Snakemake Workflow: Impute HLA and/or KIR alleles from SNPs
Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output, operation, topic
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
N.B: As of 21st of February, 2020
shapeit=v2.r837
has been removed from the bioconda channel. Hence, I have removed it from the environment file. However,
shapeit=2.r904
is available from
https://anaconda.org/dranew/shapeit
and if you want to use it add it to the environment file with the appropriate
dranew
channel. Runs with
shapeit4
will still work as it is still available on bioconda.
HLA and KIR Imputation from SNP
Authors
- Bisrat Johnathan Debebe ( @bjohnnyd )
Table of Contents
Usage
Workflow Overview
The full workflow consists of creating datasets ready for imputation:
The steps can be summarized as:
1. Convert input PLINK bed files to reference b37
2. Encode REF/ALT alleles the same as the KIR*IMP reference panel
3. Phase the encoded VCF using shapeit4 and shapeit.
Quickstart
To run the pipeline edit
config.yaml
to point to your input PLINK bed file by placing the following yaml directives:
project:
<project name>:
liftover:
plink: <path to PLINK bed file>
where
<project name>
is the name you want to be associated with your run and output and
<path to PLINK bed file>
is the full or relative path to your input PLINK bed file.
To run the pipeline run the command:
snakemake -j<number of parallel jobs> --use-conda
The default PLINK bed file is assumed to be on
hg18
reference but additional reference types are possible as
hg16
,
hg17
,
hg38
. To specify for example reference
hg17
edit
config.yaml
with the following:
project:
<project name>:
liftover:
plink: <path to PLINK bed file>
reference: hg17
All output will produced inside the
output/<project name>
directory.
Configure the workflow according to your needs via editing the file
config.yaml
. To see the list of default configurations settings run the command
snakemake print_defaults
.
Running Specific Parts or Running Workflow in Steps
The workflow can be ran from a specific part. In addition, the workflow can be run in steps allowing to explore the data before phasing and filtering.
To see the list of specific rules/steps that are possible run
snakemake --list-target-rules
. Each of the target rules listed can be run with the command
snakemake -j<number of parallel jobs> [OPTIONS] <target rule name>
.
Running Only Liftover
It is possible to only use the workflow to perform liftover of PLINK bed files from specific reference to
b37
. This will produce a VCF file with the reference being
b37
.
To perform only liftover with the same
config.yaml
from
Quickstart
run the command:
snakemake -j<number of parallel jobs> --use-conda liftover
Encode VCF Without Liftover or Perform Liftover and Encoding Without Phasing With SHAPEIT
If you have VCF file based on reference
b37
it is possible to only run encoding without liftover. To encode the VCF file using KIR*IMP reference panel edit
config.yaml
:
project:
<project name>:
freq_encode_snps:
vcf: <path to VCF file>
then execute snakemake using the command:
snakemake -j<number of parallel jobs> --use-conda kirimp_encode
If the above command is executed with the
config.yaml
settings from
Quickstart
only liftover and encoding will be performed. This allows inspection of the variants in the VCF by looking at the images produced in
output/{project}/kirimp/01_freq_encode_snps/{project}.png
. The images might help in deducing what threshold to use during SHAPEIT for filtering troublesome variants with missing genotypes.
Run SHAPEIT After Checking VCF Statistics
To run SHAPEIT and prepare data for KIR*IMP using the file produced by running
snakemake -j<number of parallel jobs> --use-conda kirimp_encode
run the command:
snakemake -j<number of parallel jobs> --use-conda kirimp_ready
In addition, SHAPEIT can be run on a specific VCF (not necessarily produced by the workflow) by specifying the vcf file under the shapeit directive in
config.yaml
:
project:
<project name>:
shapeit
vcf: <Path to VCF file>
Additional and Default Parameters
The default parameters settings and there descriptions are listed below and can be modified by placing it in
config.yaml
with the desired values different from defaults:
BCFTOOLS_THREADS: 4
KIRIMP_PANEL_URL: http://imp.science.unimelb.edu.au/kir/static/kirimp.uk1.snp.info.csv
PLINK_THREADS: 4
SHAPEIT_GENMAP_URL: https://github.com/odelaneau/shapeit4/blob/master/maps/genetic_maps.b37.tar.gz?raw=true
SHAPEIT_THREADS: 4
project:
<project name>:
freq_encode_snps:
vcf: output/{project}/liftover/04_hg19_vcf/{project}.{reference}ToHg19.vcf.gz
additional: "--outlier-threshold 0.1" # additional parameters to be passed to the script in 'scripts/frequency_encode_snps.py'.
liftover:
reference: hg18 # Input PLINK bed reference can be either hg16, hg17, hg18 or hg38
shapeit:
vcf: output/{project}/kirimp/01_freq_encode_snps/{project}.vcf.gz
gmap: input/meta/shapeit/kirimp.chr19.gmap.txt.gz
pbwt: 8 # shapeit4: determines the number of conditioning neighbours, higher number should produce better accuracy but slower runtimes
pbwt-modulo: 8 # shapeit4: determines variants for storing pbwt indexes
regions: [19] # chromosomes for phasing default is 19 for KIR*IMP
states: 500 # shapeit2: determines number of haplotypes for conditioning, higher number should produce better accuracy but slower runtimes
min_missing: 0.25 # variants with missing genotype rate larger than this will be discarded before phasing with SHAPEIT. Inspect the image from kirimp_encode to determine threshold
v2_additional: "" # Additional parameters for shapeit version 2. Description of possible settings can be found at https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html
v4_additional: "" # Additional parameters for shapeit version 4. Description of possible settings can be found at https://odelaneau.github.io/shapeit4/
Workflow Running Options
Test your configuration by performing a dry-run via
snakemake --use-conda -npr
Execute the workflow locally via
snakemake --use-conda -j $N
using
$N
cores or run it in a cluster environment via
snakemake --use-conda --cluster qsub --jobs 100
or if
DRMAA
is available
snakemake --use-conda --drmaa --jobs 100
If you not only want to fix the software stack but also the underlying OS, use
snakemake --use-conda --use-singularity
in combination with any of the modes above. See the Snakemake documentation for further details.
Investigate results
After successful execution, you can create a self-contained interactive HTML report with all results via:
snakemake --report report.html
Standalone Script
The workflow includes a standalone script
scripts/frequency_encode_snps.py
which can be used to encode a VCF file to a reference panel of variants. To setup the environment for the script create the environment:
conda env create -f envs/freq_encode_snps.yml
then activate the environment with
conda activate freq_encode_snps
The parameters to run the standalone script are:
usage: frequency_encode_snps.py [-h] -v VCF_FILE -r REFERENCE_PANEL
[-rt {kirimp,custom}] [--separator SEPARATOR]
-o OUTPUT [-chr [CHROMOSOMES]]
[--chromosome-annotation {ucsc,ensembl,genbank}]
[-a] [-c] [-min MIN_AMBIGIOUS_THRESHOLD]
[-max MAX_AMBIGIOUS_THRESHOLD]
[--outlier-threshold OUTLIER_THRESHOLD]
[-t THREADS]
For usage with KIR*IMP the VCF has to be with
hg18/b37
reference.
The script in addition to encoding the VCF file will produce a diagnosis plot (same name as output vcf file but with
.png
extension) as well as a
TOML
file containing all the metadata of the encoding. The metadata TOML can be read into R using
configr
require(configr)
read.config(file = "metadata.toml")
or into Python using
import toml
toml.load("metadata.toml")
the resulting vcf will contain statistics from the encoding inside the INFO fields:
##INFO=<ID=UPD,Number=A,Type=Flag,Description="REF and ALT updated based on reference panel frequency">
##INFO=<ID=PFD,Number=A,Type=Float,Description="Alternate frequency difference to reference panel frequency">
##INFO=<ID=MISS,Number=A,Type=Float,Description="Missing Genotype Frequency">
##INFO=<ID=MAF,Number=A,Type=Float,Description="Minor Allele Frequency">
Code Snippets
23 24 25 26 | shell: "scripts/frequency_encode_snps.py -t {threads} -v {input.vcf} " "-r {input.panel} -o {output.vcf} {params} 2> {log} && " "bcftools index -f {output.vcf}" |
9 | shell: "mv {input} {output}" |
17 | shell: "mv {input} {output}" |
43 | shell: "liftOver {input.bed} {input.chain} {output.lifted} {output.unlifted} &> {log}" |
77 78 79 80 81 82 83 | shell: """ plink --allow-extra-chr --allow-no-sex --real-ref-alleles --keep-allele-order --snps-only just-acgt --bfile {params.basein} --recode vcf --out {params.baseout} &> {log} bcftools view -U {output.tmp_vcf} | bcftools norm --threads {threads} --rm-dup snps | bcftools +fill-tags -Oz -- -d 2> {log} > {output.vcf} 2>> {log} bcftools index -f {output.vcf} &>> {log} bcftools stats {output.vcf} > {output.stats} 2>> {log} """ |
12 | shell: "cat {input} | tar xzfO - --wildcards 'chr19.b37.gmap.gz' 2> {log} > {output}" |
35 36 37 38 39 40 41 42 43 | shell: """ bcftools filter -r {wildcards.region} -Oz -e 'MISS > {params.missing_threshold}' {input.vcf} > {output.filtered_vcf} 2> {log.bcftools} bcftools index -f {output.filtered_vcf} 2>> {log.bcftools} shapeit4 --thread {threads} --input {output.filtered_vcf} --map {input.gmap} --output {output.phased_vcf} \ --region {wildcards.region} --pbwt-depth {params.pbwt} --pbwt-modulo {params.pbwt_modulo} --log {output.log} {params.additional} 2> {log.shapeit4} bcftools convert --hapsample {params.out} {output.phased_vcf} 2>> {log.bcftools} gunzip {output.hap}.gz """ |
64 65 66 67 68 69 | shell: "bcftools filter -r {wildcards.region} -Oz -e 'MISS > {params.missing_threshold}' {input.vcf} > {output.filtered_vcf} 2> {log.bcftools} && " "bcftools index -f {output.filtered_vcf} 2> {log.bcftools} && " "shapeit --thread {threads} --input-vcf {output.filtered_vcf} -M {input.gmap} --states {params.states} " "-O {output.haps} {output.sample} --output-graph {output.graph} " "--output-log {output.log} {params.additional} 2> {log.shapeit}" |
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 | import argparse import re import sys import textwrap import matplotlib import numpy as np from os import path from pathlib import Path import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from matplotlib.patches import Patch from cyvcf2 import VCF, Writer plt.rcParams["figure.figsize"] = (18, 14) matplotlib.use("Agg") CHROMOSOME_19_ANNOTATION = {"ucsc": "chr19", "ensembl": "19", "genbank": "CM000681.2"} # Required headers for panel input files, either kirimp (kirimp.uk1.snp.info.csv) or custom with the required fields KIRIMP_HEADER = ["id", "position", "allele0", "allele1", "allele1_frequency"] CUSTOM_HEADER = ["chrom", "pos", "a0", "a1", "freq"] COMPLEMENT = {"A": "T", "T": "A", "G": "C", "C": "G", ".": "."} """ CUSTOM HEADERS """ UPDATED = { "ID": "UPD", "Description": "REF and ALT updated based on reference panel frequency", "Type": "Flag", "Number": "A", } PANEL_FREQ_DIFF = { "ID": "PFD", "Description": "Alternate frequency difference to reference panel frequency", "Type": "Float", "Number": "A", } MISSINGNES = { "ID": "MISS", "Description": "Missing Genotype Frequency", "Type": "Float", "Number": "A", } MAF = { "ID": "MAF", "Description": "Minor Allele Frequency", "Type": "Float", "Number": "A", } AF = { "ID": "AF", "Description": "Alternate Allel Frequency", "Type": "Float", "Number": "A", } toml_header = """ [encoder_settings] outlier_threshold=%s minimum_ambigious_threshold=%f maximum_ambigious_threshold=%f reference_panel_type=%s chromosome_annotation=%s ambigious_dropped=%r correct_complement=%r [variant] """ variant_toml = """ [variant.%s] status = %s reason = %s frequency = %f panel_frequency=%r updated_frequency=%r minor_allele_frequency=%r missing_genotype_frequency=%r panel_frequency_difference=%r """ """ Class to represent genotypes in 0/1 format might not be necessary as I can flip from there""" class Genotype(object): __slots__ = ("alleles", "phased") FLIP_DICT = {0: 1, 1: 0, -1: -1} def __init__(self, li): self.alleles = li[:-1] self.phased = li[-1] def __str__(self): sep = "/|"[int(self.phased)] return sep.join("0123."[a] for a in self.alleles) def flip(self): self.alleles = [Genotype.FLIP_DICT[allele] for allele in self.alleles] def genotype(self): return self.alleles + [self.phased] __repr__ = __str__ """ Class to keep track of VCF file summaries for variants """ class VCFSummary(object): __slots__ = ( "ambigious", "unknown_alt", "updated", "flipped", "n_in_panel", "kept", "__freqs", "VARIANTS", ) def __init__(self): self.VARIANTS = {} self.ambigious = 0 self.unknown_alt = 0 self.updated = 0 self.flipped = 0 self.n_in_panel = 0 self.kept = 0 self.__freqs = None def __str__(self): summary_toml = """ [summary] n_ambigious_variants=%d n_unknown_alt_or_monomorphic=%d n_updated=%d n_flipped_strand=%d vcf_variants_in_panel=%d vcf_variants_in_panel_after_encoding_snps=%d """.rstrip() return textwrap.dedent(summary_toml) % ( self.ambigious, self.unknown_alt, self.updated, self.flipped, self.n_in_panel, self.kept, ) def add_variant(self, v_id): self.VARIANTS[v_id] = {"freq": None, "updated_freq": None, "panel_freq": None} def add_variant_dict(self, vdict): self.VARIANTS.update(vdict) def freqs(self): if not self.__freqs: self.__freqs = np.array( [ [ v["freq"], v["updated_freq"], v.get("MAF", None), v.get("MISS", None), v.get("PFD", None), v["panel_freq"], ] for k, v in sorted(self.VARIANTS.items()) ] ) return self.__freqs def v_ids(self, original=True): if original: vids = np.array([v["v_id"] for k, v in sorted(self.VARIANTS.items())]) else: vids = np.array(sorted(self.VARIANTS.keys())) return vids def updates(self): return np.array([v["updated"] == 1 for k, v in sorted(self.VARIANTS.items())]) __repr__ = __str__ def main(arguments=None): args = parse_arguments() vcf = VCF(args["vcf_file"], threads=args["threads"]) vcf.add_info_to_header(UPDATED) vcf.add_info_to_header(PANEL_FREQ_DIFF) vcf.add_info_to_header(MISSINGNES) vcf.add_info_to_header(MAF) if not vcf.contains("AF"): vcf.add_info_to_header(AF) w = Writer(args["output"], vcf) panel = generate_panel_data( panel_file=args["reference_panel"], chr=args["chromosomes"], annotation=args["chromosome_annotation"], panel_type=args["reference_panel_type"], separator=args["separator"], ) vcf_summary = VCFSummary() print( toml_header % ( args["outlier_threshold"], args["min_ambigious_threshold"], args["max_ambigious_threshold"], args["reference_panel_type"], args["chromosome_annotation"], args["ambigious"], args["fix_complement_ref_alt"], ), file=sys.stderr, ) for variant in vcf: status = "unchanged" reason = "None" panel_variant_freq = None variant_id_end = str(variant.CHROM) + "_" + str(variant.end) if not variant.INFO.get("AF"): variant.INFO["AF"] = variant.aaf if variant_id_end in panel: variant.INFO["UPD"] = 0 panel_variant = panel[variant_id_end] panel_variant_freq = panel_variant["freq"] vcf_summary.n_in_panel += 1 if not variant.ALT: print_variant_toml( variant, panel_variant["freq"], "removed", "unknown_alt/monomorphic" ) vcf_summary.unknown_alt += 1 continue if ( args["ambigious"] and variant.aaf > args["min_ambigious_threshold"] and variant.aaf < args["max_ambigious_threshold"] ): vcf_summary.ambigious += 1 print_variant_toml( variant, panel_variant["freq"], "removed", "ambigious_frequency" ) continue if should_recode(variant, panel_variant): swap_ref_alt(variant) variant.INFO["UPD"] = 1 vcf_summary.updated += 1 status = "updated" reason = "ref_alt_swapped" if ( should_flipstrand(variant, panel_variant) and args["fix_complement_ref_alt"] ): flipstrand(variant, panel_variant["freq"]) variant.INFO["UPD"] = 1 vcf_summary.flipped += 1 status = "strand_flipped" reason = "ref/alt_not_in_panel_nucleotides" vcf_summary.add_variant(variant_id_end) v_freq = variant.INFO.get("AF") variant.INFO["PFD"] = abs(variant.INFO.get("AF") - panel_variant["freq"]) variant.INFO["MISS"] = np.sum(variant.gt_types == 2) / len(variant.gt_types) variant.INFO["MAF"] = v_freq if v_freq < 0.5 else 1 - v_freq vcf_summary.VARIANTS[variant_id_end].update( { "freq": variant.aaf, "panel_freq": panel_variant["freq"], "updated_freq": v_freq, "MAF": variant.INFO.get("MAF"), "MISS": variant.INFO.get("MISS"), "PFD": variant.INFO.get("PFD"), "v_id": variant.ID, "updated": variant.INFO.get("UPD"), } ) print_variant_toml(variant, panel_variant_freq, status, reason) vcf_summary.kept += 1 w.write_record(variant) w.close() vcf.close() plot_file = re.sub(r"(vcf|bcf)(\.gz)*$", "png", args["output"]) if not vcf_summary.n_in_panel == 0: create_summary_plot( vcf_summary, outfile=plot_file, threshold=args["outlier_threshold"] ) print(vcf_summary, file=sys.stderr) print("n_reference_panel_size=%d" % len(panel.keys()), file=sys.stderr) def print_variant_toml( variant, panel_variant_freq, status, reason, variant_toml=variant_toml ): variant_tup = ( variant.INFO.get("AF", None), variant.INFO.get("MAF", None), variant.INFO.get("MISS", None), variant.INFO.get("PFD", None), ) print( variant_toml % ((variant.ID, status, reason, variant.aaf, panel_variant_freq) + variant_tup), file=sys.stderr, ) def swap_ref_alt(variant): gts = variant.genotypes gts = [Genotype(li) for li in gts] for gt in gts: gt.flip() variant.genotypes = [gt.genotype() for gt in gts] updated_frequency = sum([gt.alleles.count(1) for gt in gts]) / ( 2 * len([gt for gt in gts if -1 not in gt.alleles]) ) temp_nuc = variant.REF variant.REF = variant.ALT[0] variant.ALT = [temp_nuc] variant.INFO["AF"] = updated_frequency def flipstrand(variant, panel_freq, COMPLEMENT=COMPLEMENT): variant.REF = COMPLEMENT[variant.REF] variant.ALT = COMPLEMENT[variant.ALT[0]] frequency_synced = (panel_freq > 0.5 and variant.INFO.get("AF") > 0.5) or ( panel_freq < 0.5 and variant.INFO.get("AF") < 0.5 ) if not frequency_synced: swap_ref_alt(variant) def should_recode(variant, panel_variant): frequency_synced = ( panel_variant["freq"] > 0.5 and variant.INFO.get("AF") > 0.5 ) or (panel_variant["freq"] < 0.5 and variant.INFO.get("AF") < 0.5) nucleotides_synced = ( variant.REF == panel_variant["A0"] and variant.ALT[0] == panel_variant["A1"] ) return not nucleotides_synced and not frequency_synced def should_flipstrand(variant, panel_variant, COMPLEMENT=COMPLEMENT): nucleotides_synced = ( variant.REF == panel_variant["A0"] and variant.ALT[0] == panel_variant["A1"] ) frequency_synced = ( panel_variant["freq"] > 0.5 and variant.INFO.get("AF") > 0.5 ) or (panel_variant["freq"] < 0.5 and variant.INFO.get("AF") < 0.5) alt_is_complement = COMPLEMENT[variant.REF] == variant.ALT[0] return (not nucleotides_synced or not frequency_synced) and alt_is_complement def create_summary_plot(v_summary, outfile, threshold=None): freqs = v_summary.freqs() default_color = plt.rcParams["axes.prop_cycle"].by_key()["color"][0] fig = plt.figure() ax1 = fig.add_subplot(321) ax2 = fig.add_subplot(323, sharex=ax1) ax3 = fig.add_subplot(325) ax4 = fig.add_subplot(222) ax5 = fig.add_subplot(224, sharex=ax4) titles = ( "Original VCF Frequencies Compared to Panel Frequencies", "Updated VCF Frequencies Compared to Panel Frequencies", "Minor Allele Frequency Compared to Difference in Frequency Between Panel and VCF", "Genotype Missingness Compared to Difference in Frequency Between Panel and VCF", ) x_labs = ( "VCF Alternate Frequency", "VCF Alternate Frequency", "Minor Allele Frequency", "Missing Genotype Frequency", ) y_labs = ( "Panel Allele Frequency", "Panel Allele Frequency", "Panel vs VCF Frequency Difference", "Panel vs VCF Frequency Difference", ) coefs = np.corrcoef(freqs.T)[:, [4, 5]] for i, ax in enumerate([ax1, ax2, ax4, ax5]): coef, comparison_freq = ( (coefs[i, 0], freqs[:, 4]) if i > 1 else (coefs[i, 1], freqs[:, 5]) ) ax.set_title(titles[i], fontsize=9) ax.scatter(freqs[:, i], comparison_freq, s=10, alpha=0.7) ax.annotate( "corr = %.2f" % coef, ( max(freqs[:, i]) - max(freqs[:, i]) / 20, max(comparison_freq) - max(comparison_freq) / 20, ), ha="center", fontsize=10, ) ax.set_ylabel(y_labs[i], fontsize=9) ax.set_xlabel(x_labs[i], fontsize=9) ax.plot(ax.get_xlim(), ax.get_ylim(), ls="--", c=".3") if threshold: idxs = freqs[:, 4] > threshold for f, cf, vid in zip( freqs[idxs, i], comparison_freq[idxs], v_summary.v_ids()[idxs] ): ax.annotate(vid, (f, cf), ha="center", fontsize=8) v_types = ["REF --> ALT", "Strand Flipped", "Ambigious Variants", "ALT Missing"] counts = [ v_summary.updated, v_summary.flipped, v_summary.ambigious, v_summary.unknown_alt, ] bar_width = 0.75 idx = np.arange(len(counts)) barlist = ax3.bar(idx, counts, width=bar_width, align="center") ax3.set_xticks(idx) ax3.set_xticklabels(v_types, rotation=45, minor=False, fontsize=8) [bar.set_color("r") for bar in barlist[2:]] for i, count in enumerate(counts): col = "r" if i > 1 else "black" ax3.text(i, count, " " + str(count), ha="center", color=col) ax3.set_ylabel("Counts", fontsize=9) ax3.set_title("Variant Modification Type and Excluded Counts", fontsize=9) leg_elements = [ Patch(facecolor=default_color, label="Updated"), Patch(facecolor="red", label="Removed"), ] ax3.legend(handles=leg_elements, loc="upper right") plt.savefig(outfile) def generate_panel_data( panel_file, chr=None, annotation="ensembl", panel_type="kirimp", separator=None ): f = open(panel_file, "r") header_line = next(f).strip() sep = get_separator(header_line, separator) header_line = [cell.replace('"', "") for cell in header_line.split(sep)] if panel_type == "kirimp": chromosome = CHROMOSOME_19_ANNOTATION[annotation] if header_line != KIRIMP_HEADER: raise TypeError( "If input panel type is kirimp, the panel needs to contain a comma-separated header:\n%s" % ",".join(KIRIMP_HEADER) ) else: if header_line != CUSTOM_HEADER: raise TypeError( "If input panel type is custom, the panel needs to contain a comma-separated header:\n%s" % ",".join(CUSTOM_HEADER) ) snp_dict = { chromosome + "_" + cells[1] if panel_type == "kirimp" else cells[0] + "_" + cells[1]: {"A0": cells[2], "A1": cells[3], "freq": float(cells[4].strip())} if panel_type == "kirimp" else {"A0": cells[2], "A1": cells[3], "freq": float(cells[4])} for cells in [line.strip().replace('"', "").split(sep) for line in f] } f.close() return snp_dict def get_separator(line, passed_separator=None): tabs = line.count(r"\t") commas = line.count(r",") if passed_separator: sep = passed_separator elif tabs == 4 and commas != 4: sep = r"\t" elif tabs != 4 and commas == 4: sep = "," else: raise TypeError( "Cannot determine separator from file please specify separator directly as an argument [--reference-panel-col-separator]" ) return sep def parse_arguments(arguments=None): parser = argparse.ArgumentParser( description="This script encodes SNPs in a VCF to a reference panel based on allele frequencies", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser._action_groups.pop() required = parser.add_argument_group("required arguments") optional = parser.add_argument_group("optional arguments") required.add_argument( "-v", "--vcf-file", help="VCF/BCF file to re-encode (can be compressed with bgzip)", required=True, type=str, ) required.add_argument( "-r", "--reference-panel", help="Reference panel file either in format of KIR*IMP reference panel or a custom data format [chrom pos ref alt freq]", required=True, type=str, ) optional.add_argument( "-rt", "--reference-panel-type", help="Reference panel file type", choices=["kirimp", "custom"], default="kirimp", type=str, ) optional.add_argument( "--separator", help="Custom reference panel column separator", type=str ) optional.add_argument( "-o", "--output", help="Output vcf file", required=True, type=str ) optional.add_argument( "-chr", "--chromosomes", help="Chromosome over which to encode SNPs ", required=False, nargs="?", type=str, ) optional.add_argument( "--chromosome-annotation", help="Chromosome annotation type in the VCF", choices=["ucsc", "ensembl", "genbank"], default="ensembl", type=str, ) optional.add_argument( "-a", "--ambigious", help="Determines whether ambigious alternate alleles should be dropped", action="store_false", ) optional.add_argument( "-c", "--fix-complement-ref-alt", help="Should ref/alt that are complements be fixed with respect to frequency", action="store_false", ) optional.add_argument( "-min", "--min-ambigious-threshold", help="Alternate alleles above this frequency and below the max ambigious frequency will be flagged as ambigious", default=0.495, type=float, ) optional.add_argument( "-max", "--max-ambigious-threshold", help="Alternate alleles above this frequency and below the max ambigious frequency will be flagged as ambigious", default=0.505, type=float, ) optional.add_argument( "--outlier-threshold", help="Threshold to use to label variant frequency differences between alternate and panel frequencis that are significant", default=None, type=float, ) optional.add_argument( "-t", "--threads", help="Number of threads to use for compression", type=int ) args = vars(parser.parse_args()) if ( args["reference_panel_type"] == "custom" and args["reference_panel_format"] is None ): parser.error( "custom --reference-panel-type requires --reference-panel-format to be set" ) return args if __name__ == "__main__": main() |
43 | shell: "snakemake --dag | dot -Tsvg > {output}" |
Support
- Future updates
Related Workflows





