', '--output_file', type = 'character', help = 'Path to output file') args <- c('--input_file', 'results/gps/ukbb/all_pruned_snps/window_1000kb_step_50_r2_0_2/20002_1111-20002_1113_ecdf.tsv', '-o',"results/plots/all_pruned_snps/gps_heatmaps/20002_1111-20002_1113.png") args <- parser$parse_args() dat <- fread(args$input_file, sep = '\t', header = T) dat[ , denom := sqrt(F_u*F_v - (F_u^2)*(F_v^2))] dat[, num := abs(F_uv - F_u*F_v)] dat[, maximand := sqrt(.N/log(.N))*num/denom] |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | library(data.table) library(mvtnorm) ##' simulate correlated p-values ##' ##' @param N00 number of snps null for both datasets ##' @param N01 number of snps null for dataset 1, non-null for dataset 2 ##' @param N10 number of snps null for dataset 2, non-null for dataset 1 ##' @param rho correlation between z scores ##' @param zmean mean z score at non-null snps ##' @return (N00+N01+N10) x 2 matrix of z scores ##' @export ##' @author Chris Wallace simp=function(N00, N01, N10, rho, zmean=ZM, zsd=ZS) { S=matrix(c(1, rho, rho, 1), 2, 2) Z=rmvnorm(N00+N01+N10, sigma=S) if(N01>0) { Z[ N00+(1:N01), 2]= Z[ N00+(1:N01), 2] + rnorm(N01,zmean,sd=zsd) } if(N10>0) { Z[ N00+N01+(1:N10), 1]= Z[ N00+N01+(1:N10), 1] + rnorm(N10,zmean,sd=zsd) } P=2 * pnorm(-abs(Z)) P } fwrite(data.table(simp(N00 = snakemake@params[['N00']], N01 = snakemake@params[['N01']], N10 = snakemake@params[['N10']], rho = snakemake@params[['rho']], zmean = snakemake@params[['zmean']], zsd = snakemake@params[['zsd']])), sep = '\t', file = snakemake@output[[1]]) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 | library(data.table) library(stringr) library(magrittr) obs_liab_trans <- function(h2.obs, P, K) { z_2 <- dnorm(qnorm(1-K))^2 h2.obs * ((K*(1-K))^2/(P*(1-P)))/z_2 } odds_ratios <- list('null' = 1, 'tiny' = 1.02, 'small' = 1.05, 'infinitesimal' = 1.1, 'medium' = 1.2, 'large' = 1.4, 'vlarge' = 2) setDTthreads(snakemake@threads) # https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059431/ # According to the paper in which the ascertainment-corrected liability scale transformation is set out, the convention is that P is the sample prevalence and K the population prevalence P_a <- snakemake@params[['sample_prevalence_A']] P_b <- snakemake@params[['sample_prevalence_B']] K_a <- snakemake@params[['population_prevalence_A']] K_b <- snakemake@params[['population_prevalence_B']] cv_dat <- fread(snakemake@input[['combined_causal_variants_file']], sep = '\t', header = T) a_blocks_dat <- fread(snakemake@input[['a_block_file']], sep = '\t', header = T) b_blocks_dat <- fread(snakemake@input[['b_block_file']], sep = '\t', header = T) cv_dat[, geno_var := 2*EUR*(1-EUR)] cv_dat[, c('in_a_blocks', 'in_b_blocks') := F] cv_dat[, c('odds_ratio_a', 'odds_ratio_b') := 1] for(i in 1:nrow(a_blocks_dat)) { if(a_blocks_dat[i, no_cvs] > 0) { if(cv_dat[a_blocks_dat[i, chr] == chr & a_blocks_dat[i, block] == block, .N] == 0) { print(sprintf("Missing chr%d:block%d in a file", a_blocks_dat[i, chr], a_blocks_dat[i, block])) } else { for(j in 1:a_blocks_dat[i, no_cvs]) { # Need to iterate over j here otherwise we'll get two cvs where we sometimes only want one cv_dat[a_blocks_dat[i, chr] == chr & a_blocks_dat[i, block] == block & a_blocks_dat[i, effect] != 'null'][j] <- cv_dat[a_blocks_dat[i, chr] == chr & a_blocks_dat[i, block] == block & a_blocks_dat[i, effect] != 'null'][j][, `:=` (odds_ratio_a = unlist(odds_ratios[[a_blocks_dat[i, effect]]]), in_a_blocks = T)] } } } } for(i in 1:nrow(b_blocks_dat)) { if(b_blocks_dat[i, no_cvs] > 0) { if(cv_dat[b_blocks_dat[i, chr] == chr & b_blocks_dat[i, block] == block, .N] == 0) { print(sprintf("Missing chr%d:block%d in a file", b_blocks_dat[i, chr], b_blocks_dat[i, block])) } else { for(j in 1:b_blocks_dat[i, no_cvs]) { # Need to iterate over j here otherwise we'll get two cvs where we sometimes only want one cv_dat[b_blocks_dat[i, chr] == chr & b_blocks_dat[i, block] == block & b_blocks_dat[i, effect] != 'null'][j] <- cv_dat[b_blocks_dat[i, chr] == chr & b_blocks_dat[i, block] == block & b_blocks_dat[i, effect] != 'null'][j][, `:=` (odds_ratio_b = unlist(odds_ratios[[b_blocks_dat[i, effect]]]), in_b_blocks = T)] } } } } if(cv_dat[in_a_blocks == T, .N] != a_blocks_dat[, sum(no_cvs)]) stop(sprintf('Missing %d causal variants from A set', a_blocks_dat[, sum(no_cvs)] - cv_dat[in_a_blocks == T, .N] )) if(cv_dat[in_b_blocks == T, .N] != b_blocks_dat[, sum(no_cvs)]) stop(sprintf('Missing %d causal variants from B set', b_blocks_dat[, sum(no_cvs)] - cv_dat[in_b_blocks == T, .N])) if(cv_dat[in_a_blocks == T & in_b_blocks == T, .N] != merge(a_blocks_dat, b_blocks_dat, by = c('chr', 'block'))[effect.x != 'null' & effect.y != 'null', sum(no_cvs.x)]) stop('Missing shared causal variants') cv_dat[in_a_blocks == T, beta.A := log(odds_ratio_a)] cv_dat[in_b_blocks == T, beta.B := log(odds_ratio_b)] cv_dat[in_a_blocks == T, beta_2.A := beta.A^2] cv_dat[in_b_blocks == T, beta_2.B := beta.B^2] V_A.A <- with(cv_dat[in_a_blocks == T], sum(beta_2.A*geno_var)) V_A.B <- with(cv_dat[in_b_blocks == T], sum(beta_2.B*geno_var)) h2.theo.obs.A <- V_A.A/(P_a*(1-P_a)) h2.theo.obs.B <- V_A.B/(P_b*(1-P_b)) h2.theo.liab.A <- obs_liab_trans(h2.theo.obs.A, P = P_a, K = K_a) h2.theo.liab.B <- obs_liab_trans(h2.theo.obs.B, P = P_b, K = K_b) C_A.AB <- with(cv_dat[in_a_blocks == T & in_b_blocks == T], sum(beta.A * beta.B * geno_var)) r_A.AB <- C_A.AB/(sqrt(V_A.A)*sqrt(V_A.B)) res_dat <- data.table(odds_ratio.A = paste(unique(cv_dat[in_a_blocks == T, odds_ratio_a]), collapse = ','), odds_ratio.B = paste(unique(cv_dat[in_b_blocks == T, odds_ratio_b]), collapse = ','), no_blocks.A = cv_dat[in_a_blocks == T, .N], no_blocks.B = cv_dat[in_b_blocks == T, .N], no_shared_blocks = cv_dat[in_a_blocks == T & in_b_blocks == T, .N], h2.theo.obs.A, h2.theo.obs.B, h2.theo.liab.A, h2.theo.liab.B, V_A.A, V_A.B, C_A.AB, r_A.AB) fwrite(res_dat, file = snakemake@output[['theo_rg_file']], sep = '\t', na = 'NA') |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | library(data.table) setDTthreads(snakemake@resources[['threads']]) sum_stats_dat <- fread(snakemake@input[['sum_stats_file']], sep = '\t', header = T, tmpdir = snakemake@resources[['tmpdir']], select = c('variant', snakemake@params[['pval_col']], snakemake@params[['tstat_col']], snakemake@params[['n_col']])) sum_stats_dat[, c('chr', 'bp', 'ref', 'alt') := tstrsplit(variant, split = ':')] sum_stats_dat[, chr := as.character(chr)] sum_stats_dat[, bp := as.character(bp)] snp_dat <- fread(snakemake@input[['snplist_file']], sep = '\t', header = T) snp_dat[, CHR := as.character(CHR)] snp_dat[, BP := as.character(BP)] merged_dat <- merge(sum_stats_dat, snp_dat, by.x = c('chr', 'bp'), by.y = c('CHR', 'BP')) merged_dat <- merged_dat[(ref == A1 & alt == A2) | (ref == A2 & alt == A1)] merged_dat[, c('ref', 'alt') := NULL] setnames(merged_dat, c('chr', 'bp'), c('CHR', 'BP')) fwrite(merged_dat, file = snakemake@output[[1]], sep = '\t') |
1 2 3 4 5 6 7 8 9 10 11 12 | library(magrittr) library(data.table) setDTthreads(snakemake@threads) lapply(snakemake@input[['ldsc_files']], fread, sep = '\t', select = c('CHR', 'SNP', 'BP')) %>% rbindlist -> merged_dat allele_dat <- fread(snakemake@input[['snplist_file']], sep = '\t') merged_dat <- merge(merged_dat, allele_dat, by = 'SNP') fwrite(merged_dat, file = snakemake@output[[1]], sep = '\t') |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | library(data.table) setDTthreads(snakemake@threads) chr_colname <- snakemake@params[['chr_colname']] bp_colname <- snakemake@params[['bp_colname']] a1_colname <- snakemake@params[['a1_colname']] a2_colname <- snakemake@params[['a2_colname']] z_colname <- snakemake@params[['z_colname']] n <- snakemake@params[['sample_size']] dat <- fread(snakemake@input[[1]], sep = '\t', header = T, select = c(chr_colname, bp_colname, a1_colname, a2_colname, z_colname)) setnames(dat, c(a1_colname, a2_colname, z_colname), c('A1', 'A2', 'Z')) dat[, Predictor := paste(get(chr_colname), get(bp_colname), A2, A1, sep = ':')] dat[, n := n] dat[, `:=` (len.A1 = nchar(A1), len.A2 = nchar(A2))] dat <- dat[len.A1 == 1 & len.A2 == 1] dat <- dat[!duplicated(dat, by = 'Predictor')] dat <- na.omit(dat) dat <- dat[, .(Predictor, A1, A2, n, Z)] fwrite(dat, file = snakemake@output[[1]], sep = '\t', na = 'NA', quote = F) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | library(data.table) setDTthreads(snakemake@threads) z_colname <- snakemake@params[['z_colname']] sample_size_colname <- snakemake@params[['sample_size_colname']] dat <- fread(snakemake@input[[1]], sep = '\t', header = T, select = c('variant', z_colname, sample_size_colname)) # The SumHer documentation states that A1 is the 'test allele' and A2 is the 'other allele', so I take this to mean A1 is the minor allele and A2 the major allele # chr:bp:major:minor in 'variant' column of UKBB sum stats files dat[, c('chr', 'bp', 'A2', 'A1') := tstrsplit(variant, split = ':', keep = 1:4)] dat <- dat[!(chr %in% c('X', 'Y', 'MT'))] dat[, `:=` (len.A1 = nchar(A1), len.A2 = nchar(A2))] dat <- dat[len.A1 == 1 & len.A2 == 1] # 'Predictor' has format chr:bp:A2:A1 in my simgwas file, not sure it is correct, though dat[, Predictor := paste(chr, bp, A2, A1, sep = ':')] setnames(dat, c(z_colname, sample_size_colname), c('Z', 'n')) dat <- dat[!duplicated(dat, by = 'Predictor')] dat <- na.omit(dat) dat <- dat[, .(Predictor, A1, A2, n, Z)] fwrite(dat, file = snakemake@output[[1]], sep = '\t', na = 'NA', quote = F) |
1 2 3 4 5 6 7 8 9 10 11 12 | library(data.table) setDTthreads(snakemake@threads) dat <- fread(snakemake@input[[1]], sep = '\t', header = T) dat[f.6148.0.0 == 2 | f.6148.0.1 == 2 | f.6148.0.2 == 2 | f.6148.0.3 == 2 | f.6148.0.4 == 2, glaucoma := "6148_2"] dat[f.6148.0.0 == 5 | f.6148.0.1 == 5 | f.6148.0.2 == 5 | f.6148.0.3 == 5 | f.6148.0.4 == 5, md := "6148_5"] dat[f.22126.0.0 == 0, f.22126.0.0 := NA] dat[f.22126.0.0 == 1, f.22126.0.0 := 22126] fwrite(dat, file = snakemake@output[[1]], sep = '\t') |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | library(data.table) setDTthreads(snakemake@threads) library(magrittr) a_block_file <- snakemake@input[['a_block_file']] b_block_file <- snakemake@input[['b_block_file']] a_block_files <- scan(a_block_file, what = character()) b_block_files <- scan(b_block_file, what = character()) ncases_column_index <- 8 + (as.integer(snakemake@wildcards[['no_reps']]) * 4) + 2 ncontrols_column_index <- 8 + (as.integer(snakemake@wildcards[['no_reps']]) * 4) + 3 chr_column_index <- 8 + (as.integer(snakemake@wildcards[['no_reps']]) * 4) + 4 block_effect_column_index <- 8 + (as.integer(snakemake@wildcards[['no_reps']]) * 4) + 5 z_column_index_A <- 8 + as.integer(snakemake@wildcards[['tag_A']]) beta_column_index_A <- 8 + (as.integer(snakemake@wildcards[['no_reps']]) * 2) + as.integer(snakemake@wildcards[['tag_A']]) p_column_index_A <- 8 + (as.integer(snakemake@wildcards[['no_reps']]) * 3) + as.integer(snakemake@wildcards[['tag_A']]) a_cols <- c(1:7, z_column_index_A, beta_column_index_A, p_column_index_A, ncases_column_index, ncontrols_column_index, chr_column_index, block_effect_column_index) a_block_files %>% lapply(., fread, sep = '\t', header = F, select = a_cols) %>% rbindlist -> a_block_dat fwrite(a_block_dat, file = snakemake@output[['combined_sum_stats_A']], sep = '\t', col.names = F) rm(a_block_dat) z_column_index_B <- 8 + as.integer(snakemake@wildcards[['tag_B']]) beta_column_index_B <- 8 + (as.integer(snakemake@wildcards[['no_reps']]) * 2) + as.integer(snakemake@wildcards[['tag_B']]) p_column_index_B <- 8 + (as.integer(snakemake@wildcards[['no_reps']]) * 3) + as.integer(snakemake@wildcards[['tag_B']]) b_cols <- c(1:7, z_column_index_B, beta_column_index_B, p_column_index_B, ncases_column_index, ncontrols_column_index, chr_column_index, block_effect_column_index) b_block_files %>% lapply(., fread, sep = '\t', header = F, select = b_cols) %>% rbindlist -> b_block_dat fwrite(b_block_dat, file = snakemake@output[['combined_sum_stats_B']], sep = '\t', col.names = F) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | library(data.table) library(simGWAS) library(argparse) library(parallel) parser <- ArgumentParser(description = 'Computes blockwise LD matrix') parser$add_argument('--hap_file', type = 'character', help = 'Path to haplotype file') parser$add_argument('--leg_file', type = 'character', help = 'Path to legend file') parser$add_argument('--output_file', type = 'character', help = 'Path to output file', required = T) parser$add_argument('-nt', '--no_of_threads', type = 'integer', help = 'Number of threads to use', default = 1) args <- parser$parse_args() setDTthreads(args$no_of_threads) leg_dat <- fread(file = args$leg_file, sep = ' ', header = T) hap_dat <- fread(file = args$hap_file, sep = ' ', header = F) for(j in 1:(ncol(hap_dat)-2)) { set(hap_dat, j = j, value = as.numeric(hap_dat[[j]])) } hap_mat <- as.matrix(hap_dat[,1:(ncol(hap_dat)-2)]) freq_dat <- data.table(t(hap_mat)+1) colnames(freq_dat) <- hap_dat[[(ncol(hap_dat)-1)]] freq_dat[, Probability := 1/.N] rm(hap_dat, hap_mat) ld_mat <- corpcor::make.positive.definite(simGWAS:::wcor2(as.matrix(freq_dat[,setdiff(colnames(freq_dat),"Probability"), with = F][, leg_dat$rs, with = F]), freq_dat$Probability)) save(ld_mat, file = args$output_file) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 | library(data.table) library(Rcpp) library(independence) setDTthreads(snakemake@threads) sourceCpp(code = ' #include <Rcpp.h> #include <map> using namespace Rcpp; // [[Rcpp::export]] NumericVector perturbDuplicates(NumericVector values) { std::map<double, int> freqMap; for(size_t i = 0; i < values.size(); ++i){ freqMap[values[i]]++; if(freqMap[values[i]] > 1) { for(int j = 1; j < freqMap[values[i]]; ++j) { values[i] = values[i] + (freqMap[values[i]] * std::numeric_limits<double>::epsilon()); } } } return values; } ') run_hoeffding <- function(dat, trait_A_code, trait_B_code) { dat[, trait_A_code := perturbDuplicates(get(trait_A_code))] dat[, trait_B_code := perturbDuplicates(get(trait_B_code))] dat <- unique(unique(dat, by = trait_A_code), by = trait_B_code) hoeffding.D.test(xs = dat[[trait_A_code]], ys = dat[[trait_B_code]]) } sum_stats_dat <- fread(snakemake@input[['sum_stats_file']], sep = '\t', header = T, select = c(snakemake@params[['a_colname']], snakemake@params[['b_colname']])) hoeffding_res <- run_hoeffding(sum_stats_dat, snakemake@params[['a_colname']], snakemake@params[['b_colname']]) res_dat <- data.table(t(unlist(hoeffding_res[c('n', 'Dn', 'scaled', 'p.value')]))) res_dat[, `:=` (trait_A = snakemake@wildcards[['effect_blocks_A']], trait_B = snakemake@wildcards[['effect_blocks_B']])] res_dat <- res_dat[, c('trait_A', 'trait_B', 'n', 'Dn', 'scaled', 'p.value')] if(is.na(res_dat$p.value)) { stop("Failed to compute Hoeffding's test p-value") } fwrite(res_dat, file = snakemake@output[[1]], sep = '\t', col.names = T, row.names = F) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | library(data.table) setDTthreads(snakemake@threads) library(magrittr) z_column_name_A <- sprintf("zsim.%s", snakemake@wildcards[['tag_A']]) beta_column_name_A <- sprintf("betasim.%s", snakemake@wildcards[['tag_A']]) p_column_name_A <- sprintf("p.%s", snakemake@wildcards[['tag_A']]) header_A <- c("position", "a0", "a1", "id", "block", "TYPE", "EUR", z_column_name_A, beta_column_name_A, p_column_name_A, "ncases", "ncontrols", "chr", "block_effect_size") snakemake@input[['a_files']] %>% lapply(., fread, sep = '\t', header = F) %>% rbindlist -> a_dat names(a_dat) <- header_A fwrite(a_dat, sep = '\t', file = snakemake@output[['combined_sum_stats_A']], col.names = T) rm(a_dat) z_column_name_B <- sprintf("zsim.%s", snakemake@wildcards[['tag_B']]) beta_column_name_B <- sprintf("betasim.%s", snakemake@wildcards[['tag_B']]) p_column_name_B <- sprintf("p.%s", snakemake@wildcards[['tag_B']]) header_B <- c("position", "a0", "a1", "id", "block", "TYPE", "EUR", z_column_name_B, beta_column_name_B, p_column_name_B, "ncases", "ncontrols", "chr", "block_effect_size") snakemake@input[['b_files']] %>% lapply(., fread, sep = '\t', header = F) %>% rbindlist -> b_dat names(b_dat) <- header_B fwrite(b_dat, sep = '\t', file = snakemake@output[['combined_sum_stats_B']], col.names = T) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | library(data.table) setDTthreads(snakemake@threads) leg_dat <- fread(file = snakemake@input[['block_legend_file']], sep = ' ', header = T) hap_dat <- fread(file = snakemake@input[['block_haplotype_file']], sep = ' ', header = F) bim_dat <- fread(file = snakemake@input[['bim_file']], sep = '\t', header = F, col.names = c('chr', 'bim.id', 'Cm', 'bp', 'A1', 'A2')) load(file = snakemake@input[['ld_mat_file']]) for(j in 1:(ncol(hap_dat)-2)) { set(hap_dat, j = j, value = as.numeric(hap_dat[[j]])) } hap_mat <- as.matrix(hap_dat[,1:(ncol(hap_dat)-2)]) hap_meta_dat <- hap_dat[, (ncol(hap_dat)-1):ncol(hap_dat)] names(hap_meta_dat) <- c('rs', 'block') rm(hap_dat) freq_dat <- data.table(t(hap_mat)+1) rm(hap_mat) colnames(freq_dat) <- hap_meta_dat$rs # Required by the make_GenoProbList function below (at least) freq_dat[, Probability := 1/.N] cv_ind <- snakemake@params[['causal_variant_indices']] result_dat <- data.table(leg_dat[cv_ind, .(id, position, block, a0, a1, TYPE, EUR)]) result_dat <- merge(result_dat, bim_dat[, .(bim.id, bp, A1, A2)], by.x = 'position', by.y = 'bp', all.x = T) result_dat[, c("A1", "A2", "bim.id") := NULL] result_dat[, chr := snakemake@params[['chr_no']]] result_dat[, rsID := tstrsplit(id, split = ':', keep = 1)] fwrite(result_dat, file = snakemake@output[[1]], sep = '\t') |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | library(data.table) setDTthreads(snakemake@threads) sum_stats_A_dat <- fread(snakemake@input[['sum_stats_file_A']], sep = '\t', header = T, select = c('id', 'chr', 'position', 'a0', 'a1', 'block', snakemake@params[['file_A_stat_cols']], 'block_effect_size')) sum_stats_B_dat <- fread(snakemake@input[['sum_stats_file_B']], sep = '\t', header = T, select = c('id', 'chr', 'position', 'a0', 'a1', 'block', snakemake@params[['file_B_stat_cols']], 'block_effect_size')) merged_dat <- merge(sum_stats_A_dat, sum_stats_B_dat, by = c('chr', 'position', 'a0', 'a1', 'block'), suffixes = c(".A", ".B")) merged_dat[, id.B := NULL] setnames(merged_dat, 'id.A', 'id') if(is.null(snakemake@wildcards[['chr']]) & length(unique(merged_dat$chr)) != 22) { stop(sprintf("Incorrect number of chromosomes present in merged summary statistics: %s", length(unique(merged_dat$chr)))) } else { merged_dat <- unique(merged_dat, by = c('chr', 'position')) fwrite(merged_dat, file = snakemake@output[[1]], sep = '\t') } |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | library(data.table) library(argparse) parser <- ArgumentParser(description = 'Prune simulated summary statistics file') parser$add_argument('--sum_stats_file', type = 'character', help = 'Path to summary statistics file') parser$add_argument('--bim_file', type = 'character', help = 'Path to bim file') parser$add_argument('--prune_file', type = 'character', help = 'Path to file containing pruned IDs') parser$add_argument('-o', '--output_path', type = 'character', help = 'Path to pruned summary statistics file', required = T) parser$add_argument('-nt', '--no_of_threads', type = 'integer', help = 'Number of threads to use', default = 1) args <- parser$parse_args() setDTthreads(args$no_of_threads) sum_stats_dat <- fread(args$sum_stats_file, sep = '\t', header = T) pruned_rsid_dat <- fread(args$prune_file, sep = ' ', header = F, col.names = 'ID') bim_dat <- fread(args$bim_file, sep = '\t', header = F, col.names = c('chr', 'ID', 'Cm', 'bp', 'A1', 'A2')) pruned_rsid_dat <- merge(bim_dat, pruned_rsid_dat, by = 'ID') rm(bim_dat) merged_dat <- merge(sum_stats_dat, pruned_rsid_dat[ , .(chr, bp, A1, A2)], by.x = c('chr', 'position'), by.y = c('chr', 'bp')) merged_dat <- merged_dat[(a0 == A2 & a1 == A1) | (a0 == A1 & a1 == A2)] # Some indels are present as duplicates with flipped A1/A2 entries merged_dat <- merged_dat[!duplicated(merged_dat, by = c('chr', 'position'))] merged_dat[, c("A1", "A2") := NULL] fwrite(merged_dat, file = args$output_path, sep = '\t') |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 | library(data.table) library(simGWAS) library(magrittr) simulated_z_score_par <- function(exp_z_score, ld_mat, nrep=1, ncores = 1){ sim_z_score <- mvnfast::rmvn(n = nrep, mu = exp_z_score, sigma = ld_mat, ncores = ncores) if(nrep==1) return(c(sim_z_score)) sim_z_score } no_reps <- snakemake@params[['no_reps']] setDTthreads(snakemake@threads) set.seed(snakemake@wildcards[['seed']]) leg_dat <- fread(file = snakemake@input[['block_legend_file']], sep = ' ', header = T) hap_dat <- fread(file = snakemake@input[['block_haplotype_file']], sep = ' ', header = F) bim_dat <- fread(file = snakemake@input[['bim_file']], sep = '\t', header = F, col.names = c('chr', 'bim.id', 'Cm', 'bp', 'A1', 'A2')) load(file = snakemake@input[['ld_mat_file']]) log_odds_ratio <- log(snakemake@params[['odds_ratio']]) for(j in 1:(ncol(hap_dat)-2)) { set(hap_dat, j = j, value = as.numeric(hap_dat[[j]])) } hap_mat <- as.matrix(hap_dat[,1:(ncol(hap_dat)-2)]) hap_meta_dat <- hap_dat[, (ncol(hap_dat)-1):ncol(hap_dat)] names(hap_meta_dat) <- c('rs', 'block') rm(hap_dat) freq_dat <- data.table(t(hap_mat)+1) rm(hap_mat) colnames(freq_dat) <- hap_meta_dat$rs # Required by the make_GenoProbList function below (at least) freq_dat[, Probability := 1/.N] chosen_snps <- colnames(ld_mat) cv_ind <- sample(1:length(chosen_snps), size = snakemake@wildcards[['no_cvariants']]) cv_snps <- chosen_snps[cv_ind] sub_freq_dat <- freq_dat[, c(colnames(ld_mat), 'Probability'), with = F] geno_probs <- make_GenoProbList(snps = colnames(ld_mat), W = colnames(ld_mat)[cv_ind], freq = sub_freq_dat) zexp <- expected_z_score(N0 = snakemake@params[['no_controls']], N1 = snakemake@params[['no_cases']], snps = chosen_snps, W = cv_snps, gamma.W = rep(log_odds_ratio, length(cv_snps)), freq = sub_freq_dat, GenoProbList = geno_probs) zsim <- simulated_z_score_par(exp_z_score = zexp, ld_mat = ld_mat, nrep = no_reps, ncores = snakemake@threads) # Both vbetasim and betasim overflow if passed as integers vbetasim <- simulated_vbeta(N0 = as.numeric(snakemake@params[['no_controls']]), N1 = as.numeric(snakemake@params[['no_cases']]), snps = chosen_snps, W = cv_snps, gamma.W = rep(log_odds_ratio, length(cv_snps)), freq = sub_freq_dat, nrep = no_reps) betasim <- zsim * sqrt(vbetasim) if(no_reps == 1 ) { result_dat <- data.table(leg_dat[rs %in% chosen_snps, .(id, position, block, a0, a1, TYPE, EUR)], zexp, zsim, vbetasim = t(vbetasim), betasim = t(betasim)) } else { # Add p-values for multiple reps result_dat <- data.table(leg_dat[rs %in% chosen_snps, .(id, position, block, a0, a1, TYPE, EUR)], zexp, t(zsim), t(vbetasim), t(betasim)) } names(result_dat) <- c('id', 'position', 'block', 'a0', 'a1', 'TYPE', 'EUR', 'zexp', paste0('zsim.', 1:no_reps), paste0('vbetasim.', 1:no_reps), paste0('betasim.', 1:no_reps)) for(j in 1:no_reps) { result_dat[, c(paste0('p.', j)) := 2*pnorm(abs(get(paste0('zsim.', j))), lower.tail = F)] } result_dat[, or := 1] result_dat[cv_ind, or := exp(log_odds_ratio)] setnames(result_dat, 'or', 'chosen_or') result_dat[, `:=` (ncases = snakemake@params[['no_cases']], ncontrols = snakemake@params[['no_controls']])] # This merging step confines our SNPs to those present in the bim file; we keep the same order of a0 and a1 alleles, even if this differs in the bim file result_dat <- merge(result_dat, bim_dat[, .(bim.id, bp, A1, A2)], by.x = 'position', by.y = 'bp', all.x = T) result_dat <- result_dat[(a0 == A2 & a1 == A1) | (a0 == A1 & a1 == A2)] result_dat[, c("A1", "A2", "bim.id") := NULL] result_dat[, chr := snakemake@params[['chr_no']]] result_dat[, id := tstrsplit(id, split = ':')[[1]]] # NB: We add 'block_effect_size' to the end of this cols <- c("position", "a0", "a1", "id", "block", "TYPE", "EUR", "zexp", paste0("zsim.", 1:no_reps), paste0("vbetasim.", 1:no_reps), paste0("betasim.", 1:no_reps), paste0("p.", 1:no_reps), "chosen_or", "ncases", "ncontrols", "chr") result_dat <- result_dat[, ..cols] result_dat[, block_effect_size := snakemake@wildcards[['effect_size']]] fwrite(result_dat, file = snakemake@output[[1]], sep = '\t', col.names = F) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | library(data.table) library(argparse) parser <- ArgumentParser(description = 'Chops legend and haplotype files into LD block-specific files') parser$add_argument('--hap_file', type = 'character', help = 'Path to haplotype file') parser$add_argument('--leg_file', type = 'character', help = 'Path to legend file') parser$add_argument('-b', '--block_file', type = 'character', help = 'Path to block file') parser$add_argument('--chr_no', type = 'integer', help = 'Number of chromosome') parser$add_argument('-o', '--output_root', type = 'character', help = 'Path to output directory', required = T) parser$add_argument('-nt', '--no_of_threads', type = 'integer', help = 'Number of threads to use', default = 1) args <- parser$parse_args() setDTthreads(args$no_of_threads) leg_dat <- fread(file = args$leg_file, sep = ' ', header = T) # Skip leading metadata rows hap_dat <- fread(file = args$hap_file, sep = ' ', header = F, skip = 4) block_dat <- fread(file = args$block_file, sep = ' ', header = F, col.names = c('block', 'chr', 'start', 'stop')) block_dat <- block_dat[chr == args$chr_no] leg_dat[, rs := make.names(id)] hap_dat[, rs := leg_dat$rs] for(i in 1:nrow(block_dat)) { leg_dat[position %between% c(block_dat[i, start], block_dat[i, stop]), block := (i-1)] } hap_dat <- hap_dat[rs %in% leg_dat$rs] hap_dat[, block := leg_dat$block] hap_dat <- hap_dat[, c(seq(1, ncol(hap_dat)-3, by = 2), seq(2, ncol(hap_dat)-2, by = 2), ncol(hap_dat)-1, ncol(hap_dat)), with = F] for(i in sort(unique(hap_dat$block))) { fwrite(leg_dat[block == i], file = file.path(args$output_root, sprintf('block_%s.legend.gz', i)), sep = ' ') fwrite(hap_dat[block == i], file = file.path(args$output_root, sprintf('block_%s.hap.gz', i)), sep = ' ', col.names = F) } |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | library(data.table) setDTthreads(snakemake@threads) overlap <- fread(snakemake@input[['overlap']], sep = '\t', header = T) metadata <- fread(snakemake@input[['metadata']], sep = '\t', header = T) overlap <- overlap[trait_A %in% snakemake@params[['traits_to_keep']] & trait_B %in% snakemake@params[['traits_to_keep']]] m_dat <- merge(overlap, metadata[, .(code, desc_A = long_abbrv, ncases_A = n_cases, ncontrols_A = n_controls)], by.x = 'trait_A', by.y = 'code') m_dat <- merge(m_dat, metadata[, .(code, desc_B = long_abbrv, ncases_B = n_cases, ncontrols_B = n_controls)], by.x = 'trait_B', by.y = 'code') cols_to_convert <- c("A_controls", "B_controls", "A_cases", "B_cases", "AB_controls", "AB_cases") m_dat[, c(cols_to_convert) := lapply(.SD, as.numeric), .SDcols = cols_to_convert] m_dat[, f.temp := sqrt(A_cases * B_cases / A_controls / B_controls)] m_dat[, rho := ( AB_controls * f.temp + AB_cases / f.temp ) / sqrt( (A_controls + A_cases) * (B_controls + B_cases) )] m_dat[, f.temp := NULL] m_dat[, 'P(AB|A)' := AB_cases/A_cases] m_dat[, 'P(AB|B)' := AB_cases/B_cases] m_dat <- m_dat[, .(trait_A = desc_A, trait_B = desc_B, trait_A_code = trait_A, trait_B_code = trait_B, A_cases, B_cases, AB_cases, `P(AB|A)`, `P(AB|B)`, A_controls, B_controls, AB_controls, A_cases.gwas = ncases_A, B_cases.gwas = ncases_B, A_controls.gwas = ncontrols_A, B_controls.gwas = ncontrols_B, rho)] fwrite(m_dat, file = snakemake@output[[1]], sep = '\t') |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 | library(data.table) library(Rcpp) library(independence) setDTthreads(snakemake@threads) sourceCpp(code = ' #include <Rcpp.h> #include <map> using namespace Rcpp; // [[Rcpp::export]] NumericVector perturbDuplicates(NumericVector values) { std::map<double, int> freqMap; for(size_t i = 0; i < values.size(); ++i){ freqMap[values[i]]++; if(freqMap[values[i]] > 1) { for(int j = 1; j < freqMap[values[i]]; ++j) { values[i] = values[i] + (freqMap[values[i]] * std::numeric_limits<double>::epsilon()); } } } return values; } ') run_hoeffding <- function(dat, trait_A_code, trait_B_code) { dat[, trait_A_code := perturbDuplicates(get(trait_A_code))] dat[, trait_B_code := perturbDuplicates(get(trait_B_code))] dat <- unique(unique(dat, by = trait_A_code), by = trait_B_code) hoeffding.D.test(xs = dat[[trait_A_code]], ys = dat[[trait_B_code]]) } sum_stats_dat <- fread(snakemake@input[['sum_stats_file']], sep = '\t', header = T, select = c(snakemake@wildcards[['trait_A']], snakemake@wildcards[['trait_B']])) hoeffding_res <- run_hoeffding(sum_stats_dat, snakemake@wildcards[['trait_A']], snakemake@wildcards[['trait_B']]) res_dat <- data.table(t(unlist(hoeffding_res[c('n', 'Dn', 'scaled', 'p.value')]))) res_dat[, `:=` (trait_A = snakemake@wildcards[['trait_A']], trait_B = snakemake@wildcards[['trait_B']])] res_dat <- res_dat[, c('trait_A', 'trait_B', 'n', 'Dn', 'scaled', 'p.value')] if(is.na(res_dat$p.value)) { stop("Failed to compute Hoeffding's test p-value") } fwrite(res_dat, file = snakemake@output[[1]], sep = '\t', col.names = T, row.names = F) |
1 2 3 4 5 6 7 8 9 10 11 | library(data.table) setDTthreads(snakemake@threads) sum_stats_dat <- fread(snakemake@input[[1]], sep = '\t', header = T) no_snps <- min(nrow(sum_stats_dat), as.integer(snakemake@wildcards[['no_snps']])) sum_stats_dat <- sum_stats_dat[sample(1:no_snps)] fwrite(sum_stats_dat, file = snakemake@output[[1]], sep = '\t') |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | library(argparse) library(data.table) library(evd) library(fitdistrplus) parser <- ArgumentParser(description = 'Fits GEV to permuted data using increasingly large subset.') parser$add_argument('-a', '--trait_A', type = 'character', help = 'Trait A label', required = T) parser$add_argument('-b', '--trait_B', type = 'character', help = 'Trait B label', required = T) parser$add_argument('-p', '--perm_file', type = 'character', help = 'Path to file containing GPS value generated from permuted data', required = T) parser$add_argument('-n', '--n_values', type = 'integer', nargs = '+', help = 'Sample sizes to which to fit GEV', required = T) parser$add_argument('-o', '--output_file', type = 'character', help = 'Path to output file', required = T) args <- parser$parse_args() perm_dat <- fread(args$perm_file, sep = '\t', header = T) estimate_dat <- data.table(trait_A = character(), trait_B = character(), n = integer(), loc = numeric(), loc.sd = numeric(), scale = numeric(), scale.sd = numeric(), shape = numeric(), shape.sd = numeric()) for(x in args$n_values) { fgev.fit <- fgev(perm_dat$GPS[1:x]) fgev.fitdist <- fitdist(perm_dat$GPS[1:x], 'gev', start = list(loc = fgev.fit$estimate[['loc']], scale = fgev.fit$estimate[['scale']], shape = fgev.fit$estimate[['shape']])) loc <- fgev.fitdist$estimate[['loc']] loc.sd <- fgev.fitdist$sd[['loc']] scale <- fgev.fitdist$estimate[['scale']] scale.sd <- fgev.fitdist$sd[['scale']] shape <- fgev.fitdist$estimate[['shape']] shape.sd <- fgev.fitdist$sd[['shape']] estimate_dat <- rbind(estimate_dat, data.table(trait_A = args$trait_A, trait_B = args$trait_B, n = x, loc = loc, loc.sd = loc.sd, scale = scale, scale.sd = scale.sd, shape = shape, shape.sd = shape.sd)) } fwrite(estimate_dat, sep = '\t', file = args$output_file) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | library(data.table) setDTthreads(snakemake@threads) ukbb_trait_codes <- snakemake@params[['ukbb_trait_codes']] sum_stats_files <- snakemake@input[['ukbb_files']] left_dat <- fread(sum_stats_files[1], sep = '\t', header = T, select = c('variant', 'pval', 'tstat', 'n_complete_samples')) setnames(left_dat, c('variant', 'pval', 'tstat', 'n_complete_samples'), c('variant', paste0('pval.', ukbb_trait_codes[1]), paste0('tstat.', ukbb_trait_codes[1]), paste0('n_complete_samples.', ukbb_trait_codes[1]))) for(i in 2:length(sum_stats_files)) { right_dat <- fread(sum_stats_files[i], sep = '\t', header = T, select = c('variant', 'pval', 'tstat', 'n_complete_samples')) setnames(right_dat, c('variant', 'pval', 'tstat', 'n_complete_samples'), c('variant', paste0('pval.', ukbb_trait_codes[i]), paste0('tstat.', ukbb_trait_codes[i]), paste0('n_complete_samples.', ukbb_trait_codes[i]))) left_dat <- merge(left_dat, right_dat, by = 'variant') } if(snakemake@params[['sans_mhc']]) { left_dat[, c('chr', 'bp') := tstrsplit(variant, split = ':', keep = 1:2)] left_dat <- left_dat[!(chr == 6 & bp %between% c(24e6, 45e6))] left_dat[, c('chr', 'bp') := NULL] } fwrite(left_dat, file = snakemake@output[[1]], sep = '\t') |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 | library(ggplot2) library(ggpubr) library(argparse) require(scales) theme_set(theme_bw()+ theme( axis.title = element_text(size=12), plot.title=element_text(hjust=0.5, size=12), strip.text=element_text(size=10), axis.text.x=element_text(size=10, angle=30, color="black"), axis.text.y=element_text(size=10, color="black"), legend.title=element_text(size=10), legend.text=element_text(size=10) ) ) parser <- ArgumentParser(description = 'Plot GEV parameter estimates as a function of no. of SNPs') parser$add_argument('-i', '--fit_files', type = 'character', nargs = '+', help = 'Path to fitted parameters files') parser$add_argument('-n', '--no_snps', type = 'integer', nargs = '+', help = 'No. of SNPs used to fit each file\' estimates') parser$add_argument('-o', '--output_file', type = 'character', help = 'Path to output file') args <- parser$parse_args() if(length(args$fit_files) != length(args$no_snps)) { stop("Lengths of fit_files and no_snps do not match") } daf <- data.frame(trait_A = character(), trait_B = character(), no_snps = integer(), loc = numeric(), loc.sd = numeric(), scale = numeric(), scale.sd = numeric(), shape = numeric(), shape.sd = numeric()) for(i in seq_along(args$fit_files)) { fit_daf <- read.table(args$fit_files[i], sep = '\t', header = T) daf <- rbind(daf, data.frame(trait_A = fit_daf$trait_A, trait_B = fit_daf$trait_B, no_snps = args$no_snps[i], loc = fit_daf$loc, loc.sd = fit_daf$loc.sd, scale = fit_daf$scale, scale.sd = fit_daf$scale.sd, shape = fit_daf$shape, shape.sd = fit_daf$shape.sd)) } pl_loc_estimate <- ggplot(daf[c('no_snps', 'loc', 'loc.sd')], aes(x=no_snps, y=loc))+ geom_line()+ geom_errorbar(aes(ymin=loc-1.96*loc.sd, ymax=loc+1.96*loc.sd))+ ggtitle('Location parameter')+ ylab('Estimate')+ theme(legend.position = 'none')+ scale_x_continuous(labels = scales::comma) pl_scale_estimate <- ggplot(daf[c('no_snps', 'scale', 'scale.sd')], aes(x=no_snps, y=scale))+ geom_line()+ geom_errorbar(aes(ymin=scale-1.96*scale.sd, ymax=scale+1.96*scale.sd))+ ggtitle('Scale parameter')+ ylab('Estimate')+ theme(legend.position = 'none')+ scale_x_continuous(labels = scales::comma) pl_shape_estimate <- ggplot(daf[c('no_snps', 'shape', 'shape.sd')], aes(x=no_snps, y=shape))+ geom_line()+ geom_errorbar(aes(ymin=shape-1.96*shape.sd, ymax=shape+1.96*shape.sd))+ ggtitle('Shape parameter')+ ylab('Estimate')+ theme(legend.position = 'none')+ scale_x_continuous(labels = scales::comma) ggsave(plot = ggarrange(plotlist = list(pl_loc_estimate, pl_scale_estimate, pl_shape_estimate), nrow = 1, ncol = 3, common.legend = T), file = args$output_file, width = 8.1, height = 3) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 | library(ggplot2) library(ggpubr) library(argparse) theme_set(theme_bw()+ theme( axis.title = element_text(size=12), plot.title=element_text(hjust=0.5, size=12), strip.text=element_text(size=10), axis.text.x=element_text(size=10, angle=30, color="black"), axis.text.y=element_text(size=10, color="black"), legend.title=element_text(size=10), legend.text=element_text(size=10) ) ) parser <- ArgumentParser(description = 'Plot GEV parameter estimates as a function of sample size') parser$add_argument('-f', '--fit_file', type = 'character', help = 'Path to fitted parameters file') parser$add_argument('-o', '--output_file', type = 'character', help = 'Path to output file') args <- parser$parse_args() daf <- read.table(args$fit_file, sep = '\t', header = T) pl_loc_estimate <- ggplot(daf[c('n', 'loc', 'loc.sd')], aes(x=n, y=loc))+ geom_line()+ geom_errorbar(aes(ymin=loc-1.96*loc.sd, ymax=loc+1.96*loc.sd))+ ggtitle('Location parameter')+ ylab('Estimate')+ theme(legend.position = 'none') pl_scale_estimate <- ggplot(daf[c('n', 'scale', 'scale.sd')], aes(x=n, y=scale))+ geom_line()+ geom_errorbar(aes(ymin=scale-1.96*scale.sd, ymax=scale+1.96*scale.sd))+ ggtitle('Scale parameter')+ ylab('Estimate')+ theme(legend.position = 'none') pl_shape_estimate <- ggplot(daf[c('n', 'shape', 'shape.sd')], aes(x=n, y=shape))+ geom_line()+ geom_errorbar(aes(ymin=shape-1.96*shape.sd, ymax=shape+1.96*shape.sd))+ ggtitle('Shape parameter')+ ylab('Estimate')+ theme(legend.position = 'none') ggsave(plot = ggarrange(plotlist = list(pl_loc_estimate, pl_scale_estimate, pl_shape_estimate), nrow = 1, ncol = 3, common.legend = T), file = args$output_file, width = 8.1, height = 3) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | library(argparse) library(data.table) library(fitdistrplus) library(evd) parser <- ArgumentParser(description = 'Plot goodness-of-fit plots for GEV fit to permuted data') parser$add_argument('-f', '--fitdist_file', type = 'character', help = 'Path to fitted parameters file') parser$add_argument('-p', '--perm_file', type = 'character', help = 'Path to file contained permuted null GPS statistics') parser$add_argument('-l', '--trait_pair_label', type = 'character', help = 'Trait pair label') parser$add_argument('-o', '--output_path', type = 'character', help = 'Path to output plot file', required = T) args <- parser$parse_args() perm_sample <- scan(args$perm_file, skip = 1) fit_dat <- fread(args$fitdist_file, sep = '\t', header = T) fgev.fitdist <- fitdist(perm_sample, 'gev', start = list(loc = fit_dat$loc, scale = fit_dat$scale, shape = fit_dat$shape)) fgev.gof <- gofstat(fgev.fitdist) png(args$output_path) plot(fgev.fitdist) title(main = sprintf("%s GOF plots", args$trait_pair_label), outer = T, line = -1) dev.off() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 | library(argparse) library(data.table) library(ggplot2) theme_set(theme_bw()+ theme( axis.title = element_text(size=12), plot.title=element_text(hjust=0.5, size=12), strip.text=element_text(size=10), axis.text.x=element_text(size=10, angle=30, color="black"), axis.text.y=element_text(size=10, color="black"), legend.title=element_text(size=10), legend.text=element_text(size=10) ) ) library(ggpubr) parser <- ArgumentParser(description = 'Plot GPS null distribution using specified null permutations file') parser$add_argument('-f', '--fitdist_file', type = 'character', help = 'Path to fitted parameters file') parser$add_argument('-p', '--perm_file', type = 'character', help = 'Path to file contained permuted null GPS statistics') parser$add_argument('-a', '--exp1_null', type = 'character', help = 'Path to exp1 output plot file', required = T) parser$add_argument('-b', '--gev_null', type = 'character', help = 'Path to gev output plot file', required = T) parser$add_argument('-c', '--exp1_gev_combined', type = 'character', help = 'Path to combined output plot file', required = T) parser$add_argument('-nt', '--no_of_threads', type = 'integer', help = 'Number of threads to use', default = 1) args <- parser$parse_args() perm_sample <- scan(args$perm_file, skip = 1) exp1_pvals <- pexp(perm_sample^-2) fit_dat <- fread(args$fitdist_file, sep = '\t', header = T) gev_pvals <- evd::pgev(perm_sample, loc = fit_dat$loc, scale = fit_dat$scale, shape = fit_dat$shape, lower.tail = F) pl_exp1_pvals_hist <- ggplot(data = data.frame(p = exp1_pvals))+ geom_histogram(aes(x = p, y = ..count../sum(..count..)), colour = 'black', fill = 'gray', breaks = seq(0, 1, length.out = 21))+ geom_hline(yintercept = 0.05, linetype = "dashed", col = "blue")+ xlab('GPS p-value')+ ylab('Relative frequency')+ ggtitle('Histogram of GPS p-values\nfrom Exp(1) under null')+ scale_x_continuous(limits = c(0,1))+ ylim(0,0.1) ggsave(plot = pl_exp1_pvals_hist, file = args$exp1_null, units = "in", width = 2.7, height = 3) pl_gev_pvals_hist <- ggplot(data = data.frame(p = gev_pvals))+ geom_histogram(aes(x = p, y = ..count../sum(..count..)), colour = 'black', fill = 'gray', breaks = seq(0, 1, length.out = 21))+ geom_hline(yintercept = 0.05, linetype = "dashed", col = "blue")+ xlab('GPS p-value')+ ylab('Relative frequency')+ ggtitle('Histogram of GPS p-values\nfrom GEV under null')+ scale_x_continuous(limits = c(0,1))+ ylim(0,0.1) ggsave(plot = pl_gev_pvals_hist, file = args$gev_null, units = "in", width = 2.7, height = 3) ggsave(plot = ggarrange(plotlist = list(pl_exp1_pvals_hist, pl_gev_pvals_hist), ncol = 2, nrow = 1), file = args$exp1_gev_combined, units = "in", width = 5.4, height = 3) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | library(data.table) setDTthreads(snakemake@threads) sum_stats_dat <- fread(snakemake@input[['sum_stats_file']], sep = '\t', header = T) pruned_rsid_dat <- fread(snakemake@input[['pruned_range_file']], sep = ' ', header = F) names(pruned_rsid_dat) <- 'ID' bim_dat <- fread(snakemake@input[['bim_file']], sep = '\t', header = F, col.names = c('chr', 'ID', 'Cm', 'bp', 'A1', 'A2')) # Prune the rsIDs bim_dat <- bim_dat[ID %in% pruned_rsid_dat$ID] bim_dat[, variant_12 := paste(chr, bp, A1, A2, sep = ':')] bim_dat[, variant_21 := paste(chr, bp, A2, A1, sep = ':')] # Prune the summary statistics; there are no rsIDs in this file so we need to construct the IDs from coordinates and alleles contained in the concatenated bim file sum_stats_dat <- sum_stats_dat[variant %in% bim_dat$variant_12 | variant %in% bim_dat$variant_21] fwrite(sum_stats_dat, file = snakemake@output[[1]], sep = '\t') system(sprintf("sed -i 's/pval\\.//g' %s", snakemake@output[[1]])) |
1 2 3 4 5 6 7 8 9 10 11 12 | library(data.table) setDTthreads(snakemake@threads) dat <- fread(snakemake@input[[1]], sep = '\t', header = T) dat[, c('chr', 'bp') := tstrsplit(variant, split = ':', keep = 1:2)] dat <- dat[!(chr == 6 & bp %between% c(24e6, 45e6))] dat[, c('chr', 'bp') := NULL] fwrite(dat, file = snakemake@output[[1]], sep = '\t') |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Created: 1yr ago
Updated: 1yr ago
Maitainers:
public
URL:
https://github.com/twillis209/gps_paper_pipeline
Name:
gps_paper_pipeline
Version:
1
Downloaded:
0
Copyright:
Public Domain
License:
None
Keywords:
- Future updates
Related Workflows

ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...

Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...

snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...

ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics

RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...

This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...