Indels are not ideal - quick test for interrupted ORFs in bacterial/microbial genomes
ideel
This repo builds on code by Mick Watson who wrote a blog post and follow up about a quick way to test the viability of a (long-read) assembly.
Dependencies:
-
Snakemake
-
Prodigal
-
Diamond
-
R (including libraries readr and ggplot2)
You will need a Diamond index like UniProt TREMBL.
run
Clone the repo.
The output of the workflow will be written to
--directory
. In there, make a directory called "genomes", put assemblies in there with .fa file extension
Edit the
config.json
file, specifying e.g. the path to the Diamond database.
Then:
# http://snakemake.readthedocs.io/en/stable/executable.html
# http://snakemake.readthedocs.io/en/stable/snakefiles/configuration.html
snakemake --configfile config.json --directory ~/tmp/ --cores 4
# per default, Snakemake uses only 1 CPU core
Code Snippets
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 | library(ggplot2) # get command line arguments as an array # args <- commandArgs(trailingOnly = TRUE) # files # filein <- args[1] # fileout <- args[2] filein <- snakemake@input[[1]] fileout <- snakemake@output[[1]] # http://snakemake.readthedocs.io/en/stable/snakefiles/rules.html#external-scripts # In the R script, an S4 object named snakemake analog to the Python case # above is available and allows access to input and output files and other # parameters. Here the syntax follows that of S4 classes with attributes # that are R lists, e.g. we can access the first input file with snakemake@input[[1]] # data # data <- read_tsv(filein, col_names=c('qlen', 'slen')) data <- read.table(filein, header=FALSE, sep='\t') names(data) <- c('qlen', 'slen') pseudogenes <- sum(data$qlen / data$slen < 0.9) print(paste0('Encountered genes < 0.9 reference length: ', pseudogenes)) theme_min = function ( size=10, font=NA, face='plain', panelColor=backgroundColor, axisColor='#999999', gridColor=gridLinesColor, textColor='black') { theme_text = function(...) ggplot2::theme_text(family=font, face=face, colour=textColor, size=size, ...) opts( axis.text.x = theme_text(), axis.text.y = theme_text(), #axis.line = theme_blank(), axis.ticks = theme_segment(colour=axisColor, size=0.25), panel.border = theme_rect(colour=backgroundColor), # panel.border = theme_blank(), legend.background = theme_blank(), legend.key = theme_blank(), legend.key.size = unit(1.5, 'lines'), legend.text = theme_text(hjust=0), legend.title = theme_text(hjust=0), # panel.background = theme_rect(fill=panelColor, colour=NA), panel.background = element_blank(), # panel.grid.major = theme_line(colour=gridColor, size=0.33), panel.grid.major = element_blank(), # panel.grid.minor = theme_blank(), panel.grid.minor = element_blank(), strip.background = theme_rect(fill=NA, colour=NA), strip.text.x = theme_text(hjust=0), strip.text.y = theme_text(angle=-90), plot.title = theme_text(hjust=0), plot.margin = unit(c(0.1, 0.1, 0.1, 0.1), 'lines')) } p <- ggplot(data, aes(x=qlen/slen)) + geom_histogram(fill='white', color='grey25', bins=20) + xlab('query length / hit length') + ylab('frequency') + # scale_y_log10() + scale_x_continuous(limits=c(0, 1.3)) + theme_minimal() # breaks # bks <- seq(0,max(data$V1/data$V2)+1,by=0.05) # main hist # png(fileout, width=800, height=800, type='cairo') # hist(data$V1/data$V2, breaks=bks, col='red', xlim=c(0,2), xlab='query len / hit len', ylab='frequency', main=filein) # dev.off() # scaled hist # fileout <- gsub('.png','.500.png', fileout) # png(fileout, width=800, height=800, type='cairo') # hist(data$V1/data$V2, ylim=c(0,500), breaks=bks, col='purple', xlim=c(0,2), xlab='query len / hit len', ylab='frequency', main=filein) # dev.off() ggsave(fileout, p, height=7, width=7, units='cm') |
27 | shell: 'prodigal -a {output} -q -i {input}' |
37 | shell: 'diamond blastp --threads {threads} --max-target-seqs 1 --db {params.db} --query {input} --outfmt {params.of} --out {output}' |
43 | script: 'scripts/hist.R' |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Created: 1yr ago
Updated: 1yr ago
Maitainers:
public
URL:
https://github.com/phiweger/ideel
Name:
ideel
Version:
1
Downloaded:
0
Copyright:
Public Domain
License:
None
- Future updates
Related Workflows

ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...

Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...

snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...

ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics

RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...

This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...