Bioinformatic pipeline for identifying dsDNA breaks by marker based incorporation, such as breaks induced by designer nucleases like Cas9.
iGUIDE - improved Genome-wide Unbiased Identification of Double-strand DNA break Events
Bioinformatic pipeline for processing iGUIDE and GUIDE-seq samples.
Description
iGUIDE is a pipeline written in snakemake for processing and analyzing double-strand DNA break events. These events may be induced, such as by designer nucleases like Cas9, or spontaneous, as produced through DNA replication or ionizing radiation. A laboratory bench-side protocol accompanies this software pipeline, and can be found https://doi.org/10.1186/s13059-019-1625-3 .
To get started, checkout the iGUIDE documentation at iGUIDE.ReadTheDocs.io .
Changelog:
v1.1.0 (March 8th, 2020)
-
Modified how samples designated as Mock are treated during the analysis
-
Mock samples can now be indicated by "None" or "Control" as well (case-insensitive)
-
Abundance can now be selected as [Read], [UMI], or [Fragment]{default} within config parameters and this selection will identify the abundance method used for analysis
-
Added support for alternative UMI method (dx.doi.org/10.17504/protocols.io.wikfccw)
v1.0.0 (August 15th, 2019)
-
Release of version 1.0.0!!!
-
iGUIDE is a computational pipeline that supports the detection of DSBs induced by designer nucleases
-
Aligner support for BLAT and BWA currently implemented, let us know if you would like to see others.
-
Flexible pipeline processing built on Snakemake, supports a binning system to better distribute workflow for whichever system it is being processed on
-
Documentation supporting a Quickstart and User Guide hosted by ReadTheDocs
Code Snippets
16 17 18 19 20 21 22 23 24 25 26 | shell: """ if [[ $(cat {input.seq} | wc -l) -eq 0 ]] then touch {output} echo 'Empty input sequences for {input.seq}.' > {log} 2>&1 else blat {input.genome} {input.seq} {output} \ {params} > {log} 2>&1 fi """ |
33 | shell: "gzip {input}" |
41 42 | shell: "Rscript {ROOT_DIR}/tools/rscripts/generate_ref_genome.R {params} {output}" |
10 11 | shell: "Rscript {ROOT_DIR}/tools/rscripts/generate_ref_genome.R {params} {output}" |
24 25 26 27 | shell: """ bwa index -p {params} -a bwtsw {input} """ |
48 49 50 51 52 | shell: """ bwa mem {params.bwa} {params.index} {input.R2} {input.R1} | \ samtools view -b -o {output} > {log} 2>&1 """ |
10 11 | shell: "Rscript {ROOT_DIR}/tools/rscripts/generate_ref_genome.R {params} {output}" |
24 25 26 27 | shell: """ bwa index -p {params} -a bwtsw {input} """ |
48 49 50 51 52 | shell: """ bwa mem {params.bwa} {params.index} {input.R1} {input.R2} | \ samtools view -b -o {output} > {log} 2>&1 """ |
46 47 48 49 | shell: """ Rscript {params.tool} -d {params.data_dir} -o {output} """ |
58 | shell: "Rscript {params.tool} -f {input} -o {output}" |
72 73 74 75 76 | shell: """ Rscript {params.tool} -r {input.core} -e {input.eval} -i {input.site} \ -o {output} -c {params.config} > {log} 2>&1 """ |
46 47 48 49 | shell: """ Rscript {params.tool} -d {params.data_dir} -o {output} """ |
58 | shell: "Rscript {params.tool} -f {input} -o {output}" |
72 73 74 75 76 | shell: """ Rscript {params.tool} -r {input.core} -e {input.eval} -i {input.site} \ -o {output} -c {params.config} > {log} 2>&1 """ |
25 26 27 28 29 30 | shell: """ Rscript {params.tool} {input} -o {params.outdir} \ -b {params.bins} -l {params.level} --compress \ --readNamePattern {params.readNamePatternArg} > {log} 2>&1 """ |
17 18 19 20 21 | shell: """ Rscript {params.tool} {input} -o {output.consol} -k {output.key} \ --stat {output.stat} > {log} 2>&1 """ |
9 | shell: "touch {output.stat}" |
42 43 44 45 46 47 48 49 50 51 52 | shell: """ Rscript {params.tool} -m {input.sampleInfo} \ --read1 {input.R1} --read2 {input.R2} \ --idx1 {input.I1} --idx2 {input.I2} \ --bc1 {params.bc1} --bc1Len {params.bc1Len} \ --bc2 {params.bc2} --bc2Len {params.bc2Len} \ --bc1Mis {params.bc1Mis} --bc2Mis {params.bc2Mis} --maxN {params.maxN} \ -o {RUN_DIR}/process_data/demulti --stat {params.statName} -c {threads} \ --readNamePattern {params.readNamePatternArg} --compress > {log} 2>&1 """ |
59 | shell: "mv {input} {output}" |
19 20 21 22 23 24 | shell: """ Rscript {params.tool} {input.R1} {input.R2} -o {output.R1} {output.R2} \ --readNamePattern {params.readNamePatternArg} \ --stat {output.stat} --compress > {log} 2>&1 """ |
15 16 17 18 19 20 21 | shell: """ head -n 1 -q {params}/*.uniq.csv | uniq > {output} for UNIQ in $(ls {params}/*uniq.csv); do tail -n +2 $UNIQ >> {output} done """ |
39 40 41 42 43 | shell: """ Rscript {params.tool} -d {params.dir} -p {params.pattern} \ -o {output.hits} -s {output.stat} > {log} 2>&1 """ |
80 81 82 83 84 85 86 87 88 | run: call_str="Rscript {params.tool} {input.sites} -o {output.incorp} " if (config["UMItags"]): call_str=call_str + "-u {params.umitagDir} " if (config["recoverMultihits"]): call_str=call_str + "-m {params.multiDir} " call_str=call_str + "-c {params.config} --stat {output.stat} " call_str=call_str + "--readNamePattern {params.readNamePatternArg} > {log} 2>&1" shell(call_str) |
102 103 104 105 106 107 | run: call_str="Rscript {params.tool} {params.config} -o {output.eval}" if (config["suppFile"]): call_str=call_str + " -s " + str(SUPPINFO_PATH) call_str=call_str + " --stat {output.stat} > {log} 2>&1" shell(call_str) |
132 133 134 135 | shell: """ Rscript {params.tool} {input} -o {output} {params.supp} > {log} 2>&1 """ |
147 148 149 150 | shell: """ Rscript {params.tool} {input} -o {output} > {log} 2>&1 """ |
27 28 29 30 31 32 33 34 35 36 | shell: """ Rscript {params.tool} {input.sampleR2} {input.sampleR1} \ -k {input.keyR2} {input.keyR1} -o {output.uniq} \ --chimera {output.chimera} --multihit {output.multihit} -g {params.ref} \ --maxAlignStart {params.start} --minPercentIdentity {params.pct} \ --minTempLength {params.minLen} --maxTempLength {params.maxLen} \ --readNamePattern {params.readNamePatternArg} \ --stat {output.stat} > {log} 2>&1 """ |
27 28 29 30 31 32 33 34 35 36 | shell: """ Rscript {params.tool} {input.sampleR1} {input.sampleR2} \ -k {input.keyR1} {input.keyR2} -o {output.uniq} \ --chimera {output.chimera} --multihit {output.multihit} -g {params.ref} \ --maxAlignStart {params.start} --minPercentIdentity {params.pct} \ --minTempLength {params.minLen} --maxTempLength {params.maxLen} \ --readNamePattern {params.readNamePatternArg} \ --stat {output.stat} > {log} 2>&1 """ |
9 | shell: "samtools sort {input} -o {output}" |
16 | shell: "samtools index -b {input} {output}" |
39 40 41 42 43 44 45 46 47 48 | shell: """ Rscript {params.tool} {input.bam} {input.bai} \ -o {output.uniq} --chimera {output.chimera} --multihit {output.multihit} \ -g {params.ref} --maxAlignStart {params.start} \ --minPercentIdentity {params.pct} --minTempLength {params.minLen} \ --maxTempLength {params.maxLen} \ --readNamePattern {params.readNamePatternArg} \ --stat {output.stat} > {log} 2>&1 """ |
23 24 25 26 27 28 | shell: """ Rscript {params.tool} {input.reads} --output {output.data} \ --stat {output.stat} --readNamePattern {params.readNamePatternArg} \ --compress > {log} 2>&1 """ |
35 36 37 38 | shell: """ cat {input} | cut -d , -f 2,3 | uniq | sed 's/reads/{wildcards.sample}.demulti,reads/' > {output} """ |
48 49 50 51 | shell: """ cat {input} > {output} """ |
21 22 23 24 25 26 27 28 | shell: """ Rscript {params.tool} {input} -o {output.trim} \ -l {params.lead} --leadMismatch {params.leadMis} \ -r {params.over} --overMismatch {params.overMis} \ --overMaxLength {params.overLen} --stat {output.stat} \ --compress > {log} 2>&1 """ |
47 48 49 50 51 52 53 54 | shell: """ Rscript {params.tool} {input} -o {output.trim} \ -l {params.lead} --leadMismatch {params.leadMis} \ -r {params.over} --overMismatch {params.overMis} \ --overMaxLength {params.overLen} --stat {output.stat} \ --compress > {log} 2>&1 """ |
70 71 72 73 74 75 | shell: """ Rscript {params.tool} {input} -o {output.trim} \ -l {params.lead} --leadMismatch {params.leadMis} \ --noQualTrimming --stat {output.stat} --compress > {log} 2>&1 """ |
21 22 23 24 25 26 27 28 | shell: """ Rscript {params.tool} {input} -o {output.trim} \ -l {params.lead} --leadMismatch {params.leadMis} \ -r {params.over} --overMismatch {params.overMis} \ --overMaxLength {params.overLen} --stat {output.stat} \ --compress > {log} 2>&1 """ |
47 48 49 50 51 52 53 54 | shell: """ Rscript {params.tool} {input} -o {output.trim} \ -l {params.lead} --leadMismatch {params.leadMis} \ -r {params.over} --overMismatch {params.overMis} \ --overMaxLength {params.overLen} --stat {output.stat} \ --compress > {log} 2>&1 """ |
70 71 72 73 74 75 | shell: """ Rscript {params.tool} {input} -o {output.trim} \ -l {params.lead} --leadMismatch {params.leadMis} \ --noQualTrimming --stat {output.stat} --compress > {log} 2>&1 """ |
19 20 21 22 23 24 25 | shell: """ Rscript {params.tool} {input} -o {output.seq} \ -l {params.seq} --leadMismatch {params.mis} --noQualTrimming \ --minSeqLength 0 --collectRandomIDs {output.umi} --stat {output.stat} \ --compress > {log} 2>&1 """ |
9 | shell: "touch {output.stat}" |
19 20 21 22 23 24 25 | shell: """ Rscript {params.tool} {input} -o {output.seq} \ -l {params.seq} --leadMismatch {params.mis} --noQualTrimming \ --minSeqLength 0 --collectRandomIDs {output.umi} --stat {output.stat} \ --compress > {log} 2>&1 """ |
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 | options(stringsAsFactors = FALSE, scipen = 99, width = 180) suppressMessages(library("magrittr")) suppressMessages(library("iguideSupport")) # Set up and gather command line arguments ---- parser <- argparse::ArgumentParser( description = "Assimilate incorporation data from iGUIDE pipeline.", usage = paste( "Rscript assimilate_incorp_data.R <uniqSites> -o <output> -c <config>", "[-h/--help, -v/--version] [optional args]" ) ) parser$add_argument( "uniqSites", nargs = 1, type = "character", help = paste( "Unique sites output from blatCoupleR. The output from an entire run can", "be concatenated together as a single input." ) ) parser$add_argument( "-o", "--output", nargs = 1, type = "character", required = TRUE, help = "Output file name in .rds format." ) parser$add_argument( "-c", "--config", nargs = 1, type = "character", required = TRUE, help = "Run specific config file in yaml format." ) parser$add_argument( "-u", "--umitags", nargs = 1, type = "character", help = paste( "Path to directory with associated fasta files containing read specific", "random captured sequences. Directory should contain files with file names", "like *.umitags.fasta." ) ) parser$add_argument( "-m", "--multihits", nargs = 1, type = "character", help = paste( "Path to directory with associated multihit files (*.multihits.rds) as", "produced by coupling alignment output files." ) ) parser$add_argument( "--stat", nargs = 1, type = "character", default = FALSE, help = paste( "File name to be written in output directory of read couts for each", "sample. CSV file format. ie. test.stat.csv." ) ) parser$add_argument( "--readNamePattern", nargs = 1, type = "character", default = "[\\w\\:\\-\\+]+", help = "Regular expresion capturing the read name for a given sequence." ) parser$add_argument( "--iguide_dir", nargs = 1, type = "character", default = "IGUIDE_DIR", help = "iGUIDE install directory path, do not change for normal applications." ) # Set arguments with parser ---- args <- parser$parse_args(commandArgs(trailingOnly = TRUE)) if( !dir.exists(args$iguide_dir) ){ root_dir <- Sys.getenv(args$iguide_dir) }else{ root_dir <- args$iguide_dir } if( !dir.exists(root_dir) ){ stop(paste0("\n Cannot find install path to iGUIDE: ", root_dir, ".\n")) }else{ args$iguide_dir <- root_dir } input_table <- data.frame( "Variables" = paste0(names(args), " :"), "Values" = sapply( seq_along(args), function(i) paste(args[[i]], collapse = ", ") ) ) input_table <- input_table[ match(c( "uniqSites :", "output :", "config :", "umitags :", "multihits :", "stat :", "iguide_dir :" ), input_table$Variables ), ] ## Remove output file(s) if existing if( args$stat != FALSE ){ output_files <- c(args$output, args$stat) }else{ output_files <- c(args$output) } if( any(sapply(output_files, file.exists)) ){ null <- lapply(output_files, unlink) } # Log inputs cat("\nAssimilate Inputs:\n") print( x = data.frame(input_table), right = FALSE, row.names = FALSE ) # Get versioning ---- soft_version <- as.character(read.delim( file = file.path(root_dir, ".version"), header = FALSE)) build_version <- list.files(file.path(root_dir, "etc")) %>% grep(pattern = "build.b[0-9\\.]+.*", x = ., value = TRUE) %>% stringr::str_extract(pattern = "b[0-9]+\\.[0-9]+\\.[0-9]+") # Inputs and parameters ---- # Run parameters and sample parameters config <- yaml::yaml.load_file(args$config) ## These parameters are dictate part of the following analysis if multihit ## alignments are to be considered in the analysis. upstream_dist <- config$upstreamDist downstream_dist <- config$downstreamDist pile_up_min <- config$pileUpMin # Load reference genome ---- ## Load a reference genome from a fasta file or a BSGenome reference. ## Script stops if ref genome is not available if( grepl(".fa", config$Ref_Genome) ){ if( !( file.exists(file.path(args$iguide_dir, config$Ref_Genome)) | file.exists(config$Ref_Genome) ) ){ stop( "\n Specified reference genome file not found: ", config$Ref_Genome, "\n" ) } ref_file_type <- ifelse(grepl(".fastq", config$Ref_Genome), "fastq", "fasta") if( file.exists( file.path(args$iguide_dir, config$Ref_Genome) ) ){ ref_genome <- Biostrings::readDNAStringSet( filepath = file.path(args$iguide_dir, config$Ref_Genome), format = ref_file_type ) }else{ ref_genome <- Biostrings::readDNAStringSet( filepath = config$Ref_Genome, format = ref_file_type ) } }else{ genome <- grep( pattern = config$Ref_Genome, x = unique(BSgenome::installed.genomes()), value = TRUE ) if( length(genome) == 0 ){ cat("\nInstalled genomes include:\n") print(unique(BSgenome::installed.genomes())) cat("\n Selected reference genome not in list.") stop("\n Genome not available.\n") }else if( length(genome) > 1 ){ cat("\nInstalled genomes include:\n") print(unique(BSgenome::installed.genomes())) cat( "\n Please be more specific about reference genome.", "Multiple matches to input." ) stop("\n Multiple genomes requested.\n") } suppressMessages(library(genome, character.only = TRUE)) ref_genome <- get(genome) } # Load input data ---- ## Unique sites ---- ## This object is the alignment positions for the sequences / reads that only ## aligned to a single location on the reference genome. reads <- data.table::fread( input = args$uniqSites, data.table = FALSE, stringsAsFactors = FALSE ) # Multihits if requested ---- ## Multihits are alignments that legitimately appear in multiple locations ## across the reference genome. These can be more difficult to interpret but are ## an option for this software. The user should be familiar and cautious of ## alignment artifacts if using multihit data. if( all(!is.null(args$multihits)) ){ uniq_reads <- GenomicRanges::makeGRangesFromDataFrame( df = reads, keep.extra.columns = TRUE, seqinfo = GenomeInfoDb::seqinfo(ref_genome) ) multihit_files <- list.files(path = args$multihit, full.names = TRUE) mulithit_files <- multihit_files[ stringr::str_detect(mulithit_files, ".multihits.rds") ] multi_reads <- unlist(GRangesList(lapply(mulithit_files, function(x){ multi <- readRDS(x) GenomeInfoDb::seqinfo(multi$unclustered_multihits) <- GenomeInfoDb::seqinfo(ref_genome) if( length(multi$unclustered_multihits) > 0 ){ GenomicRanges::mcols(multi$unclustered_multihits) <- GenomicRanges::mcols(multi$unclustered_multihits)[ ,c(names(GenomicRanges::mcols(uniq_reads))) ] }else{ GenomicRanges::mcols(multi$unclustered_multihits) <- GenomicRanges::mcols(uniq_reads)[ 0, c(names(GenomicRanges::mcols(uniq_reads))) ] } multi$unclustered_multihits }))) comb_reads <- c(uniq_reads, multi_reads) GenomicRanges::mcols(comb_reads)$type <- rep( c("uniq", "multi"), c(length(uniq_reads), length(multi_reads)) ) GenomicRanges::mcols(comb_reads)$clus.id <- pileupCluster( gr = comb_reads, grouping = "sampleName", return = "ID" ) filt_multi_reads <- dplyr::bind_rows(lapply( split(comb_reads, comb_reads$sampleName), function(x){ uniq_id <- unique(x$clus.id[x$type == "uniq"]) multi_id <- unique(x$clus.id[x$type == "multi"]) y <- x[x$type == "multi" & x$clus.id %in% intersect(uniq_id, multi_id)] mcols(y)$clus.id <- NULL if( length(y) > 0 ){ contrib_amt <- 1 / table(mcols(y)$ID) GenomicRanges::mcols(y)$contrib <- as.numeric(contrib_amt[GenomicRanges::mcols(y)$ID]) } as.data.frame(y, row.names = NULL) %>% dplyr::mutate( seqnames = as.character(seqnames), strand = as.character(strand) ) } )) reads <- dplyr::mutate(reads, type = "uniq", contrib = 1) %>% dplyr::bind_rows(., filt_multi_reads) }else{ reads <- dplyr::mutate(reads, type = "uniq", contrib = 1) } # Print out stats during analysis. cat("\nTabulation of aligned reads per specimen:\n") temp_table <- table(stringr::str_extract(reads$sampleName, "[\\w]+")) print( data.frame( "Specimen" = names(temp_table), "Aligned_Reads" = format(as.numeric(temp_table), big.mark = ",") ), right = FALSE, row.names = FALSE ) rm(temp_table) # Umitags or captured random sequences ---- ## Unique molecular index tags, or UMItags, are random sequences appended to the ## index 2 read. They are 8 or so nucleotides and are combined with the terminal ## breakpoint sequence to be potentially used for a higher dynamic range ## abundance measure. While ideal in theory, practice has identified these ## sequences skewing with read counts and an over abundance of sharing of the ## random sequence between difference breakpoints. Interpretation of UMItag ## based abundances should be interpreted with caution as they are prone / ## susceptable to PCR artifacts. if( !is.null(args$umitags) ){ umitag_files <- list.files(path = args$umitags, full.names = TRUE) umitag_files <- umitag_files[ stringr::str_detect(umitag_files, ".umitags.fasta") ] umitags <- lapply(umitag_files, ShortRead::readFasta) umitags <- serialAppendS4(umitags) umitag_read_ids <- stringr::str_extract( as.character(ShortRead::id(umitags)), args$readNamePattern ) reads$umitag <- as.character(ShortRead::sread(umitags))[ match(reads$ID, umitag_read_ids) ] } # Generate stats if requested ---- ## If requested, generate stats from the analysis for qc. if( args$stat != FALSE ){ stat <- reads %>% dplyr::group_by(sampleName) %>% dplyr::summarise( reads = dplyr::n_distinct(ID), aligns = dplyr::n_distinct(seqnames, start, end, strand), loci = dplyr::n_distinct( seqnames, strand, ifelse(strand == "+", start, end) ) ) %>% tidyr::gather(key = "type", value = "value", -sampleName) write.table( x = stat, file = args$stat, sep = ",", row.names = FALSE, col.names = FALSE, quote = FALSE ) } # Output data ---- ## rds file that can be read into evaluation or reports or loaded into a ## database with some additional scripting. fmt_reads <- reads %>% dplyr::select(-lociPairKey, -readPairKey) output_file <- list( "soft_version" = soft_version, "build_version" = build_version, "config" = config, "reads" = fmt_reads ) saveRDS(output_file, file = args$output) if( all(sapply(output_files, file.exists)) ){ message("Successfully completed script.") }else{ stop("Check output, it not detected after assimilating.") } q(status = 0) |
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 | options(stringsAsFactors = FALSE, scipen = 99, width = 120) # Set up and gather command line arguments ---- parser <- argparse::ArgumentParser( description = "Separate sequence files into bins of appropriate size.", usage = paste( "Rscript bin_seqs.R <seqs> -o <outputDir> [optional args] [-h/--help]" ) ) parser$add_argument( "seqs", nargs = "+", type = "character", help = paste( "Path(s) to sequence files to separate into bins. Only read names in first", "file will be used for indexing and splitting. Make sure all files have", "the same content! Read order will be set by first file. Fasta or Fastq", "formats allowed, as well as gzipped compression." ) ) parser$add_argument( "-o", "--output", nargs = 1, type = "character", default = ".", help = "Directory for output files to be written. Default: '.'" ) parser$add_argument( "-b", "--bins", nargs = 1, type = "integer", default = 2L, help = "The number of bins to separate files into, default is 2." ) parser$add_argument( "-l", "--level", nargs = 1, type = "integer", default = 0L, help = paste( "Fill level for each bin. If specified, then script will fill files to the", "specified level with reads before filling the next file, sequentially.", "If the total number of reads would fill all bins to their level, then", "reads will be evenly distributed across all bins, which is the default", "behavior. Default value: 0." ) ) parser$add_argument( "--compress", action = "store_true", help = paste( "Output sequence file(s) in gzipped format. Otherwise this relies on the", "input format." ) ) parser$add_argument( "--readNamePattern", nargs = 1, type = "character", default = "[\\w\\:\\-\\+]+", help = paste( "Regular expression for pattern matching read names. Should not contain", "R1/R2/I1/I2 specific components. Default is [\\w\\:\\-\\+]+" ) ) args <- parser$parse_args(commandArgs(trailingOnly = TRUE)) # Create output directory if not currently available ---- if( !dir.exists(args$output) ){ dir.create(args$output) if(!dir.exists(args$output)) stop("Cannot create output folder.\n") args$output <- normalizePath(args$output) } # Load sequence files seq_files <- lapply(args$seqs, function(x){ if( stringr::str_detect(x, ".fastq") | stringr::str_detect(x, ".fq") ){ return(ShortRead::readFastq(x)) }else{ return(ShortRead::readFasta(x)) } }) # Score indices from first sequence for binning input sequences if( length(seq_files[[1]]) <= args$bins * args$level ){ seq_idx <- split( seq_along(seq_files[[1]]), ceiling(seq_along(seq_files[[1]]) / args$level) ) if( length(seq_idx) < args$bins ){ seq_idx <- c( seq_idx, split(integer(), seq(length(seq_idx)+1, args$bins, 1)) ) } }else{ seq_idx <- split( seq_along(seq_files[[1]]), ceiling( seq_along(seq_files[[1]])/(length(seq_files[[1]])/as.numeric(args$bins)) ) ) } seq_names <- stringr::str_extract( as.character(ShortRead::id(seq_files[[1]])), args$readNamePattern ) seq_name_list <- lapply(seq_idx, function(i) seq_names[i]) # Split and write sequences to output directory output_files <- strsplit(args$seqs, "/") output_files <- unlist(mapply( function(i, j) output_files[[i]][j], i = seq_along(output_files), j = lengths(output_files), SIMPLIFY = FALSE )) if( any(stringr::str_detect(output_files, ".gz$")) | args$compress ){ args$compress <- TRUE }else{ args$compress <- FALSE } expanded_output_file_names <- lapply(output_files, function(x){ x <- stringr::str_remove(x, ".gz$") ext <- unlist(strsplit(x, "\\.")) lead <- paste(ext[-length(ext)], collapse = ".") ext <- ext[length(ext)] bins <- stringr::str_pad(seq_len(args$bins), nchar(args$bins), pad = 0) exp_names <- paste0(lead, ".bin", bins, ".", ext) if( args$compress ){ exp_names <- paste0(exp_names, ".gz") } exp_names }) # Write output files null <- mapply( function(seqs, outputs, idx_names){ null <- mapply( function(idx, outfile){ matched_idx <- match(idx, stringr::str_extract( as.character(ShortRead::id(seqs)), args$readNamePattern )) if( any(table(matched_idx)) > 1 ){ stop("\n ReadNamePattern is ambiguous, please refine.") } if( file.exists(file.path(args$output, outfile)) ){ unlink(file.path(args$output, outfile)) } if( stringr::str_detect(outfile, ".fastq") | stringr::str_detect(outfile, ".fq") ){ ShortRead::writeFastq( object = seqs[matched_idx], file = file.path(args$output, outfile), compress = args$compress ) }else{ ShortRead::writeFasta( object = seqs[matched_idx], file = file.path(args$output, outfile), compress = args$compress ) } }, idx = idx_names, outfile = outputs ) }, seqs = seq_files, outputs = expanded_output_file_names, MoreArgs = list(idx_names = seq_name_list) ) # Check for output files if( all(file.exists(file.path(args$output, unlist(expanded_output_file_names)))) ){ cat( "\nAll files written to output directory:\n ", paste( file.path(args$output, unlist(expanded_output_file_names)), collapse = "\n " ), "\n" ) q(save = "no", status = 0) }else{ stop("\n Could not confirm existance of all output files.\n") } |
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 | options(stringsAsFactors = FALSE, scipen = 99, warn = -1, window = 999) suppressMessages(library("magrittr")) # Set up and gather command line arguments ---- parser <- argparse::ArgumentParser( description = "Test checksums of files from a yaml input.", usage = "Rscript tools/rscripts/check_file_digests.R <yaml.input> <options>" ) parser$add_argument( "yaml", nargs = 1, type = "character", help = "Yaml containing file paths and checksums (md5). ie. sim.test.yml" ) parser$add_argument( "-o", "--output", nargs = 1, type = "character", default = FALSE, help = "Output file name .csv, .tsv, or .rds format." ) parser$add_argument( "-v", "--verbose", action = "store_true", help = "Turns on diagnositc-based messages." ) parser$add_argument( "--install_path", nargs = 1, type = "character", default = "IGUIDE_DIR", help = "iGUIDE install directory path, do not change for normal applications." ) # Set arguments with parser ---- args <- parser$parse_args(commandArgs(trailingOnly = TRUE)) root_dir <- Sys.getenv("IGUIDE_DIR") args$install_path <- root_dir code_dir <- dirname(sub( pattern = "--file=", replacement = "", x = grep("--file=", commandArgs(trailingOnly = FALSE), value = TRUE) )) input_table <- data.frame( "Variables" = paste0(names(args), " :"), "Values" = sapply( seq_along(args), function(i) paste(args[[i]], collapse = ", ") ) ) input_table <- input_table[ match( c("yaml :", "output :", "verbose :", "install_path :"), input_table$Variables ), ] ## Log inputs if( args$verbose ){ cat("List Inputs") pander::pandoc.table( data.frame(input_table), justify = "left", row.names = FALSE, style = "simple", split.table = Inf ) } # Additional functions ---- readFile <- function(path, root){ if( !file.exists(path) ){ root_path <- file.path(root, path) if( !file.exists(root_path) ){ stop("Cannot find file:", path) }else{ path <- root_path } } # Read extension form path ext <- stringr::str_extract(path, "[\\w]+$") supported_ext <- c("tsv", "csv", "gz", "fasta", "fastq", "rds") stopifnot( ext %in% supported_ext ) # Check additional extension if compressed if( ext == "gz" ){ ext2 <- stringr::str_extract(path, "[\\w]+.gz") ext2 <- gsub(".gz", "", ext2) stopifnot( ext2 %in% supported_ext ) }else{ ext2 <- NA } exts <- c(ext, ext2) exts <- exts[!is.na(exts)] # Read in methods based on inputs. if( any(exts %in% c("tsv", "csv")) ){ if( any(exts == "csv") ){ delim <- "," }else{ delim <- "\t" } if( ext == "gz" ){ return(read.table(gzfile(path), header = TRUE, sep = delim)) }else{ return(read.table(path, header = TRUE, sep = delim)) } }else if( any(stringr::str_detect(exts, "fast")) ){ return(Biostrings::readDNAStringSet(path)) }else{ rds_import <- readRDS(path) if( class(rds_import) == "list" ){ return(rds_import[[ which(sapply(rds_import, class) == "data.frame") ]]) }else{ return(rds_import) } } } # Load inputs ---- config <- yaml::yaml.load_file(args$yaml) paths <- lapply(config, "[[", "path") data_objs <- lapply(paths, readFile, root = args$install_path) # Check digests ---- test_digests <- sapply(data_objs, digest::digest) check_digests <- sapply(config, "[[", "md5") df <- data.frame( "file_name" = sapply(config, "[[", "name"), "md5_standard" = check_digests, "md5_tested" = test_digests, "outcome" = ifelse(test_digests == check_digests, "pass", "FAIL") ) # Log output if requested ---- if( args$verbose ){ cat("\nList of Outcomes") pander::pandoc.table( df, justify = "left", row.names = FALSE, style = "simple", split.table = Inf ) } # Write output file if requested ---- if( args$output != FALSE ){ if( stringr::str_detect(args$output, ".tsv$") ){ write.table(df, file = args$output, quote = FALSE, row.names = FALSE) }else if( stringr::str_detect(args$output, ".csv$") ){ write.table(df, file = args$output, quote = FALSE, row.names = FALSE) }else if( stringr::str_detect(args$output, ".rds$") ){ saveRDS(df, file = args$output) }else if( stringr::str_detect(args$output, ".RData$") ){ save(df, file = args$output) } } # Finish up and close out ---- if( all(df$outcome == "pass") ){ q(save = "no", status = 0) }else{ q(save = "no", status = 1) } |
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 | options(stringsAsFactors = FALSE, unzip = "internal") cmd_args <- unlist(strsplit(c("", commandArgs(trailingOnly = TRUE)), " ")) # Set arguments ---- cran_install <- any(grepl("--cran$", cmd_args, perl = TRUE)) mirror_install <- any(grepl("--cran_mirror$", cmd_args, perl = TRUE)) mirror_url <- cmd_args[ which(grepl("--cran_mirror$", cmd_args, perl = TRUE)) + 1 ] within_conda <- any(grepl("--conda$", cmd_args, perl = TRUE)) quiet <- any(grepl("-q", cmd_args)) # Check installed packages for dependencies ---- r_packs <- c( "argparse", "data.table", "devtools", "digest", "igraph", "ggforce", "knitr", "magrittr", "Matrix", "pander", "RColorBrewer", "rmarkdown", "scales", "tidyverse", "yaml") bioc_packs <- c( "BiocGenerics", "Biostrings", "BSgenome", "BSgenome.Hsapiens.UCSC.hg38", "GenomicRanges", "hiAnnotator", "IRanges", "Rsamtools", "ShortRead" ) packs <- c(r_packs, bioc_packs) present <- packs %in% row.names(installed.packages()) if( !quiet ){ print(data.frame(row.names = packs, "Installed" = present)) } if( !cran_install | !mirror_install ){ stopifnot(all(present)) q() } # Install from CRAN or from CRAN mirror ---- if( within_conda ){ .libPaths( new = grep( pattern = "conda./envs/", x = .libPaths(), perl = TRUE, value = TRUE ) ) } if( mirror_install ){ repo <- mirror_url }else{ repo <- getOption("repos") } r_packs_to_get <- r_packs[!r_packs %in% row.names(installed.packages())] if( length(r_packs_to_get) > 0 ){ install.packages( r_packs_to_get, repos = repo, dependencies = c("Depends", "Imports"), quiet = TRUE ) } # Install from BioConductor ---- bioc_packs_to_get <- bioc_packs[ !bioc_packs %in% row.names(installed.packages()) ] if( length(bioc_packs_to_get) > 0 ){ suppressMessages(source("https://bioconductor.org/biocLite.R")) biocLite( bioc_packs_to_get, suppressUpdates = TRUE, ask = FALSE, siteRepos = repo ) } # Check for installed packages again and close out if( !quiet ){ print(data.frame(row.names = packs, "Installed" = present)) } stopifnot(all(present)) q() |
3 4 5 6 7 8 9 10 11 12 13 | tto <- devtools::test(pkg = "tools/iguideSupport") num_success <- sum( sapply(seq_along(tto), function(i){ tto[[i]]$results[[1]]$message} ) == "success" ) num_failed <- length(tto) - num_success q(save = "no", status = num_failed) |
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | options(stringsAsFactors = FALSE, scipen = 99) # Capture commandline files parser <- argparse::ArgumentParser( description = "Script to check for an installed package.", usage = "Rscript tools/rscripts/check_pkgs.R <pkgs>" ) parser$add_argument( "pkg", nargs = "+", type = "character", default = "NA", help = "Package(s) name." ) args <- parser$parse_args(commandArgs(trailingOnly = TRUE)) pkgs <- args$pkg pkgs_present <- pkgs %in% rownames(installed.packages()) if( all(pkgs_present) ){ q(save = "no", status = 0) }else{ cat( " Packages not installed:\n ", paste(pkgs[!pkgs_present], collapse = "\n "), "\n" ) q(save = "no", status = 1) } |
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 | options(stringsAsFactors = FALSE, scipen = 99, warn = -1, window = 999) suppressMessages(library("magrittr")) # Set up and gather command line arguments ---- parser <- argparse::ArgumentParser( description = "Check accuracy in processing test data set.", usage = paste( "Rscript tools/rscripts/check_test_accuracy.R <run.config> <test.truth>", "<options>" ) ) parser$add_argument( "run.config", nargs = 1, type = "character", help = paste( "Yaml config file used to process the run.", "i.e. simulation.config.yml" ) ) parser$add_argument( "test.truth", nargs = 1, type = "character", help = paste( "CSV file with the original 'true' data for testing accuracy.", "i.e. truth.csv" ) ) parser$add_argument( "-o", "--output", nargs = 1, type = "character", default = FALSE, help = "Output file name in an .rds format." ) parser$add_argument( "-v", "--verbose", action = "store_true", help = "Turns on diagnositc-based messages." ) parser$add_argument( "--iguide_dir", nargs = 1, type = "character", default = "IGUIDE_DIR", help = "iGUIDE install directory path, do not change for normal applications." ) # Set arguments with parser ---- args <- parser$parse_args(commandArgs(trailingOnly = TRUE)) if( !dir.exists(args$iguide_dir) ){ root_dir <- Sys.getenv(args$iguide_dir) }else{ root_dir <- args$iguide_dir } if( !dir.exists(root_dir) ){ stop(paste0("\n Cannot find install path to iGUIDE: ", root_dir, ".\n")) }else{ args$iguide_dir <- root_dir } code_dir <- dirname(sub( pattern = "--file=", replacement = "", x = grep("--file=", commandArgs(trailingOnly = FALSE), value = TRUE) )) input_table <- data.frame( "Variables" = paste0(names(args), " :"), "Values" = sapply( seq_along(args), function(i) paste(args[[i]], collapse = ", ") ) ) input_table <- input_table[ match( c( "run.config :", "test.truth :", "output :", "verbose :", "iguide_dir :" ), input_table$Variables ), ] ## Log inputs if( args$verbose ){ cat("List Inputs") pander::pandoc.table( data.frame(input_table), justify = "left", row.names = FALSE, style = "simple", split.table = Inf ) } # Additional functions ---- readFile <- function(path, root){ if( !file.exists(path) ){ root_path <- file.path(root, path) if( !file.exists(root_path) ){ stop("Cannot find file:", path) }else{ path <- root_path } } # Read extension form path ext <- stringr::str_extract(path, "[\\w]+$") supported_ext <- c("tsv", "csv", "gz", "fasta", "fastq", "rds", "yaml", "yml") stopifnot( ext %in% supported_ext ) # Check additional extension if compressed if( ext == "gz" ){ ext2 <- stringr::str_extract(path, "[\\w]+.gz") ext2 <- gsub(".gz", "", ext2) stopifnot( ext2 %in% supported_ext ) }else{ ext2 <- NA } exts <- c(ext, ext2) exts <- exts[!is.na(exts)] # Read in methods based on inputs. if( any(exts %in% c("tsv", "csv")) ){ if( ext == "gz" ){ return(read.table(gzfile(path), header = TRUE, sep = ",")) }else{ return(read.table(path, header = TRUE, sep = ",")) } }else if( any(stringr::str_detect(exts, "fast")) ){ return(Biostrings::readDNAStringSet(path)) }else if( any(exts %in% c("yaml", "yml")) ){ return(yaml::yaml.load_file(path)) }else if( any(exts %in% c("rds")) ){ rds_import <- readRDS(path) if( class(rds_import) == "list" ){ if( any(sapply(rds_import, class) == "data.frame") ){ idx <- which(sapply(rds_import, class) == "data.frame") return(rds_import[[idx[1]]]) }else{ return(as.data.frame(rds_import[[1]], row.names = NULL)) } }else{ return(rds_import) } }else{ stop("\n Unsupported input file time.\n") } } # Load inputs ---- run_config <- readFile(args$run.config, args$iguide_dir) test_truth <- readFile(args$test.truth, args$iguide_dir) sample_info <- readFile(run_config$Sample_Info, args$iguide_dir) # Files to check ---- check_files <- paste0( "analysis/", run_config$Run_Name, "/output/incorp_sites.", run_config$Run_Name, ".rds" ) check_data <- lapply(check_files, readFile, root = args$iguide_dir) names(check_data) <- c("uniq_sites") check_data$multihits <- suppressMessages(dplyr::bind_rows(lapply( sample_info$sampleName, function(x){ readFile( paste0( "analysis/", run_config$Run_Name, "/process_data/multihits/", x, ".multihits.rds" ), args$iguide_dir ) }), .id = "specimen" )) ## Check for content ---- total_reads <- length(test_truth$read.name) total_read_ids <- split( test_truth$read.name, stringr::str_extract(test_truth$read.name, "[\\w]+\\-[\\w]+\\-[\\w]+") )[ unique(stringr::str_extract(test_truth$read.name, "[\\w]+\\-[\\w]+\\-[\\w]+")) ] collected_stats <- dplyr::bind_rows(lapply(total_read_ids, function(x){ ret <- c( "uniq" = sum(x %in% check_data$uniq_sites$ID), "multi" = sum(x %in% check_data$multihits$ID), "comb" = sum(x %in% check_data$uniq_sites$ID) + sum(x %in% check_data$multihits$ID), "total" = length(x) ) x <- x[x %in% check_data$uniq_sites$ID] spec_truth <- test_truth[match(x, test_truth$read.name),] uniq_sites <- check_data$uniq_sites[match(x, check_data$uniq_sites$ID),] seq_cnt <- sum(spec_truth$seqnames == uniq_sites$seqnames) std_cnt <- sum(spec_truth$strand == uniq_sites$strand) cum_dis <- sum(abs(spec_truth$start - uniq_sites$start)) + sum(abs(spec_truth$end - uniq_sites$end)) correct <- sum( spec_truth$seqnames == uniq_sites$seqnames & spec_truth$strand == uniq_sites$strand & abs(spec_truth$start - uniq_sites$start) + abs(spec_truth$end - uniq_sites$end) == 0 ) ret <- c( ret, c( "seqs" = seq_cnt, "strand" = std_cnt, "dis" = cum_dis, "cor" = correct ) ) data.frame(t(ret)) }), .id = "type" ) %>% tidyr::separate(type, into = c("specimen", "target", "gRNA"), sep = "-") missing_data <- dplyr::bind_rows(lapply(total_read_ids, function(x){ x <- x[!x %in% check_data$uniq_sites$ID] x <- x[!x %in% check_data$multihits$ID] spec_truth <- test_truth[match(x, test_truth$read.name),] dist <- abs( as.numeric(stringr::str_extract(spec_truth$posid, "[0-9]+$")) - as.numeric(stringr::str_extract(spec_truth$incorp, "[0-9]+$"))) ret <- c( "count" = nrow(spec_truth), "min_dist" = min(dist), "max_dist" = max(dist), "min_width" = min(spec_truth$width), "max_width" = max(spec_truth$width) ) data.frame(t(ret)) }), .id = "type" ) %>% tidyr::separate(type, into = c("specimen", "target", "gRNA"), sep = "-") %>% dplyr::mutate( min_dist = ifelse(count == 0, 0, min_dist), max_dist = ifelse(count == 0, 0, max_dist), min_width = ifelse(count == 0, 0, min_width), max_width = ifelse(count == 0, 0, max_width) ) pct_retention <- 100 * sum(collected_stats$comb) / sum(collected_stats$total) uniq_accuracy <- 100 * sum(collected_stats$cor) / sum(collected_stats$uniq) # Log output if requested ---- if( args$verbose ){ cat("\nCollected Stats:") pander::pandoc.table( collected_stats, justify = "left", row.names = FALSE, style = "simple", split.table = Inf ) cat("\nRead retention:", round(pct_retention, digits = 1), "%\n") cat("Unique accuracy:", round(uniq_accuracy, digits = 1), "%\n") cat("\nMissing data:") pander::pandoc.table( missing_data, justify = "left", row.names = FALSE, style = "simple", split.table = Inf ) } # Write output file if requested ---- if( args$output != FALSE ){ if( stringr::str_detect(args$output, ".rds$") ){ saveRDS( list( "collected_stats" = collected_stats, "missing_data" = missing_data, "test_truth" = test_truth, "checked_data" = check_data ), file = args$output ) }else{ stop("\n Output data object must be a .rds format.\n") } } # Finish up and close out ---- if( pct_retention >= 95 & uniq_accuracy >= 99 ){ q(save = "no", status = 0) }else{ q(save = "no", status = 1) } |
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 | options(stringsAsFactors = FALSE, scipen = 99) suppressMessages(library("magrittr")) # Capture commandline files parser <- argparse::ArgumentParser( description = "Script to consolidate .stat files." ) parser$add_argument( "-f", "--file", nargs = "+", type = "character", default = "NA", help = "Path to files with *.stat files (long, csv format). " ) parser$add_argument( "-d", "--dir", nargs = "+", type = "character", default = "NA", help = "Path to directory with *.stat files (long, csv format). " ) parser$add_argument( "-o", "--output", nargs = 1, type = "character", help = "Output file path and name, csv format. ie. path/to/file.csv" ) args <- parser$parse_args(commandArgs(trailingOnly = TRUE)) stopifnot(! all(c(args$file, args$dir) == "NA") ) # Manipulate file paths to determine stat types if( args$file != "NA" ){ is_present <- file.exists(args$file) }else{ is_present <- file.exists(args$dir) } if( !is_present ){ stop( "\n Cannot find the following file(s) or directory: ", c(args$file, args$dir)[c(args$file, args$dir) != "NA"] ) } if( args$file != "NA"){ file_names <- stringr::str_extract(args$file, "[\\w\\.\\-\\_]+$") file_paths <- args$file }else{ file_names <- list.files(path = args$dir, pattern = "\\.stat$") file_paths <- file.path(args$dir, file_names) } file_types <- sub("[\\w\\-\\_]+.", "", file_names, perl = TRUE) file_types <- sub(".stat", "", file_types) # Read in data in a long format long_data <- dplyr::bind_rows( lapply( structure(file_paths, names = file_types), function(file){ x <- try( expr = read.csv(file = file, header = FALSE), silent = TRUE ) if( class(x) == "try-error"){ return(data.frame( sampleName = vector(mode = "character"), metric = vector(mode = "character"), count = vector("numeric") )) }else{ names(x) <- c("sampleName", "metric", "count") return(dplyr::mutate( x, sampleName = stringr::str_extract(sampleName, "[\\w\\-\\_]+") )) } } ), .id = "type" ) fmt_long_data <- long_data %>% dplyr::distinct(type, sampleName, metric, count) %>% dplyr::mutate( bin = stringr::str_extract(type, "bin[0-9]+"), read = ifelse( stringr::str_detect(type, "R[12]."), ifelse(stringr::str_detect(type, "R1."), "R1", "R2"), NA ), type = stringr::str_remove(type, "bin[0-9]+.") ) %>% dplyr::group_by(sampleName, type, metric, read) %>% dplyr::summarise(count = sum(count)) %>% dplyr::ungroup() %>% dplyr::filter( (stringr::str_detect(metric, "multihit") & stringr::str_detect(type, "multihits")) | !stringr::str_detect(metric, "multihit") ) %>% dplyr::mutate(type = ifelse(type == "multihits", "align", type)) %>% dplyr::ungroup() # Transform data into a wide format wide_data <- dplyr::mutate( fmt_long_data, type = paste0(type, ".", metric), type = factor(type, levels = unique(type)) ) %>% dplyr::select(-metric, -read) %>% tidyr::spread(type, count) wide_cols <- names(wide_data) wide_data <- wide_data[ ,c("sampleName", sort(wide_cols[-match("sampleName", wide_cols)])) ] # Write data to output write.csv(wide_data, file = args$output, quote = FALSE, row.names = FALSE) q() |
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 | options(stringsAsFactors = FALSE, scipen = 99, width = 120) suppressMessages(library(magrittr)) code_dir <- dirname(sub( pattern = "--file=", replacement = "", x = grep("--file=", commandArgs(trailingOnly = FALSE), value = TRUE) )) # Set up and gather command line arguments parser <- argparse::ArgumentParser( description = "Script for combining multihit objects together.", usage = paste( "Rscript combine_multihits.R -d <directory> -p <pattern>", "[-h/--help, -v/--version] [optional args]" ) ) parser$add_argument( "-d", "--dir", nargs = 1, type = "character", help = paste( "Directory where to look for multihit files. Combine with 'pattern'", "to select specific files." ) ) parser$add_argument( "-p", "--pattern", nargs = 1, type = "character", default = ".", help = paste( "Pattern to identify files within the directory specified to combine.", "Regex patterns supported through R. Default: '.'" ) ) parser$add_argument( "-o", "--output", nargs = 1, type = "character", required = TRUE, help = "Output file name. Output format only supports R-based rds format." ) parser$add_argument( "-s", "--stat", nargs = 1, type = "character", default = FALSE, help = "Stat output name. Stats output in long csv file format." ) args <- parser$parse_args(commandArgs(trailingOnly = TRUE)) # Check output file name if( !stringr::str_detect(args$output, ".rds$") ){ stop(paste( "\n Output file name must be in rds format.", "\n Please change name to have the proper extension (*.rds).\n" )) } # Print Inputs to terminal input_table <- data.frame( "Variables" = paste0(names(args), " :"), "Values" = sapply(seq_along(args), function(i){ paste(args[[i]], collapse = ", ") }) ) input_table <- input_table[ match( c("dir :", "pattern :", "output :", "stat :"), input_table$Variables ), ] cat("\nCombine Multihit Inputs:\n") print( data.frame(input_table), right = FALSE, row.names = FALSE ) # Clear output file and prep output path write(c(), file = args$output) args$output <- normalizePath(args$output) unlink(args$output) # Check for input files input_files <- list.files(path = args$dir) if( args$pattern != "." ){ input_files <- input_files[stringr::str_detect(input_files, args$pattern)] } if( length(input_files) == 0 ){ cat("\nWarning:\n No input files identified, writing empty output files.\n") saveRDS( object = list( "unclustered_multihits" = GenomicRanges::GRanges(), "clustered_multihit_positions" = GenomicRanges::GRangesList(), "clustered_multihit_lengths" = IRanges::RleList() ), file = args$output ) if( args$stat != FALSE ){ write.table( x = data.frame(), file = args$stat, sep = ",", row.names = FALSE, col.names = FALSE, quote = FALSE ) } }else{ cat(paste( "\n A few multihit files to join together:\n ", paste(head(file.path(args$dir, input_files)), collapse = "\n ") )) } # Load supporting scripts source(file.path(code_dir, "supporting_scripts", "printHead.R")) source(file.path(code_dir, "supporting_scripts", "writeOutputFile.R")) ## Set up stat object if( args$stat != FALSE ){ sampleName <- unlist(strsplit(args$output, "/")) sampleName <- unlist( strsplit(sampleName[length(sampleName)], ".", fixed = TRUE) )[1] stat <- data.frame( sampleName = vector("character"), metric = vector("character"), count = vector("character") ) } # Read in files ---- multihit_input <- lapply(file.path(args$dir, input_files), readRDS) multihits <- unlist(GenomicRanges::GRangesList(lapply( multihit_input, "[[", "unclustered_multihits" ))) num_alignments <- length(multihits) num_reads <- length(unique(names(multihits))) # Message cat( "\nA total of", format(num_alignments, big.mark = ","), "alignments will be clustered from", format(num_reads, big.mark = ","), "reads.\n" ) # Group and characterize multihits # Multihits are reads that align to multiple locations in the reference # genome. There are bound to always be a certain proportion of reads aligning # to repeated sequence due to the high level degree of repeated DNA elements # within genomes. The final object generated, "multihitData", is a list of # three objects. "unclustered_multihits" is a GRanges object where every # alignment for every multihit read is present in rows. # "clustered_multihit_positions" returns all the possible integration site # positions for the multihit. Lastly, "clustered_multihit_lengths" contains the # length of the templates mapping to the multihit clusters, used for # abundance calculations. unclustered_multihits <- GenomicRanges::GRanges() clustered_multihit_positions <- GenomicRanges::GRangesList() clustered_multihit_lengths <- list() if( length(multihits) > 0 ){ #' As the loci are expanded from the coupled_loci object, unique templates #' and readPairKeys are present in the readPairKeys unlisted from the #' paired_loci object. multihit_templates <- multihits multihit_keys <- multihits %>% as.data.frame(row.names = NULL) %>% dplyr::distinct(sampleName, ID, readPairKey) %>% dplyr::select(sampleName, ID, readPairKey) #' Medians are based on all the potential sites for a given read, which will #' be identical for all reads associated with a readPairKey. multihit_medians <- round( IRanges::median(GenomicRanges::width(GenomicRanges::GRangesList(split( x = multihit_templates, f = multihit_templates$readPairKey )))) ) multihit_keys$medians <- multihit_medians[ as.character(multihit_keys$readPairKey) ] multihits_pos <- GenomicRanges::flank( x = multihit_templates, width = -1, start = TRUE ) multihits_red <- GenomicRanges::reduce( x = multihits_pos, min.gapwidth = 5L, with.revmap = TRUE ) #! Should make min.gapwidth a option revmap <- multihits_red$revmap axil_nodes <- as.character(S4Vectors::Rle( values = multihit_templates$readPairKey[min(revmap)], lengths = lengths(revmap) )) nodes <- multihit_templates$readPairKey[unlist(revmap)] edgelist <- unique(matrix( c(axil_nodes, nodes), ncol = 2 )) multihits_cluster_data <- igraph::clusters( igraph::graph.edgelist(el = edgelist, directed = FALSE) ) clus_key <- data.frame( row.names = unique(as.character(t(edgelist))), "clusID" = multihits_cluster_data$membership ) multihits_pos$clusID <- clus_key[ as.character(multihits_pos$readPairKey), "clusID" ] multihits_pos <- multihits_pos[order(multihits_pos$clusID)] clustered_multihit_index <- as.data.frame( GenomicRanges::mcols(multihits_pos) ) multihit_loci_rle <- S4Vectors::Rle(factor( x = clustered_multihit_index$lociPairKey, levels = unique(clustered_multihit_index$lociPairKey) )) multihit_loci_intL <- S4Vectors::split( multihit_loci_rle, clustered_multihit_index$clusID ) clustered_multihit_positions <- GenomicRanges::granges( x = multihits_pos[ match( x = BiocGenerics::unlist(S4Vectors::runValue(multihit_loci_intL)), table = clustered_multihit_index$lociPairKey ) ] ) clustered_multihit_positions <- GenomicRanges::split( x = clustered_multihit_positions, f = S4Vectors::Rle( values = seq_along(multihit_loci_intL), lengths = S4Vectors::width(S4Vectors::runValue( multihit_loci_intL )@partitioning) ) ) readPairKey_cluster_index <- unique( clustered_multihit_index[,c("readPairKey", "clusID")] ) multihit_keys$clusID <- readPairKey_cluster_index$clusID[ match( as.character(multihit_keys$readPairKey), readPairKey_cluster_index$readPairKey ) ] multihit_keys <- multihit_keys[order(multihit_keys$medians),] clustered_multihit_lengths <- split( x = S4Vectors::Rle(multihit_keys$medians), f = multihit_keys$clusID ) #' Expand the multihit_templates object from readPairKey specific to read #' specific. multihit_keys <- multihit_keys[order(multihit_keys$readPairKey),] multihit_readPair_read_exp <- IRanges::IntegerList( split(x = seq_len(nrow(multihit_keys)), f = multihit_keys$readPairKey) ) unclustered_multihits <- multihit_templates multihit_readPair_read_exp <- multihit_readPair_read_exp[ as.character(unclustered_multihits$readPairKey) ] unclustered_multihits <- unclustered_multihits[S4Vectors::Rle( values = seq_along(unclustered_multihits), lengths = S4Vectors::width(multihit_readPair_read_exp@partitioning) )] names(unclustered_multihits) <- multihit_keys$ID[ BiocGenerics::unlist(multihit_readPair_read_exp) ] unclustered_multihits$ID <- multihit_keys$ID[ BiocGenerics::unlist(multihit_readPair_read_exp) ] unclustered_multihits$sampleName <- multihit_keys$sampleName[ BiocGenerics::unlist(multihit_readPair_read_exp) ] } stopifnot( length(clustered_multihit_positions) == length(clustered_multihit_lengths) ) multihitData <- list( "unclustered_multihits" = unclustered_multihits, "clustered_multihit_positions" = clustered_multihit_positions, "clustered_multihit_lengths" = clustered_multihit_lengths ) writeOutputFile(multihitData, file = args$output, format = "rds") printHead( data.frame( "multihit_reads" = length(unique(names(unclustered_multihits))), "multihit_alignments" = length(unique(unclustered_multihits)), "multihit_clusters" = length(clustered_multihit_positions), "multihit_lengths" = sum(lengths(clustered_multihit_lengths)) ), title = "Multihit metrics", caption = "Metrics highlighting the observation of multiple aligning reads." ) if( args$stat != FALSE ){ add_stat <- data.frame( sampleName = sampleName, metric = c("multihit.reads", "multihit.lengths", "multihit.clusters"), count = c( length(unique(names(unclustered_multihits))), sum(lengths(clustered_multihit_lengths)), length(clustered_multihit_positions)) ) stat <- rbind(stat, add_stat) } if( args$stat != FALSE ){ write.table( x = stat, file = args$stat, sep = ",", row.names = FALSE, col.names = FALSE, quote = FALSE ) } if( file.exists(args$output) ){ cat("\n Output file generated :", args$output, "\n") q(save = "no", status = 0) }else{ stop("\n Could not verify existance of output file:\n ", args$output, "\n") } |
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 | options(stringsAsFactors = FALSE, scipen = 99, width = 999) code_dir <- dirname(sub( pattern = "--file=", replacement = "", x = grep("--file=", commandArgs(trailingOnly = FALSE), value = TRUE) )) desc <- desc <- yaml::yaml.load_file( file.path(code_dir, "descriptions/consol.desc.yml") ) #' Set up and gather command line arguments parser <- argparse::ArgumentParser( description = desc$program_short_description, usage = "nuc consol <seqFile> [-h/--help, -v/--version] [optional args]" ) parser$add_argument( "seqFile", nargs = 1, type = "character", default = "NA", help = desc$seqFile ) parser$add_argument( "-o", "--output", nargs = 1, type = "character", default = "NA", help = desc$output ) parser$add_argument( "-k", "--keyFile", nargs = 1, type = "character", default = "NA", help = desc$keyFile ) parser$add_argument( "-l", "--seqName", nargs = 1, type = "character", default = "NA", help = desc$seqName ) parser$add_argument( "--stat", nargs = 1, type = "character", default = FALSE, help = desc$stat ) parser$add_argument( "--compress", action = "store_true", help = desc$compress ) args <- parser$parse_args(commandArgs(trailingOnly = TRUE)) if( args$seqFile == "NA" ){ stop("\n No sequence file specified. Please provide.\n") } # Check I/O file types seq_type <- unlist(strsplit(args$seqFile, "/")) seq_type <- seq_type[length(seq_type)] seq_type <- stringr::str_extract(seq_type, "fa[\\w]*") if( !seq_type %in% c("fa", "fasta", "fastq") ){ stop(desc$unrecognized_file_type, " ", desc$compression_note) } seq_type <- ifelse(seq_type %in% c("fa", "fasta"), "fasta", "fastq") if( args$output != "NA" ){ outType <- unlist(strsplit(args$output, "/")) outType <- outType[length(outType)] outType <- stringr::str_extract(outType, "fa[\\w]*") args$output <- unlist(strsplit(args$output, outType))[1] if( !outType %in% c("fa", "fasta", "fastq") ){ stop(desc$unrecognized_file_type) } outType <- ifelse(outType %in% c("fa", "fasta"), "fasta", "fastq") if( outType == "fastq" ){ message(desc$fastq_input) outType <- "fasta" } args$output <- paste0(args$output, outType) if( args$compress & !grepl(".gz", args$output) ){ args$output <- paste0(args$output, ".gz") } } if( args$keyFile != "NA" ){ key_type <- stringr::str_extract(args$keyFile, "[\\w]+$") if( !key_type %in% c("csv", "tsv", "rds", "RData") ){ stop(desc$output_keyfile_type) } }else{ stop("\n No key file name given. Please provide.\n") } # Check sequence name lead if( args$seqName == "NA" ){ parsedName <- unlist(strsplit(args$seqFile, "/"))[ length(unlist(strsplit(args$seqFile, "/"))) ] args$seqName <- unlist(strsplit(parsedName, "fa[\\w]*"))[1] } # Print inputs to table input_table <- data.frame( "Variables" = paste0(names(args), " :"), "Values" = sapply( seq_along(args), function(i){ paste(args[[i]], collapse = ", ") } ) ) input_table <- input_table[ match( c("seqFile :", "output :", "keyFile :", "seqName :", "stat :"), input_table$Variables) ,] cat("\nConsolidate Inputs:\n") print( data.frame(input_table, row.names = NULL), right = FALSE, row.names = FALSE ) # Read sequence file if( seq_type == "fasta" ){ seq_pointer <- ShortRead::readFasta(args$seqFile) }else{ seq_pointer <- ShortRead::readFastq(args$seqFile) } seqs <- ShortRead::sread(seq_pointer) names(seqs) <- ShortRead::id(seq_pointer) # Generate blank files if inputs are empty if( length(seqs) == 0 ){ Biostrings::writeXStringSet( x = Biostrings::DNAStringSet(), filepath = args$output, format = "fasta", compress = args$compress ) if( !is.null(args$keyFile) ){ key <- data.frame("readNames" = c(), "seqID" = c()) if( key_type == "csv" ){ write.csv(key, file = args$keyFile, row.names = FALSE, quote = FALSE) }else if( key_type == "tsv" ){ write.table( key, file = args$keyFile, sep = "\t", row.names = FALSE, quote = FALSE ) }else if(key_type == "rds"){ saveRDS(key, file = args$keyFile) }else if(key_type == "RData"){ save(key, file = args$keyFile) } } if( args$stat != FALSE ){ sampleName <- unlist(strsplit(args$output, "/")) sampleName <- unlist( strsplit(sampleName[length(sampleName)], ".fa", fixed = TRUE) )[1] write.table( x = data.frame( sampleName = sampleName, metric = "reads", count = length(seqs) ), file = args$stat, sep = ",", row.names = FALSE, col.names = FALSE, quote = FALSE ) } q() } factor_seqs <- factor(as.character(seqs)) key <- data.frame( "readNames" = names(factor_seqs), "seqID" = paste0(args$seqName, as.integer(factor_seqs)) ) consolidated_seqs <- Biostrings::DNAStringSet(levels(factor_seqs)) names(consolidated_seqs) <- paste0(args$seqName, seq_along(levels(factor_seqs))) # Stats if requested if( args$stat != FALSE ){ sampleName <- unlist(strsplit(args$output, "/")) sampleName <- unlist( strsplit(sampleName[length(sampleName)], ".fa", fixed = TRUE) )[1] write.table( x = data.frame( sampleName = sampleName, metric = "reads", count = length(consolidated_seqs)), file = args$stat, sep = ",", row.names = FALSE, col.names = FALSE, quote = FALSE ) } # Write output and key files # Output if( args$output == "NA" ){ print( data.frame( "seqID" = names(consolidated_seqs), "sequence" = as.character(consolidated_seqs) ), row.names = FALSE ) }else{ unlink(args$output) ShortRead::writeFasta( consolidated_seqs, file = args$output, width = max(Biostrings::width(consolidated_seqs)), compress = args$compress ) } # Key file if( !is.null(args$keyFile) ){ if( key_type == "csv" ){ write.csv(key, file = args$keyFile, row.names = FALSE, quote = FALSE) }else if( key_type == "tsv" ){ write.table( key, file = args$keyFile, sep = "\t", row.names = FALSE, quote = FALSE ) }else if( key_type == "rds" ){ saveRDS(key, file = args$keyFile) }else if( key_type == "RData" ){ save(key, file = args$keyFile) } } q() |
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 | options(stringsAsFactors = FALSE, scipen = 99, width = 120) code_dir <- dirname(sub( pattern = "--file=", replacement = "", x = grep("--file=", commandArgs(trailingOnly = FALSE), value = TRUE) )) desc <- yaml::yaml.load_file( file.path(code_dir, "descriptions/couple.desc.yml") ) # Set up and gather command line arguments parser <- argparse::ArgumentParser( description = desc$program_short_description, usage = "Rscript couple.R <anchorPSL> <adriftPSL> [-h/--help, -v/--version] [optional args]" ) parser$add_argument( "anchorPSL", nargs = 1, type = "character", help = desc$anchorPSL ) parser$add_argument( "adriftPSL", nargs = 1, type = "character", help = desc$adriftPSL ) parser$add_argument( "-k", "--keys", nargs = "*", type = "character", help = desc$keys ) parser$add_argument( "-o", "--uniqOutput", nargs = 1, type = "character", help = desc$uniqOutput ) parser$add_argument( "--condSites", nargs = 1, type = "character", help = desc$condSites ) parser$add_argument( "--chimeras", nargs = 1, type = "character", help = desc$chimeras ) parser$add_argument( "--multihits", nargs = 1, type = "character", help = desc$multihits ) parser$add_argument( "--stat", nargs = 1, type = "character", default = FALSE, help = desc$stat ) parser$add_argument( "-g", "--refGenome", nargs = 1, type = "character", default = "hg38", help = desc$refGenome ) parser$add_argument( "--maxAlignStart", nargs = 1, type = "integer", default = 5L, help = desc$maxAlignStart ) parser$add_argument( "--minPercentIdentity", nargs = 1, type = "integer", default = 95L, help = desc$minPercentIdentity ) parser$add_argument( "--minTempLength", nargs = 1, type = "integer", default = 30L, help = desc$minTempLength ) parser$add_argument( "--maxTempLength", nargs = 1, type = "integer", default = 2500L, help = desc$maxTempLength ) parser$add_argument( "--keepAltChr", action = "store_true", help = desc$keepAltChr ) parser$add_argument( "--readNamePattern", nargs = 1, type = "character", default = "[\\w\\:\\-\\+]+", help = desc$readNamePattern ) parser$add_argument( "--saveImage", nargs = 1, type = "character", help = desc$saveImage ) args <- parser$parse_args(commandArgs(trailingOnly = TRUE)) # Argument Conditionals if( is.null(args$anchorPSL) | is.null(args$adriftPSL) ){ stop("\n Anchor and adrift PSL files not found. Please provide.\n") } if( is.null(args$uniqOutput) ){ stop("\n Please provide an output file name.\n") } # Print Inputs to terminal input_table <- data.frame( "Variables" = paste0(names(args), " :"), "Values" = sapply(seq_along(args), function(i){ paste(args[[i]], collapse = ", ") }) ) input_table <- input_table[ match( c("anchorPSL :", "adriftPSL :", "keys :", "uniqOutput :", "condSites :", "chimeras :", "multihits :", "stat :", "refGenome :", "maxAlignStart :", "minPercentIdentity :", "minTempLength :", "maxTempLength :", "readNamePattern :"), input_table$Variables ), ] cat("\nCoupler Inputs:\n") print( data.frame(input_table), right = FALSE, row.names = FALSE ) # Load supporting scripts source(file.path(code_dir, "supporting_scripts", "printHead.R")) source(file.path(code_dir, "supporting_scripts", "readKeyFile.R")) source(file.path(code_dir, "supporting_scripts", "readPSL.R")) source(file.path(code_dir, "supporting_scripts", "qualityFilter.R")) source(file.path(code_dir, "supporting_scripts", "processBLATData.R")) source(file.path(code_dir, "supporting_scripts", "condenseSites.R")) source(file.path(code_dir, "supporting_scripts", "writeOutputFile.R")) if( !all( c("printHead", "readKeyFile", "readPSL", "qualityFilter", "processBLATData", "condenseSites", "writeOutputFile") %in% ls()) ){ stop( "\n Cannot load supporting scripts. ", "You may need to clone from github again.\n" ) } # Load reference genome if( grepl(".fa", args$refGenome) ){ if( !file.exists(args$refGenome) ){ stop("\n Specified reference genome file not found.\n") } ref_file_type <- ifelse(grepl(".fastq", args$refGenome), "fastq", "fasta") ref_genome <- Biostrings::readDNAStringSet( args$refGenome, format = ref_file_type ) }else{ genome <- grep( args$refGenome, unique(BSgenome::installed.genomes()), value = TRUE ) if( length(genome) == 0 ){ cat("\nInstalled genomes include:\n") print(paste(unique(BSgenome::installed.genomes()), collapse = "\n")) stop("\n Selected reference '", args$refGenome, "'genome not in list.\n") }else if( length(genome) > 1 ){ cat("\nInstalled genomes include:\n") print(paste(unique(BSgenome::installed.genomes(), collapse = "\n"))) stop( "\n Please be more specific about reference genome. ", "Multiple matches to input.\n" ) } suppressMessages(library(genome, character.only = TRUE)) ref_genome <- get(genome) } ## Set up stat object if( args$stat != FALSE ){ sampleName <- unlist(strsplit(args$uniqOutput, "/")) sampleName <- unlist( strsplit(sampleName[length(sampleName)], ".", fixed = TRUE) )[1] stat <- data.frame( sampleName = vector("character"), metric = vector("character"), count = vector("character") ) } ## Load and process alignment data ## # Create single key file if one for each alignment file. if( length(args$keys) > 1 ){ anchor_key_type <- stringr::str_extract(args$keys[1], "[\\w]+$") if( !anchor_key_type %in% c("csv", "tsv", "rds", "RData") ){ stop( "\n Output key file type not supported. ", "Please use csv, tsv, rds, or RData.\n" ) } anchor_keys <- readKeyFile(args$keys[1], format = anchor_key_type) adrift_key_type <- stringr::str_extract(args$key[2], "[\\w]+$") if( !adrift_key_type %in% c("csv", "tsv", "rds", "RData") ){ stop( "\n Output key file type not supported. ", "Please use csv, tsv, rds, or RData.\n" ) } adrift_keys <- readKeyFile(args$keys[2], format = adrift_key_type) stopifnot(all(c("readNames", "seqID") %in% names(anchor_keys))) stopifnot(all(c("readNames", "seqID") %in% names(adrift_keys))) # Check input for data, if none, write files and exit if( nrow(anchor_keys) == 0 | nrow(adrift_keys) == 0 ){ cat("\nNo sequences identified in at least one key file.\n") writeNullOutput(args) q() } # Verify readNames are in the same format. anchor_keys$readNames <- stringr::str_extract( anchor_keys$readNames, args$readNamePattern ) adrift_keys$readNames <- stringr::str_extract( adrift_keys$readNames, args$readNamePattern ) # Only interested in reads in common between the two. common_names <- intersect(anchor_keys$readNames, adrift_keys$readNames) # Check intersection is not 0 if( length(common_names) == 0 | is.null(common_names) ){ cat("\nNo sequences in common between key files.\n") writeNullOutput(args) q() } # Filter names in key files. anchor_keys <- anchor_keys[anchor_keys$readNames %in% common_names,] adrift_keys <- adrift_keys[adrift_keys$readNames %in% common_names,] # Create a common key adrift_keys <- adrift_keys[ match(anchor_keys$readNames, adrift_keys$readNames), ] keys <- data.frame( "readNames" = anchor_keys$readNames, "anchorSeqID" = factor(anchor_keys$seqID), "adriftSeqID" = factor(adrift_keys$seqID) ) keys$anchorKey <- as.integer(keys$anchorSeqID) keys$adriftKey <- as.integer(keys$adriftSeqID) keys$readPairKey <- paste0(keys$anchorKey, ":", keys$adriftKey) # Print beginning of keys printHead( keys, title = "Beginning of Key for relating reads to sequences", caption = paste0( "\tReads: ", length(unique(keys$readNames)), "\n\tUnique Pairings: ", length(unique(keys$readPairKey)) ) ) }else if( length(args$keys) == 1 ){ key_type <- str_extract(args$keys, "[\\w]+$") if( !keys_type %in% c("csv", "tsv", "rds", "RData") ){ stop( "\n Output key file type not supported. ", "Please use csv, tsv, rds, or RData.\n" ) } keys <- readKeyFile(args$keys, format = key_type) stopifnot(all(c("readNames", "anchorSeqID", "adriftSeqID") %in% names(keys))) if( nrow(keys) == 0 ){ cat("\nNo sequences identified in key file.\n") writeNullOutput(args) q() } keys$anchorSeqID <- factor(keys$anchorSeqID) keys$adriftSeqID <- factor(keys$adriftSeqID) keys$anchorKey <- as.integer(keys$anchorSeqID) keys$adriftKey <- as.integer(keys$adriftSeqID) keys$readPairKey <- paste0(keys$anchorKey, ":", keys$adriftKey) # Print beginning of keys printHead( keys, title = "Beginning of Key for relating reads to sequences.", caption = paste0( "\n Reads : ", format(length(unique(keys$readNames)), big.mark = ","), "\n Unique Pairings: ", format(length(unique(keys$readPairKey)), big.mark = ",") ) ) }else if( length(args$keys) > 2 ){ stop("\n Cannot have more key files than sequence alignment files.\n") } # Load psl files and filter reads based on inputs anchor_hits <- readPSL(args$anchorPSL) adrift_hits <- readPSL(args$adriftPSL) # Remove alignments to alternate chromosomes # This helps in identifying unique locations instead of alignments that appear # for both the standard and alternate chromosomes, becoming a multihit. if( !args$keepAltChr ){ anchor_hits <- anchor_hits[ !stringr::str_detect(anchor_hits$tName, stringr::fixed("_")), ] adrift_hits <- adrift_hits[ !stringr::str_detect(adrift_hits$tName, stringr::fixed("_")), ] } # Create base key if no key was supplied if( is.null(args$keys) ){ anchor_SeqID <- stringr::str_extract( unique(anchor_hits$qName), args$readNamePattern ) adrift_SeqID <- stringr::str_extract( unique(adrift_hits$qName), args$readNamePattern ) intersect_SeqID <- intersect(anchor_SeqID, adrift_SeqID) keys <- data.frame( readNames = intersect_SeqID, anchorSeqID = factor(intersect_SeqID), adriftSeqID = factor(intersect_SeqID) ) keys$anchorKey <- as.integer(keys$anchorSeqID) keys$adriftKey <- as.integer(keys$adriftSeqID) keys$readPairKey <- paste0(keys$anchorKey, ":", keys$adriftKey) # Print beginning of keys printHead( keys, title = "Beginning of Key for relating reads to sequences", caption = paste0( "\n Reads :", format(length(unique(keys$readNames)), big.mark = ","), "\n Unique Pairings:", format(length(unique(keys$readPairKey)), big.mark = ",") ) ) } # Print out basic alignment info. cat(sprintf( "\nAnchor Alignments: %1$s from %2$s sequences\n", nrow(anchor_hits), length(unique(anchor_hits$qName)) )) cat(sprintf( "\nAdrift Alignments: %1$s from %2$s sequences\n\n", nrow(adrift_hits), length(unique(adrift_hits$qName)) )) # Stop if there are no alignments to couple. if( nrow(anchor_hits) == 0 | nrow(adrift_hits) == 0 ){ cat("\nNo sequences aligned for at least one of the sequence pairs.\n") writeNullOutput(args) q() } # Remove alignments that do not appear in the keys (single reads filtered out) anchor_hits <- anchor_hits[anchor_hits$qName %in% levels(keys$anchorSeqID),] adrift_hits <- adrift_hits[adrift_hits$qName %in% levels(keys$adriftSeqID),] # Quality filter and convert alignments from data.frame to GRanges anchor_hits <- qualityFilter( alignments = anchor_hits, q.start.max = args$maxAlignStart, global.identity.min = args$minPercentIdentity ) if( nrow(anchor_hits) == 0 ){ cat("\nNo alignments remaining after quality filtering anchor reads.\n") writeNullOutput(args) q() } anchor_hits <- processBLATData( algns = anchor_hits, from = "anchor", ref.genome = ref_genome ) anchor_hits$anchorKey <- match(anchor_hits$qName, levels(keys$anchorSeqID)) adrift_hits <- qualityFilter( alignments = adrift_hits, q.start.max = args$maxAlignStart, global.identity.min = args$minPercentIdentity ) if( nrow(adrift_hits) == 0 ){ cat("\nNo alignments remaining after quality filtering adrift reads.\n") writeNullOutput(args) q() } adrift_hits <- processBLATData( algns = adrift_hits, from = "adrift", ref.genome = ref_genome ) adrift_hits$adriftKey <- match(adrift_hits$qName, levels(keys$adriftSeqID)) # Info after quality filtering individual alignments. printHead( anchor_hits, title = "Head of filtered anchor alignments", caption = sprintf( "Alignments: %1$s from %2$s reads", length(anchor_hits), length(unique(anchor_hits$qName)) ) ) printHead( adrift_hits, title = "Head of filtered adrift alignments", caption = sprintf( "Alignments: %1$s from %2$s reads", length(adrift_hits), length(unique(adrift_hits$qName)) ) ) # Stop if no alignments passed filtering for individual sequences. if( length(anchor_hits) == 0 | length(adrift_hits) == 0 ){ cat( "\nNo alignments remaining after quality filtering", "for at least one of the sequence pairs.\n" ) writeNullOutput(args) q() } # All alignments should be either "+" or "-" strand. stopifnot(all(strand(anchor_hits) == "+" | strand(anchor_hits) == "-")) stopifnot(all(strand(adrift_hits) == "+" | strand(adrift_hits) == "-")) # Identify all combinations of unique anchor and adrift sequences present in the # data unique_key_pairs <- unique(keys[,c("anchorKey", "adriftKey", "readPairKey")]) #' Reduced alignments identify the distinct genomic locations present in the #' data for the adrift sequences (breakpoint positions) and anchor sequences #' (integration site position). #' Levels: Reads --> Unique Sequences --> Alignments --> Unique Genomic Loci red_anchor_hits <- GenomicRanges::reduce( x = GenomicRanges::flank(anchor_hits, -1, start = TRUE), min.gapwidth = 0L, with.revmap = TRUE ) red_adrift_hits <- GenomicRanges::reduce( x = GenomicRanges::flank(adrift_hits, -1, start = TRUE), min.gapwidth = 0L, with.revmap = TRUE ) #' The following finds all posible combinations of anchor and adrift loci which #' meet criteria for pairing. These include: oneEach (each pairing must come #' from one anchor and one adrift loci), opposite strands (paired loci should be #' present on opposite strands), and correct downstream orientation (if an #' anchor loci is on the "+" strand, then the start of the anchor loci should be #' less than the paired adrift, and vice versa for "-" strand). #' (Inherent check for oneEach with findOverlaps()) pairs <- GenomicRanges::findOverlaps( query = red_anchor_hits, subject = red_adrift_hits, maxgap = args$maxTempLength, ignore.strand = TRUE ) #Stop if no alignments coupled based on criteria. if( length(pairs) == 0 ){ cat("\nNo alignments coupled based on input criteria.\n") writeNullOutput(args) q() } # Check isDownstream and isOppositeStrand adrift_loci_starts <- GenomicRanges::start(red_adrift_hits)[ S4Vectors::subjectHits(pairs) ] anchor_loci_starts <- GenomicRanges::start(red_anchor_hits)[ S4Vectors::queryHits(pairs) ] adrift_loci_strand <- GenomicRanges::strand(red_adrift_hits)[ S4Vectors::subjectHits(pairs) ] anchor_loci_strand <- GenomicRanges::strand(red_anchor_hits)[ S4Vectors::queryHits(pairs) ] keep_loci <- ifelse( anchor_loci_strand == "+", as.vector( (adrift_loci_starts > anchor_loci_starts) & (adrift_loci_strand != anchor_loci_strand) ), as.vector( (adrift_loci_starts < anchor_loci_starts) & (adrift_loci_strand != anchor_loci_strand) ) ) keep_loci <- as.vector( (keep_loci & anchor_loci_strand != "*") & (adrift_loci_strand != "*") ) pairs <- pairs[keep_loci] # Stop if no loci were properly paired if( length(pairs) == 0 ){ cat("\nNo genomic loci from alignments were properly paired.\n") writeNullOutput(args) q() } #' Below, the code constructs a genomic loci key which links genomic loci to #' the various anchor and adrift sequences that were aligned. The technique used #' below first matches the unique loci back to multiple alignments, then uses #' the indices of the unique_key_pairs data.frame (which matches alignments to #' unique sequence identifiers) as a GRanges object to match many alignments to #' many read identifiers with findOverlaps. For some reason, this method did not #' work as anticipated with IRanges, and therefore objects were moved to GRanges #' and GRangesLists. loci_key <- data.frame( "anchorLoci" = S4Vectors::queryHits(pairs), "adriftLoci" = S4Vectors::subjectHits(pairs) ) loci_key$lociPairKey <- paste0(loci_key$anchorLoci, ":", loci_key$adriftLoci) # Append *Loci ids to the anchor and adrift alignments idx_passing_anchors <- unlist(red_anchor_hits$revmap[ unique(loci_key$anchorLoci) ]) anchor_hits$anchorLoci <- NA anchor_hits$anchorLoci[idx_passing_anchors] <- as.numeric(S4Vectors::Rle( values = unique(loci_key$anchorLoci), lengths = lengths(red_anchor_hits$revmap[unique(loci_key$anchorLoci)]) )) idx_passing_adrifts <- unlist(red_adrift_hits$revmap[ unique(loci_key$adriftLoci) ]) adrift_hits$adriftLoci <- NA adrift_hits$adriftLoci[idx_passing_adrifts] <- as.numeric(S4Vectors::Rle( values = unique(loci_key$adriftLoci), lengths = lengths(red_adrift_hits$revmap[unique(loci_key$adriftLoci)]) )) # Join the loci idx information up to the keys file # Identify aligning keys aligned_anchor_keys <- unique( anchor_hits$anchorKey[!is.na(anchor_hits$anchorLoci)] ) aligned_adrift_keys <- unique( adrift_hits$adriftKey[!is.na(adrift_hits$adriftLoci)] ) # Construct an anchor/adrift key to loci IntegerList with indices anchor_key_to_loci <- with( as.data.frame(anchor_hits)[ anchor_hits$anchorKey %in% aligned_anchor_keys & !is.na(anchor_hits$anchorLoci), c("anchorKey", "anchorLoci") ], IRanges::IntegerList(split(anchorLoci, anchorKey)) ) adrift_key_to_loci <- with( as.data.frame(adrift_hits)[ adrift_hits$adriftKey %in% aligned_adrift_keys & !is.na(adrift_hits$adriftLoci), c("adriftKey", "adriftLoci") ], IRanges::IntegerList(split(adriftLoci, adriftKey)) ) # Construct readPairKey to lociKey object unique_read_pair_keys <- unique(keys$readPairKey) unique_read_pair_keys <- unique_read_pair_keys[ stringr::str_extract(unique_read_pair_keys, "[\\d]+") %in% names(anchor_key_to_loci) & stringr::str_extract(unique_read_pair_keys, "[\\d]+$") %in% names(adrift_key_to_loci) ] loci_key_anchor_idx <- IRanges::IntegerList(split( seq_along(loci_key$anchorLoci), loci_key$anchorLoci )) loci_key_adrift_idx <- IRanges::IntegerList(split( seq_along(loci_key$adriftLoci), loci_key$adriftLoci )) # Time sink -- warning rpk_anchor_loci_idx <- IRanges::IntegerList(lapply( anchor_key_to_loci[stringr::str_extract(unique_read_pair_keys, "[\\d]+")], function(x) unlist(loci_key_anchor_idx[as.character(x)], use.names = FALSE) )) # Time sink -- warning rpk_adrift_loci_idx <- IRanges::IntegerList(lapply( adrift_key_to_loci[stringr::str_extract(unique_read_pair_keys, "[\\d]+$")], function(x) unlist(loci_key_adrift_idx[as.character(x)], use.names = FALSE) )) rpk_loci_idx <- IRanges::intersect(rpk_anchor_loci_idx, rpk_adrift_loci_idx) names(rpk_loci_idx) <- unique_read_pair_keys rpk_loci_key <- IRanges::CharacterList(split( loci_key$lociPairKey[unlist(rpk_loci_idx)], S4Vectors::Rle( values = names(rpk_loci_idx), lengths = lengths(rpk_loci_idx) ) )) gc() # Group readPairKeys into unique, mulithit, or artifactual chimeras unique_rpks <- names(rpk_loci_key)[lengths(rpk_loci_key) == 1] multihit_rpks <- names(rpk_loci_key)[lengths(rpk_loci_key) > 1] chimera_rpks <- keys$readPairKey[ !keys$readPairKey %in% c(unique_rpks, multihit_rpks) ] cat( "\nUnique sequences associated with types of alignments:\n", " unique alignments : ", format(length(unique_rpks), big.mark = ","), "\n", " multihit alignments: ", format(length(multihit_rpks), big.mark = ","), "\n", " chimera artifacts : ", format(length(chimera_rpks), big.mark = ","), "\n" ) # Couple together the anchor and adrift loci for expanding rpks-loci # Using the range information from the filtered paired alignments, the code # constructs a GRanges object from the anchor_loci and adrift_loci. Anchor_loci # are the integration site positions while the adrift_loci are the various # breakpoints. The strand of the range is set to the same strand as the # anchor_loci since the direction of sequencing is considered to be from the # host-junction found at the 3' end of the integrated element. coupled_loci <- GenomicRanges::GRanges( seqnames = GenomicRanges::seqnames(red_anchor_hits)[loci_key$anchorLoci], ranges = IRanges::IRanges( start = ifelse( GenomicRanges::strand(red_anchor_hits[loci_key$anchorLoci]) == "+", GenomicRanges::start(red_anchor_hits)[loci_key$anchorLoci], GenomicRanges::start(red_adrift_hits)[loci_key$adriftLoci] ), end = ifelse( GenomicRanges::strand(red_anchor_hits[loci_key$anchorLoci]) == "+", GenomicRanges::start(red_adrift_hits)[loci_key$adriftLoci], GenomicRanges::start(red_anchor_hits)[loci_key$anchorLoci] ) ), strand = GenomicRanges::strand(red_anchor_hits[loci_key$anchorLoci]), seqinfo = GenomeInfoDb::seqinfo(ref_genome), lociPairKey = loci_key$lociPairKey ) #' Information on valid coupled alignments from all sequences present. printHead( sort(coupled_loci[sample.int( length(coupled_loci), size = min(6, length(coupled_loci)), replace = FALSE )]), title = "Randomly sampled coupled loci present in the data.", caption = sprintf("Genomic loci: %s", length(coupled_loci)) ) #' Stop if there are no coupled_loci if( length(coupled_loci) == 0 ){ cat( "\nNo valid coupled genomic loci were found within", "the data given input criteria.\n" ) writeNullOutput(args) q() } #' Bin reads that would map to different loci on the same read (chimeras) #' All unique and multihit templates are mapped successfully to #' genomic loci, yet some templates are sequenced but do not make it through #' the selection criteria. These templates either do not have alignments to the #' reference genome (anchor or adrift did not align) or map to two distant #' genomic loci. The latter are termed chimeras and are considered to be #' artifacts of PCR amplification. if( !is.null(args$chimeras) ){ failed_reads <- keys[keys$readPairKey %in% chimera_rpks,] chimera_reads <- failed_reads[ failed_reads$anchorKey %in% anchor_hits$anchorKey & failed_reads$adriftKey %in% adrift_hits$adriftKey, ] chimera_alignments <- GenomicRanges::GRangesList() if( nrow(chimera_reads) > 0 ){ chim_anchor <- anchor_hits[ anchor_hits$anchorKey %in% chimera_reads$anchorKey, ] chim_anchor <- split(x = chim_anchor, f = chim_anchor$qName) chim_anchor <- chim_anchor[chimera_reads$anchorSeqID] names(chim_anchor) <- chimera_reads$readNames chim_anchor <- unlist(chim_anchor) chim_adrift <- adrift_hits[ adrift_hits$adriftKey %in% chimera_reads$adriftKey, ] chim_adrift <- split(x = chim_adrift, f = chim_adrift$qName) chim_adrift <- chim_adrift[chimera_reads$adriftSeqID] names(chim_adrift) <- chimera_reads$readNames chim_adrift <- unlist(chim_adrift) keepCols <- c( "from", "qName", "matches", "repMatches", "misMatches", "qStart", "qEnd", "qSize", "tBaseInsert" ) mcols(chim_anchor) <- mcols(chim_anchor)[,keepCols] mcols(chim_adrift) <- mcols(chim_adrift)[,keepCols] chimera_alignments <- c(chim_anchor, chim_adrift) chimera_alignments <- split(chimera_alignments, names(chimera_alignments)) } if( args$stat != FALSE ){ add_stat <- data.frame( sampleName = sampleName, metric = "chimera.reads", count = length(unique(chimera_reads$readNames)) ) stat <- rbind(stat, add_stat) } chimeraData <- list( "read_info" = chimera_reads, "alignments" = chimera_alignments, "failed_reads" = failed_reads ) writeOutputFile(chimeraData, file = args$chimeras, format = "rds") } #' Expand out uniquely mapped reads or unique sites #' Below, the paired_loci object is expanded to create the genomic alignments #' for each read that mapped to a single genomic loci. This data is then #' recorded in two formats. "allSites" is a GRanges object where each row is a #' single read, while "sites.final" is a condensed form of the data where each #' row is a unique integration site with the width of the range refering to #' the longest template aligned to the reference genome. uniq_templates <- coupled_loci[ match(unlist(rpk_loci_key[unique_rpks]), coupled_loci$lociPairKey) ] uniq_templates$readPairKey <- unique_rpks uniq_keys <- keys[keys$readPairKey %in% unique_rpks,] uniq_reads <- uniq_templates[ match(uniq_keys$readPairKey, uniq_templates$readPairKey) ] names(uniq_reads) <- as.character(uniq_keys$readNames) uniq_reads$sampleName <- stringr::str_extract( string = as.character(keys$anchorSeqID[ match(uniq_reads$readPairKey, keys$readPairKey) ]), pattern = "^[\\w-]+" ) uniq_reads$ID <- names(uniq_reads) uniq_sites <- uniq_reads names(uniq_sites) <- NULL writeOutputFile(uniq_sites, file = args$uniqOutput) # Print out head of uniq_sites for reference. printHead( uniq_sites, title = "Head of uniquely mapped genomic loci", caption = sprintf( paste( "Alignments yeilded %1$s unique anchor sites from %2$s", "properly-paired and aligned reads." ), length(reduce(flank(uniq_sites, -1, start = TRUE), min.gapwidth = 0L)), length(uniq_sites) ) ) if( args$stat != FALSE ){ add_stat <- data.frame( sampleName = sampleName, metric = c("unique.reads", "unique.algns", "unique.loci"), count = c( length(unique(uniq_sites$ID)), length(unique(uniq_sites)), length(GenomicRanges::reduce( x = GenomicRanges::flank(uniq_sites, width = -1, start = TRUE), min.gapwidth = 0L )) ) ) stat <- rbind(stat, add_stat) } # Generate condensed sites if( !is.null(args$condSites) ){ cond_sites <- condenseSites( uniq_sites, keep.cols = "sampleName", list.bp.counts = TRUE ) writeOutputFile(cond_sites, file = args$condSites) printHead( cond_sites, title = "Head of unique anchor sites", caption = sprintf( paste( "There were %1$s unique anchor sites identified with a total", "of %2$s unique template lengths and %3$s read counts." ), length(cond_sites), sum(cond_sites$fragLengths), sum(cond_sites$counts) ) ) } # Clean up environment for expansion and clustering of multihits # Group and characterize multihits # Multihits are reads that align to multiple locations in the reference # genome. There are bound to always be a certain proportion of reads aligning # to repeated sequence due to the high level degree of repeated DNA elements # within genomes. The final object generated, "multihitData", is a list of # three objects. "unclustered_multihits" is a GRanges object where every # alignment for every multihit read is present in rows. # "clustered_multihit_positions" returns all the possible integration site # positions for the multihit. Lastly, "clustered_multihit_lengths" contains the # length of the templates mapping to the multihit clusters, used for # abundance calculations. if( !is.null(args$multihits) ){ unclustered_multihits <- GenomicRanges::GRanges() clustered_multihit_positions <- GenomicRanges::GRangesList() clustered_multihit_lengths <- list() if( length(multihit_rpks) > 0 ){ #' Only consider readPairKeys that aligned to multiple genomic loci multihit_templates <- coupled_loci[ coupled_loci$lociPairKey %in% unlist(rpk_loci_key[multihit_rpks]) ] multihit_templates <- multihit_templates[ match(unlist(rpk_loci_key[multihit_rpks]), multihit_templates$lociPairKey) ] multihit_templates$readPairKey <- as.character(S4Vectors::Rle( values = multihit_rpks, lengths = lengths(rpk_loci_key[multihit_rpks]) )) #' As the loci are expanded from the coupled_loci object, unique templates #' and readPairKeys are present in the readPairKeys unlisted from the #' paired_loci object. multihit_keys <- keys[keys$readPairKey %in% multihit_rpks,] multihit_keys$sampleName <- stringr::str_extract( string = as.character(multihit_keys$anchorSeqID), pattern = "^[\\w-]+" ) multihit_keys$ID <- multihit_keys$readNames #' Medians are based on all the potential sites for a given read, which will #' be identical for all reads associated with a readPairKey. multihit_medians <- round( median(GenomicRanges::width(split( x = multihit_templates, f = multihit_templates$readPairKey ))) ) multihit_keys$medians <- multihit_medians[multihit_keys$readPairKey] multihits_pos <- GenomicRanges::flank( x = multihit_templates, width = -1, start = TRUE ) multihits_red <- GenomicRanges::reduce( x = multihits_pos, min.gapwidth = 5L, with.revmap = TRUE ) #! Should make min.gapwidth a option revmap <- multihits_red$revmap axil_nodes <- as.character(S4Vectors::Rle( values = multihit_templates$readPairKey[min(revmap)], lengths = lengths(revmap) )) nodes <- multihit_templates$readPairKey[unlist(revmap)] edgelist <- unique(matrix( c(axil_nodes, nodes), ncol = 2 )) multihits_cluster_data <- igraph::clusters( igraph::graph.edgelist(el = edgelist, directed = FALSE) ) clus_key <- data.frame( row.names = unique(as.character(t(edgelist))), "clusID" = multihits_cluster_data$membership ) multihits_pos$clusID <- clus_key[multihits_pos$readPairKey, "clusID"] multihits_pos <- multihits_pos[order(multihits_pos$clusID)] clustered_multihit_index <- as.data.frame(mcols(multihits_pos)) multihit_loci_rle <- S4Vectors::Rle(factor( x = clustered_multihit_index$lociPairKey, levels = unique(clustered_multihit_index$lociPairKey) )) multihit_loci_intL <- split( multihit_loci_rle, clustered_multihit_index$clusID ) clustered_multihit_positions <- GenomicRanges::granges( x = multihits_pos[ match( x = unlist(S4Vectors::runValue(multihit_loci_intL)), table = clustered_multihit_index$lociPairKey) ] ) clustered_multihit_positions <- split( x = clustered_multihit_positions, f = S4Vectors::Rle( values = seq_along(multihit_loci_intL), lengths = S4Vectors::width(S4Vectors::runValue( multihit_loci_intL )@partitioning) ) ) readPairKey_cluster_index <- unique( clustered_multihit_index[,c("readPairKey", "clusID")] ) multihit_keys$clusID <- readPairKey_cluster_index$clusID[ match(multihit_keys$readPairKey, readPairKey_cluster_index$readPairKey) ] multihit_keys <- multihit_keys[order(multihit_keys$medians),] clustered_multihit_lengths <- split( x = S4Vectors::Rle(multihit_keys$medians), f = multihit_keys$clusID ) #' Expand the multihit_templates object from readPairKey specific to read #' specific. multihit_keys <- multihit_keys[order(multihit_keys$readPairKey),] multihit_readPair_read_exp <- IRanges::IntegerList( split(x = seq_len(nrow(multihit_keys)), f = multihit_keys$readPairKey) ) unclustered_multihits <- multihit_templates multihit_readPair_read_exp <- multihit_readPair_read_exp[ as.character(unclustered_multihits$readPairKey) ] unclustered_multihits <- unclustered_multihits[S4Vectors::Rle( values = seq_along(unclustered_multihits), lengths = S4Vectors::width(multihit_readPair_read_exp@partitioning) )] names(unclustered_multihits) <- multihit_keys$ID[ unlist(multihit_readPair_read_exp) ] unclustered_multihits$ID <- multihit_keys$ID[ unlist(multihit_readPair_read_exp) ] unclustered_multihits$sampleName <- multihit_keys$sampleName[ unlist(multihit_readPair_read_exp) ] } stopifnot( length(clustered_multihit_positions) == length(clustered_multihit_lengths) ) multihitData <- list( unclustered_multihits, clustered_multihit_positions, clustered_multihit_lengths ) names(multihitData) <- c( "unclustered_multihits", "clustered_multihit_positions", "clustered_multihit_lengths" ) writeOutputFile(multihitData, file = args$multihits, format = "rds") printHead( data.frame( "multihit_reads" = length(unique(names(unclustered_multihits))), "multihit_alignments" = length(unique(unclustered_multihits)), "multihit_clusters" = length(clustered_multihit_positions), "multihit_lengths" = sum(lengths(clustered_multihit_lengths)) ), title = "Multihit metrics", caption = "Metrics highlighting the observation of multiple aligning reads." ) if( args$stat != FALSE ){ add_stat <- data.frame( sampleName = sampleName, metric = c("multihit.reads", "multihit.lengths", "multihit.clusters"), count = c( length(unique(names(unclustered_multihits))), sum(lengths(clustered_multihit_lengths)), length(clustered_multihit_positions)) ) stat <- rbind(stat, add_stat) } } if( args$stat != FALSE ){ write.table( x = stat, file = args$stat, sep = ",", row.names = FALSE, col.names = FALSE, quote = FALSE ) } if( !is.null(args$saveImage) ) save.image(args$saveImage) q() |
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 | options(stringsAsFactors = FALSE, scipen = 99, width = 999) code_dir <- dirname(sub( pattern = "--file=", replacement = "", x = grep("--file=", commandArgs(trailingOnly = FALSE), value = TRUE) )) desc <- yaml::yaml.load_file( file.path(code_dir, "descriptions/demulti.desc.yml") ) # Set up and gather command line arguments ---- ## Argument parser ---- parser <- argparse::ArgumentParser( description = desc$program_short_description, usage = "Rscript demulti.R [-h/--help, -v/--version] [optional args]" ) parser$add_argument( "-m", "--manifest", type = "character", help = desc$manifest ) parser$add_argument( "--read1", type = "character", default = "NA", help = desc$read1 ) parser$add_argument( "--read2", type = "character", default = "NA", help = desc$read2 ) parser$add_argument( "--idx1", type = "character", default = "NA", help = desc$idx1 ) parser$add_argument( "--idx2", type = "character", default = "NA", help = desc$idx2 ) parser$add_argument( "-o", "--outfolder", nargs = 1, type = "character", help = desc$outfolder ) parser$add_argument( "--bc1", nargs = 1, type = "character", default = "I1", help = desc$bc1 ) parser$add_argument( "--bc2", nargs = 1, type = "character", default = "I2", help = desc$bc2 ) parser$add_argument( "--bc1Man", nargs = 1, type = "character", default = "barcode1", help = desc$bc1Man ) parser$add_argument( "--bc2Man", nargs = 1, type = "character", default = "barcode2", help = desc$bc2Man ) parser$add_argument( "--bc1Len", nargs = 1, type = "integer", default = 8, help = desc$bc1Len ) parser$add_argument( "--bc2Len", nargs = 1, type = "integer", default = 8, help = desc$bc2Len ) parser$add_argument( "--maxMis", nargs = 1, type = "integer", help = desc$maxMis ) parser$add_argument( "--bc1Mis", nargs = 1, type = "integer", default = 0, help = desc$bc1Mis ) parser$add_argument( "--bc2Mis", nargs = 1, type = "integer", default = 0, help = desc$bc2Mis ) parser$add_argument( "--maxN", nargs = 1, type = "integer", default = 1, help = desc$maxN ) parser$add_argument( "--stat", nargs = 1, type = "character", default = FALSE, help = desc$stat ) parser$add_argument( "-c", "--cores", nargs = 1, default = 1, type = "integer", help = desc$cores ) parser$add_argument( "--compress", action = "store_true", help = desc$compress ) parser$add_argument( "-p", "--poolreps", action = "store_true", help = desc$poolreps ) parser$add_argument( "--singleBarcode", action = "store_true", help = desc$singleBarcode ) parser$add_argument( "--readNamePattern", nargs = 1, type = "character", default = "[\\w\\:\\-\\+]+", help = desc$readNamePattern ) args <- parser$parse_args(commandArgs(trailingOnly = TRUE)) demulti <- data.frame( "readType" = c("R1", "R2", "I1", "I2"), "path" = c(args$read1, args$read2, args$idx1, args$idx2) ) demulti$bc1 <- grepl(args$bc1, demulti$readType) demulti$bc2 <- grepl(args$bc2, demulti$readType) if( demulti$readType[demulti$bc1] == demulti$readType[demulti$bc2] ){ stop("Please select different read types for barcodes 1 and 2.\n") } if( demulti$readType[demulti$bc1] == "NA" ){ stop("Barcode 1 is set to a read type that is not provided.\n") } if( demulti$readType[demulti$bc2] == "NA" ){ stop("Barcode 2 is set to a read type that is not provided.\n") } if( args$singleBarcode ){ demulti$bc2 <- FALSE } if( !is.null(args$maxMis) ){ args$bc1Mis <- args$maxMis args$bc2Mis <- args$maxMis } input_table <- data.frame( "Variables" = paste0(names(args), " :"), "Values" = sapply( seq_along(args), function(i){ paste(args[[i]], collapse = ", ") } ) ) input_table <- input_table[ match( c("manifest :", "idx1 :", "idx2 :", "read1 :", "read2 :", "outfolder :", "stat :", "bc1 :", "bc2 :", "bc1Man :", "bc2Man :", "bc1Len :", "bc2Len :", "bc1Mis :", "bc2Mis :", "cores :", "compress :", "poolreps :", "singleBarcode :", "readNamePattern :" ), input_table$Variables ), ] cat("Demultiplex Inputs:\n") print( x = data.frame(input_table, row.names = NULL), right = FALSE, row.names = FALSE ) # Create output directory if not currently available ---- if( !file.exists(args$outfolder) ){ attempt <- try(system(paste0("mkdir ", args$outfolder))) if(attempt == 1) stop("Cannot create output folder.\n") } # Check for required packages ---- required_packs <- c("stringr", "ShortRead", "Biostrings") present_packs <- required_packs %in% row.names(installed.packages()) if( !all(present_packs) ){ cat("Missing required r-packages:\n") print( data.frame( "R-Packages" = required_packs, "Installed" = present_packs, row.names = NULL ), right = FALSE, row.names = FALSE) stop("Check dependancies.\n") } # Operating functions ---- parseIndexReads <- function(barcode.seqs, reads, indices = NULL, barcode.length = NULL, max.mismatch = 1L, max.N.count = 1L){ if( is.null(indices) ) indices <- seq_along(reads) if( is.null(barcode.length) ) barcode.length <- max(width(reads)) # Load index file sequences and sequence names n_reads <- ShortRead::narrow(reads, start = 1, end = barcode.length) unique_index_seqs <- unique(ShortRead::sread(n_reads)) # Trim barcode if necessary barcode_seqs <- as.character( Biostrings::DNAStringSet( unique(barcode.seqs), start = 1, end = barcode.length ) ) # Identify read names with sequences above or equal to the minscore bc_to_unique_idxs <- lapply( barcode_seqs, function(x){ vmp <- Biostrings::vmatchPattern( pattern = x, subject = unique_index_seqs, max.mismatch = max.mismatch, fixed = FALSE ) which(lengths(vmp) == 1) } ) # Lookup frame to match barcode sequences to index sequences # Sequence variability accounted for and ambiguous, degenerate, and unassigned # sequences identified degenerate_idxs <- which( stringr::str_count(unique_index_seqs, "N") > max.N.count ) ambiguous_idxs <- as.numeric(names(table(unlist(bc_to_unique_idxs)))[ table(unlist(bc_to_unique_idxs)) > 1 ]) ambiguous_idxs <- ambiguous_idxs[!ambiguous_idxs %in% degenerate_idxs] unassigned_idxs <- seq_along(unique_index_seqs)[ !seq_along(unique_index_seqs) %in% unlist(bc_to_unique_idxs) ] unassigned_idxs <- unassigned_idxs[!unassigned_idxs %in% degenerate_idxs] bc_to_unique_idxs <- lapply(bc_to_unique_idxs, function(x){ x[!x %in% c(ambiguous_idxs, unassigned_idxs, degenerate_idxs)] }) lookup_frame <- data.frame( bc_seqs = factor(S4Vectors::Rle( values = c(unique(barcode.seqs), "ambiguous", "degenerate", "unassigned"), lengths = c( lengths(bc_to_unique_idxs), length(ambiguous_idxs), length(degenerate_idxs), length(unassigned_idxs) ) ), levels = c(unique(barcode.seqs), "ambiguous", "degenerate", "unassigned") ), index_seqs = unique_index_seqs[ c(unlist(bc_to_unique_idxs), ambiguous_idxs, degenerate_idxs, unassigned_idxs) ] ) return(split( indices, lookup_frame$bc_seqs[ match(as.character(ShortRead::sread(n_reads)), lookup_frame$index_seqs) ] )) } writeDemultiplexedSequences <- function(reads, quals, samplename, type, outfolder, compress){ if( compress ){ file_path <- file.path( outfolder, paste0(samplename, ".", type, ".fastq.gz") ) }else{ file_path <- file.path(outfolder, paste0(samplename, ".", type, ".fastq")) } if( file.exists(file_path) ) unlink(file_path) Biostrings::writeXStringSet( x = reads, filepath = file_path, compress = compress, format = "fastq", qualities = quals ) cat( paste0("Wrote ", length(reads), " reads to:\n ", file_path, ".\n") ) return(list(file_path, type, outfolder)) } # Load manifest / sample mapping file ---- file_ext <- unlist(strsplit(args$manifest, "\\.")) file_ext <- file_ext[length(file_ext)] if( file_ext %in% c("yaml", "yml") ){ if( !"yaml" %in% row.names(installed.packages()) ){ stop("Package:yaml not loaded or installed.\n") } manifest <- yaml::yaml.load_file(args$manifest) if( args$singleBarcode ){ samples_df <- data.frame( "sampleName" = names(manifest$samples), "bc1" = sapply( manifest$samples, function(x) x[args$bc1Man] ), row.names = NULL ) }else{ samples_df <- data.frame( "sampleName" = names(manifest$samples), "bc1" = sapply( manifest$samples, function(x) x[args$bc1Man] ), "bc2" = sapply( manifest$samples, function(x) x[args$bc2Man] ), row.names = NULL ) } }else{ if( file_ext == "csv" ){ manifest <- read.csv(args$manifest) }else if( file_ext == "tsv" ){ manifest <- read.delim(args$manifest) } if( args$singleBarcode ){ samples_df <- manifest[, c("sampleName", args$bc1Man)] names(samples_df) <- c("sampleName", "bc1") }else{ samples_df <- manifest[, c("sampleName", args$bc1Man, args$bc2Man)] names(samples_df) <- c("sampleName", "bc1", "bc2") } } if( !args$singleBarcode ){ unique_samples <- nrow(samples_df[,c("bc1", "bc2")]) == nrow(unique(samples_df[,c("bc1", "bc2")])) if( !unique_samples ) stop("Ambiguous barcoding of samples. Please correct.\n") }else{ unique_samples <- length(samples_df[,c("bc1")]) == length(unique(samples_df[,"bc1"])) if( !unique_samples ) stop("Ambiguous barcoding of samples. Please correct.\n") } # Read in barcode sequences ---- bc1_reads <- ShortRead::readFastq(demulti$path[demulti$bc1]) all_indices <- stringr::str_extract( as.character(ShortRead::id(bc1_reads)), args$readNamePattern ) if( !all(table(all_indices) == 1) ){ stop( "\n Read names are not unique, check input sequence files or ", "adjust readNamePattern parameter.\n") } cat(paste("\nReads to demultiplex : ", length(bc1_reads), "\n")) if( args$cores > 1 ){ bc1_proc_grps <- split( bc1_reads, ceiling( seq_along(bc1_reads) / (length(bc1_reads)/args$cores) ) ) split_indices <- split( all_indices, ceiling( seq_along(all_indices) / (length(bc1_reads)/args$cores) ) ) cluster <- parallel::makeCluster(min(c(parallel::detectCores(), args$cores))) BC1_parsed_list <- parallel::clusterMap( cluster, function(reads, idx, parseIndexReads, samples_df, args){ parseIndexReads( barcode.seqs = samples_df$bc1, reads = reads, indices = idx, barcode.length = args$bc1Len, max.mismatch = args$bc1Mis, max.N.count = args$maxN ) }, reads = bc1_proc_grps, idx = split_indices, MoreArgs = list( parseIndexReads = parseIndexReads, samples_df = samples_df, args = args ), SIMPLIFY = FALSE ) BC1_parsed <- lapply( names(BC1_parsed_list[[1]]), function(x){ unlist(lapply(seq_along(BC1_parsed_list), function(i){ BC1_parsed_list[[i]][[x]] })) } ) names(BC1_parsed) <- names(BC1_parsed_list[[1]]) rm(BC1_parsed_list, bc1_proc_grps) cat("\nbc1 breakdown:\n") print( data.frame( "bc1" = names(BC1_parsed), "Read Counts" = lengths(BC1_parsed) ), right = TRUE, row.names = FALSE ) if( !args$singleBarcode ){ bc2_reads <- ShortRead::readFastq(demulti$path[demulti$bc2]) bc2_indices <- stringr::str_extract( as.character(ShortRead::id(bc2_reads)), args$readNamePattern ) if( !all(bc2_indices == all_indices) ){ warning( " Index reads are not in the same order. Sequencing files should ", "always be kept in order across read types.\n") } bc2_proc_grps <- split( bc2_reads, ceiling( seq_along(bc2_reads) / (length(bc2_reads)/args$cores) ) ) split_bc2_indices <- split( bc2_indices, ceiling( seq_along(bc2_reads) / (length(bc2_reads)/args$cores) ) ) BC2_parsed_list <- parallel::clusterMap( cluster, function(reads, idx, parseIndexReads, samples_df, args){ parseIndexReads( barcode.seqs = samples_df$bc2, reads = reads, indices = idx, barcode.length = args$bc2Len, max.mismatch = args$bc2Mis, max.N.count = args$maxN ) }, reads = bc2_proc_grps, idx = split_bc2_indices, MoreArgs = list( parseIndexReads = parseIndexReads, samples_df = samples_df, args = args ), SIMPLIFY = FALSE ) BC2_parsed <- lapply( names(BC2_parsed_list[[1]]), function(x){ unlist(lapply(seq_along(BC2_parsed_list), function(i){ BC2_parsed_list[[i]][[x]] })) } ) names(BC2_parsed) <- names(BC2_parsed_list[[1]]) rm(BC2_parsed_list, bc2_proc_grps) } parallel::stopCluster(cluster) }else{ BC1_parsed <- parseIndexReads( barcode.seqs = samples_df$bc1, reads = bc1_reads, indices = all_indices, barcode.length = args$bc1Len, max.mismatch = args$bc1Mis, max.N.count = args$maxN ) cat("\nbc1 breakdown:\n") print( data.frame( "bc1" = names(BC1_parsed), "Read Counts" = lengths(BC1_parsed) ), right = TRUE, row.names = FALSE ) if( !args$singleBarcode ){ bc2_reads <- ShortRead::readFastq(demulti$path[demulti$bc2]) bc2_indices <- stringr::str_extract( as.character(ShortRead::id(bc2_reads)), args$readNamePattern ) if( !all(bc2_indices == all_indices) ){ warning( " Index reads are not in the same order. Sequencing files should ", "always be kept in order across read types.\n") } BC2_parsed <- parseIndexReads( barcode.seqs = samples_df$bc2, reads = bc2_reads, indices = bc2_indices, barcode.length = args$bc2Len, max.mismatch = args$bc2Mis, max.N.count = args$maxN ) } } if( !args$singleBarcode ){ cat("\nbc2 breakdown:\n") print( data.frame( "bc2" = names(BC2_parsed), "Read Counts" = lengths(BC2_parsed) ), right = TRUE, row.names = FALSE ) } if( !args$singleBarcode ){ demultiplexed_indices <- mapply( function(bc1, bc2){ Biostrings::intersect(BC1_parsed[[bc1]], BC2_parsed[[bc2]]) }, bc1 = samples_df$bc1, bc2 = samples_df$bc2, SIMPLIFY = FALSE ) names(demultiplexed_indices) <- paste0( samples_df$bc1, samples_df$bc2 ) }else{ demultiplexed_indices <- BC1_parsed[samples_df$bc1] } # As there is some flexibility in the barcode matching, some reads may be # be assigned to multiple samples (ambiguous). Additionally, uncalled bases can # lead to degenerate sequences (a cause of ambiguous matching), or many # sequences will be unassigned. if( !args$singleBarcode ){ degenerate_indices <- unique(c(BC1_parsed$degenerate, BC2_parsed$degenerate)) ambiguous_indices <- unique(c(BC1_parsed$ambiguous, BC2_parsed$ambiguous)) ambiguous_indices <- ambiguous_indices[ !ambiguous_indices %in% degenerate_indices ] unassigned_indices <- unique(c(BC1_parsed$unassigned, BC2_parsed$unassigned)) unassigned_indices <- unassigned_indices[ !unassigned_indices %in% c(degenerate_indices, ambiguous_indices) ] demultiplexed_indices <- lapply(demultiplexed_indices, function(x){ x[!x %in% c(unassigned_indices, ambiguous_indices, degenerate_indices)] }) unassigned_indices <- c(unassigned_indices, all_indices[ !all_indices %in% c( unlist(demultiplexed_indices), degenerate_indices, ambiguous_indices, unassigned_indices ) ]) }else{ degenerate_indices <- BC1_parsed$degenerate ambiguous_indices <- BC1_parsed$ambiguous unassigned_indices <- BC1_parsed$unassigned } # Reads by sample samples_df$read_counts <- lengths(demultiplexed_indices) cat("\nRead counts for each sample.\n") print(samples_df, split.tables = Inf) # Ambiguous reads cat(paste0("\nAmbiguous reads: ", length(ambiguous_indices), "\n")) # Degenerate reads cat(paste0("Degenerate reads: ", length(degenerate_indices), "\n")) # Unassigned reads cat(paste0("Unassigned reads: ", length(unassigned_indices), "\n")) if( args$stat != FALSE ){ write.table( data.frame( sampleName = paste0( c( samples_df$sampleName, "ambiguous_reads", "degenerate_reads", "unassigned_reads" ), ".demulti" ), metric = "reads", count = c( samples_df$read_counts, length(ambiguous_indices), length(degenerate_indices), length(unassigned_indices) ) ), file = file.path(args$outfolder, args$stat), sep = ",", row.names = FALSE, col.names = FALSE, quote = FALSE ) } # Create multiplex dataframe for subseting sequencing files ---- multiplexed_data <- data.frame( "sampleName" = S4Vectors::Rle( values = samples_df$sampleName, length = lengths(demultiplexed_indices) ), "index" = unlist(demultiplexed_indices), row.names = NULL ) ambiguous_data <- data.frame( "sampleName" = rep("ambiguous", length(ambiguous_indices)), "index" = ambiguous_indices, row.names = NULL ) degenerate_data <- data.frame( "sampleName" = rep("degenerate", length(degenerate_indices)), "index" = degenerate_indices, row.names = NULL ) unassigned_data <- data.frame( "sampleName" = rep("unassigned", length(unassigned_indices)), "index" = unassigned_indices, row.names = NULL ) multiplexed_data <- rbind( multiplexed_data, ambiguous_data, degenerate_data, unassigned_data ) multiplexed_data$sampleName <- factor( multiplexed_data$sampleName, levels = c(samples_df$sampleName, "ambiguous", "degenerate", "unassigned") ) stopifnot( all(multiplexed_data$index %in% all_indices) ) if( args$poolreps ){ multiplexed_data$sampleName <- gsub("-\\d+$", "", multiplexed_data$sampleName) } cat(paste0("Reads to be written to files: ", nrow(multiplexed_data), "\n")) # Write files to read files to outfolder directory ---- if( args$cores > 1 ){ cluster <- parallel::makeCluster(min(c(parallel::detectCores(), args$cores))) read_list <- demulti$readType[demulti$path != "NA"] read_paths <- demulti$path[match(read_list, demulti$readType)] written_seq_files <- mapply( function(read.file.path, read.type, cluster, args, multiplexed.data, writeDemultiplexedSequences){ reads <- ShortRead::readFastq(read.file.path) seqs <- reads@sread ids <- Biostrings::BStringSet( stringr::str_extract( as.character(reads@id), args$readNamePattern ) ) names(seqs) <- ids quals <- reads@quality@quality seqs <- split( seqs[match(multiplexed.data$index, as.character(ids))], multiplexed.data$sampleName ) quals <- split( quals[match(multiplexed.data$index, as.character(ids))], multiplexed.data$sampleName ) demultiplex <- parallel::clusterMap( cluster, writeDemultiplexedSequences, reads = seqs, quals = quals, samplename = names(seqs), MoreArgs = list( type = read.type, outfolder = args$outfolder, compress = args$compress ) ) }, read.file.path = read_paths, read.type = read_list, MoreArgs = list( cluster = cluster, multiplexed.data = multiplexed_data, writeDemultiplexedSequences = writeDemultiplexedSequences, args = args ), SIMPLIFY = FALSE ) parallel::stopCluster(cluster) }else{ read_list <- demulti$readType[demulti$path != "NA"] read_paths <- demulti$path[match(read_list, demulti$readType)] written_seq_files <- mapply( function(read.file.path, read.type, args, multiplexed.data, writeDemultiplexedSequences){ reads <- ShortRead::readFastq(read.file.path) seqs <- reads@sread ids <- Biostrings::BStringSet( stringr::str_extract( as.character(reads@id), args$readNamePattern ) ) names(seqs) <- ids quals <- reads@quality@quality seqs <- split( seqs[match(multiplexed.data$index, as.character(ids))], multiplexed.data$sampleName ) quals <- split( quals[match(multiplexed.data$index, as.character(ids))], multiplexed.data$sampleName ) demultiplex <- mapply( writeDemultiplexedSequences, reads = seqs, quals = quals, samplename = names(seqs), MoreArgs = list( type = read.type, outfolder = args$outfolder, compress = args$compress ) ) }, read.file.path = read_paths, read.type = read_list, MoreArgs = list( multiplexed.data = multiplexed_data, writeDemultiplexedSequences = writeDemultiplexedSequences, args = args ), SIMPLIFY = FALSE ) } cat("Demultiplexing complete.\n") q() |
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 | options(stringsAsFactors = FALSE, scipen = 99, width = 180) # Set up and gather command line arguments ---- parser <- argparse::ArgumentParser( description = "Evaluation of iGUIDE data from input run(s).", usage = paste( "iguide eval <config(s)> -o <output> [-h/--help, -v/--version]", "[optional args]" ) ) parser$add_argument( "config", nargs = "+", type = "character", help = paste( "Run specific config file(s) in yaml format. Can specify more than", "one to combine several runs together for evaluation." ) ) parser$add_argument( "-o", "--output", nargs = 1, type = "character", required = TRUE, help = "Output eval file, .rds format. i.e. output.rds or output" ) parser$add_argument( "-s", "--support", nargs = 1, type = "character", help = paste( "Supplementary data input, csv or tsv format. Only one file. Must have", "'specimen' column and only specimens matching data in this column will", "be considered for evaluation." ) ) parser$add_argument( "--stat", nargs = 1, type = "character", default = FALSE, help = paste( "File name to be written in output directory of read couts for each", "sample. CSV file format. ie. test.stat.csv." ) ) parser$add_argument( "--override", action = "store_true", help = "Override software and build version control checks." ) parser$add_argument( "-q", "--quiet", action = "store_true", help = "Hide standard output messages." ) parser$add_argument( "--iguide_dir", nargs = 1, type = "character", default = "IGUIDE_DIR", help = "iGUIDE install directory path, do not change for normal applications." ) args <- parser$parse_args(commandArgs(trailingOnly = TRUE)) if( !dir.exists(args$iguide_dir) ){ root_dir <- Sys.getenv(args$iguide_dir) }else{ root_dir <- args$iguide_dir } if( !dir.exists(root_dir) ){ stop(paste0("\n Cannot find install path to iGUIDE: ", root_dir, ".\n")) }else{ args$iguide_dir <- root_dir } ## Determine output file name and path if( !stringr::str_detect(args$output, ".rds$") ){ args$output <- paste0(args$output, ".rds") } write(c(), file = args$output) args$output <- normalizePath(args$output) unlink(args$output) ## Construct input table and print to terminal input_table <- data.frame( "Variables" = paste0(names(args), " :"), "Values" = sapply(seq_along(args), function(i){ paste(args[[i]], collapse = ", ") }) ) input_table <- input_table[ match( c("config :", "output :", "support :", "iguide_dir :"), input_table$Variables), ] if( !args$quiet ){ cat("\niGUIDE Evaluation Inputs:\n") print( data.frame(input_table), right = FALSE, row.names = FALSE ) } # Load dependancies ---- if( !args$quiet ) cat("\nLoading dependencies.\n") add_packs <- c("magrittr", "knitr", "iguideSupport") add_packs_loaded <- suppressMessages( sapply(add_packs, require, character.only = TRUE) ) if( !all(add_packs_loaded) ){ print( data.frame( "R-Packages" = names(add_packs_loaded), "Loaded" = add_packs_loaded ), right = FALSE, row.names = FALSE ) stop("Check dependancies.\n") } # Import metadata and consolidate objects ---- if( !args$quiet ) cat("Importing experimental data and configurations.\n\n") ## Load config files configs <- lapply(args$config, function(x){ if( file.exists(file.path(root_dir, x)) ){ return(yaml::yaml.load_file(file.path(root_dir, x))) }else if( file.exists(x) ){ return(yaml::yaml.load_file(x)) }else{ stop("\n Cannot find config file: ", x, ".\n") } }) names(configs) <- sapply(configs, "[[", "Run_Name") ## Load reference genome if( grepl(".fa", unique(sapply(configs, "[[", "Ref_Genome"))) ){ if( !( file.exists( file.path(root_dir, unique(sapply(configs, "[[", "Ref_Genome"))) ) | file.exists(unique(sapply(configs, "[[", "Ref_Genome"))) ) ){ stop("\n Specified reference genome file not found.\n") } ref_file_type <- ifelse( grepl(".fastq", unique(sapply(configs, "[[", "Ref_Genome"))), "fastq", "fasta" ) if( file.exists( file.path(root_dir, unique(sapply(configs, "[[", "Ref_Genome"))) ) ){ ref_genome <- Biostrings::readDNAStringSet( filepath = file.path( root_dir, unique(sapply(configs, "[[", "Ref_Genome")) ), format = ref_file_type ) }else{ ref_genome <- Biostrings::readDNAStringSet( filepath = unique(sapply(configs, "[[", "Ref_Genome")), format = ref_file_type ) } }else{ ref_genome <- unique(sapply(configs, "[[", "Ref_Genome")) genome <- grep( pattern = ref_genome, x = unique(BSgenome::installed.genomes()), value = TRUE ) if( length(genome) == 0 ){ cat("\nInstalled genomes include:") print(unique(BSgenome::installed.genomes())) cat("\n Selected reference genome not in list.\n") stop("\n Genome not available.\n") }else if( length(genome) > 1 ){ cat("\nInstalled genomes include:\n") print(unique(BSgenome::installed.genomes())) cat( "\n Please be more specific about reference genome.", "Multiple matches to input." ) stop("\n Multiple genomes requested.\n") } suppressMessages(library(genome, character.only = TRUE)) ref_genome <- get(genome) } ## Get versioning soft_version <- as.character(read.delim( file = file.path(root_dir, ".version"), header = FALSE)) build_version <- list.files(file.path(root_dir, "etc")) %>% grep(pattern = "build.b[0-9\\.]+.*", x = ., value = TRUE) %>% stringr::str_extract(pattern = "b[0-9]+\\.[0-9]+\\.[0-9]+") ## Load reference files ref_genes <- suppressMessages(loadRefFiles( configs[[1]]$refGenes, type = "GRanges", freeze = configs[[1]]$Ref_Genome, root = root_dir )) onco_genes <- suppressMessages(loadRefFiles( configs[[1]]$oncoGeneList, type = "gene.list", freeze = configs[[1]]$Ref_Genome, root = root_dir )) special_genes <- suppressMessages(loadRefFiles( configs[[1]]$specialGeneList, type = "gene.list", freeze = config[[1]]$Ref_Genome, root = root_dir )) submat <- banmat() ## Determine processing parameters ## Some parameters will need to be an "all or nothing" approach, including: ## - UMItags ## - recoverMultihits ## - Abundance_Method [Fragment, UMI, or Read based] ## Depending on these parameters others (upstream/downstream_dist, ...) may need ## to be consistent between runs otherwise, the primary config file (first one), ## will be used for parameterization. umitag_option <- all(unlist(lapply(configs, "[[", "UMItags"))) multihit_option <- all(unlist(lapply(configs, "[[", "recoverMultihits"))) abundance_option <- unique( tolower(unlist(lapply(configs, "[[", "Abundance_Method"))) )[1] if( is.na(abundance_option) ) abundance_option <- "Fragment" if( abundance_option == "umi" & !umitag_option ){ stop( "\n Abundance method has been set to use UMItags, yet the current", "\n configuration does not capture UMItag data (UMItags : FALSE).", "\n Please correct this inconsistency before continuing analysis." ) } if( multihit_option ){ upstream_dist <- unique(sapply(configs, function(x) x$upstreamDist)) downstream_dist <- unique(sapply(configs, function(x) x$downstreamDist)) pile_up_min <- unique(sapply(configs, function(x) x$pileUpMin)) if( length(upstream_dist) > 1 | length(downstream_dist) > 1 | length(pile_up_min) > 1 ){ stop( "\n Inconsistant upstream or downstream distances between config files.", "\n Comparisons between groups with different run specific criteria", "\n is not recommended when considering the recover multihit option.\n" ) } }else{ upstream_dist <- configs[[1]]$upstreamDist downstream_dist <- configs[[1]]$downstreamDist pile_up_min <- configs[[1]]$pileUpMin } max_target_mismatch <- configs[[1]]$maxTargetMismatch ## Combine sampleInfo files sample_info <- lapply(configs, loadSampleInfo, root_dir) %>% dplyr::bind_rows(.id = "run_set") sample_name_col <- unique(sapply(configs, "[[", "Sample_Name_Column")) if( length(sample_name_col) != 1 ){ stop("\n Sample_Info files not in same format.\n") } sample_info$specimen <- stringr::str_extract( string = sample_info[,sample_name_col], pattern = "[\\w]+" ) specimen_levels <- unique(sample_info$specimen) sample_info$specimen <- factor(sample_info$specimen, levels = specimen_levels) ## Load in supporting information ---- if( length(args$support) > 0 ){ if( file.exists(file.path(root_dir, args$support)) ){ support_path <- file.path(root_dir, args$support) }else if( file.exists(args$support) ){ support_path <- args$support }else{ stop("\n Cannot find supporting data file: ", args$support, ".\n") } supp_data <- data.table::fread(support_path, data.table = FALSE) specimen_levels <- supp_data$specimen[supp_data$specimen %in% specimen_levels] supp_data <- dplyr::filter(supp_data, specimen %in% specimen_levels) %>% dplyr::mutate(specimen = factor(specimen, levels = specimen_levels)) sample_info <- dplyr::filter(sample_info, specimen %in% specimen_levels) %>% dplyr::mutate( specimen = factor(as.character(specimen), levels = specimen_levels) ) %>% dplyr::arrange(specimen) }else{ supp_data <- data.frame() } ## Identify on-target edit sites from config files if( any(lengths(lapply(configs, "[[", "On_Target_Sites")) > 0) ){ on_targets <- unlist(lapply(configs, "[[", "On_Target_Sites")) %>% data.frame(id = names(.), target = ., row.names = NULL) %>% dplyr::mutate( id = stringr::str_replace( string = id, pattern = stringr::fixed("."), replacement = ":" ), id = stringr::str_extract(string = id, pattern = "[\\w\\_\\-\\'\\.]+$"), id = stringr::str_extract(string = id, pattern = "[\\w\\_\\-\\.]+") ) %>% dplyr::distinct() %$% structure(target, names = id) }else{ on_targets <- NULL } ## Identify nuclease profiles used if( any(lengths(lapply(configs, "[[", "Nuclease_Profiles")) > 0) ){ nuc_profiles <- unlist( unname(lapply(configs, "[[", "Nuclease_Profiles")), recursive = FALSE ) nuc_profiles <- nuc_profiles[ match(unique(names(nuc_profiles)), names(nuc_profiles)) ] }else{ nuc_profiles <- NULL } ## Create reference tables for nuclease, treatment, and combinations (combos) nuclease_df <- lapply(configs, getNucleaseInfo, root_dir) %>% dplyr::bind_rows(.id = "run_set") %>% dplyr::filter(specimen %in% specimen_levels) %>% dplyr::mutate( specimen = factor(specimen, levels = specimen_levels), is_mock = dplyr::case_when( tolower(nuclease) == "mock" ~ TRUE, tolower(nuclease) == "none" ~ TRUE, tolower(nuclease) == "control" ~ TRUE, TRUE ~ FALSE ), nuclease = ifelse(is_mock, "Mock", nuclease) ) %>% dplyr::select(-is_mock) %>% dplyr::arrange(specimen) treatment_df <- lapply(configs, getTreatmentInfo, root_dir) %>% dplyr::bind_rows(.id = "run_set") %>% dplyr::filter(specimen %in% specimen_levels) %>% dplyr::mutate( specimen = factor(specimen, levels = specimen_levels), is_mock = dplyr::case_when( tolower(treatment) == "mock" ~ TRUE, tolower(treatment) == "none" ~ TRUE, tolower(treatment) == "control" ~ TRUE, TRUE ~ FALSE ), treatment = ifelse(is_mock, "Mock", treatment) ) %>% dplyr::select(-is_mock) %>% dplyr::arrange(specimen) nuclease_treatment_unmod_df <- dplyr::left_join( nuclease_df, treatment_df, by = c("run_set", "specimen") ) combos_tbl <- nuclease_treatment_unmod_df %>% dplyr::filter( tolower(nuclease) != "mock" & tolower(treatment) != "mock" ) %>% dplyr::distinct(nuclease, treatment) %>% dplyr::mutate(combo = combo_symbols(seq_len(dplyr::n()))) %>% dplyr::select(combo, nuclease, treatment) if( nrow(combos_tbl) == 0 ){ combos_tbl <- data.frame(combo = "A", nuclease = "Mock", treatment = "Mock") } combos_set_tbl <- nuclease_treatment_unmod_df %>% dplyr::filter( tolower(nuclease) != "mock" & tolower(treatment) != "mock" ) %>% dplyr::distinct(run_set, nuclease, treatment) %>% dplyr::left_join(combos_tbl, by = c("nuclease", "treatment")) %>% dplyr::select(run_set, combo, nuclease, treatment) if( nrow(combos_set_tbl) == 0){ combos_set_tbl <- data.frame( run_set = unique(sample_info$run_set), combo = "A", nuclease = "Mock", treatment = "Mock" ) } ## Mock analyses should be compared against all combos to get an understanding ## of the background signal that was captured. To do this, Mock samples are ## duplicated and analyzed against the different combinations. Combinations are ## indicated by a letter at the end of annotations, ie. (A). ## nuclease_combos_list <- split(combos_tbl, combos_tbl$nuclease) treatment_combos_list <- split(combos_tbl, combos_tbl$treatment) nuclease_combos_list$Mock <- combos_tbl treatment_combos_list$Mock <- combos_tbl nuc_treat_split_vec <- paste( nuclease_treatment_unmod_df$run_set, nuclease_treatment_unmod_df$specimen ) %>% factor(levels = unique(.)) nuclease_treatment_df <- split( nuclease_treatment_unmod_df, nuc_treat_split_vec ) %>% lapply(function(x){ if( tolower(x$treatment) == "mock" ){ nuclease_combos_list[[ match(unique(x$nuclease), names(nuclease_combos_list)) ]] %>% dplyr::mutate( run_set = unique(x$run_set), specimen = unique(x$specimen) ) %>% return(.) }else if( tolower(x$nuclease) == "mock"){ treatment_combos_list[[ match(unique(x$treatment), names(treatment_combos_list)) ]] %>% dplyr::mutate( run_set = unique(x$run_set), specimen = unique(x$specimen) ) %>% return(.) }else{ dplyr::left_join(x, combos_tbl, by = c("nuclease", "treatment")) %>% return(.) } }) %>% dplyr::bind_rows() %>% dplyr::group_by(run_set) %>% dplyr::mutate( alt_specimen = paste0(as.character(specimen), "(", combo, ")"), alt_specimen = factor(alt_specimen, levels = unique(alt_specimen)) ) %>% dplyr::ungroup() alt_specimen_levels <- levels(nuclease_treatment_df$alt_specimen) ## Create vector objects for treatment and nuclease for later processing nuclease <- structure( strsplit(nuclease_treatment_df$nuclease, ";"), names = as.character(nuclease_treatment_df$alt_specimen) ) treatment <- structure( strsplit(nuclease_treatment_df$treatment, ";"), names = as.character(nuclease_treatment_df$alt_specimen) ) combos_exp_specimen_list <- split( as.character(nuclease_treatment_df$alt_specimen), as.character(nuclease_treatment_df$specimen) ) ## Identify all target sequences used from config files target_seqs <- lapply( do.call(c, lapply(configs, "[[", "Target_Sequences")), toupper ) target_grps <- stringr::str_extract( string = names(target_seqs), pattern = "[\\w\\-\\_]+" ) names(target_seqs) <- sub("[\\w\\-\\_]+.", "", names(target_seqs), perl = TRUE) target_seqs <- split(target_seqs, target_grps) target_seqs_df <- data.frame( run_set = as.character( S4Vectors::Rle(names(target_seqs), lengths(target_seqs)) ), target = as.character(unlist(lapply(target_seqs, names))), sequence = as.character(unlist(target_seqs)) ) ## Identify PAM sequences associated with nucleases pam_seqs <- do.call(c, lapply(configs, function(x){ toupper(unlist(lapply(x$Nuclease_Profiles, "[[", "PAM"))) })) pam_grps <- stringr::str_extract( string = names(pam_seqs), pattern = "[\\w\\-\\_]+" ) names(pam_seqs) <- sub("[\\w\\-\\_]+.", "", names(pam_seqs), perl = TRUE) pam_seqs <- split(pam_seqs, pam_grps) pam_seqs_df <- data.frame( run_set = as.character(S4Vectors::Rle(names(pam_seqs), lengths(pam_seqs))), nuclease = as.character(unlist(lapply(pam_seqs, names))), PAM = as.character(unlist(pam_seqs)) ) ## Combine into a single table for output considered_target_seqs <- unique(unlist(treatment)) considered_nucleases <- unique(unlist(nuclease)) on_targets <- on_targets[names(on_targets) %in% considered_target_seqs] target_tbl <- combos_set_tbl %>% split(paste(.$run_set, .$nuclease, .$treatment)) %>% lapply(function(x){ data.frame( run_set = x$run_set, nuclease = x$nuclease, target = unlist(strsplit(x$treatment, ";")) ) }) %>% dplyr::bind_rows() %>% dplyr::distinct() %>% dplyr::filter(tolower(target) != "mock") if( nrow(target_tbl) > 0 ){ target_tbl <- target_tbl %>% dplyr::left_join(target_seqs_df, by = c("run_set", "target")) %>% dplyr::left_join(pam_seqs_df, by = c("run_set", "nuclease")) %>% dplyr::filter( target %in% considered_target_seqs & nuclease %in% considered_nucleases ) }else{ target_tbl <- data.frame( run_set = vector(mode = "character"), nuclease = vector(mode = "character"), target = vector(mode = "character"), sequence = vector(mode = "character"), PAM = vector(mode = "character") ) } uniq_target_df <- target_tbl %>% dplyr::distinct(target, sequence, PAM) uniq_target_seqs <- Biostrings::DNAStringSet( structure(uniq_target_df$sequence, names = uniq_target_df$target), use.names = TRUE ) ### Log combination treatment table if( !args$quiet ){ cat("\nNuclease and Treatment Combination Table:\n") print(combos_set_tbl, right = FALSE, row.names = FALSE) cat("\nTarget Sequence Table:\n") print(target_tbl, right = FALSE, row.names = FALSE) } ## Consolidate supplementary data ---- if( is.null(args$support) ){ spec_overview <- nuclease_treatment_unmod_df %>% dplyr::rename("Nuclease" = nuclease, "Treatment" = treatment) }else{ spec_overview <- supp_data %>% dplyr::mutate(run_set = "supp_data") } annot_overview <- spec_overview %>% dplyr::mutate( annotation = vcollapse( d = dplyr::select(spec_overview, -run_set, -specimen), sep = " - ", fill = "NA" ), annotation = factor(annotation, levels = c(unique(c(annotation, "Mock")))) ) %>% dplyr::select(specimen, annotation) combo_overview <- nuclease_treatment_df %>% dplyr::left_join(annot_overview, by = "specimen") %>% dplyr::mutate( annotation = paste0(as.character(annotation), " (", combo, ")"), annotation = factor(annotation, levels = unique(annotation)) ) # Beginning analysis ---- if( !args$quiet ) cat("\nStarting analysis...\n") ## Read in experimental data and contatenate different sets input_data <- lapply(configs, function(x){ name <- x$Run_Name path <- file.path( "analysis", name, paste0("output/incorp_sites.", name ,".rds") ) if( file.exists(file.path(root_dir, path)) ){ y <- readRDS(file.path(root_dir, path)) }else if( file.exists(path) ){ y <- readRDS(path) }else{ stop("\n Cannot find incorp_sites file: ", x, ".\n") } y$reads %>% dplyr::mutate( soft.version = y$soft_version, build.version = y$build_version ) }) %>% dplyr::bind_rows(.id = "run_set") %>% dplyr::mutate( specimen = stringr::str_extract(sampleName, pattern = "[\\w]+") ) %>% dplyr::filter(specimen %in% spec_overview$specimen) if( !multihit_option ){ input_data <- dplyr::filter(input_data, type == "uniq") } ## Check versioning for imported data ---- vc_check <- input_data %>% dplyr::distinct(run_set, soft.version, build.version) input_data <- dplyr::select(input_data, -soft.version, -build.version) cat("\nVersioning:\n") print(vc_check, right = FALSE, row.names = FALSE) if( dplyr::n_distinct(vc_check$soft.version) > 1 | dplyr::n_distinct(vc_check$build.version) > 1 ){ if( args$override ){ warning("\n Data processed under different software versions.") }else{ stop("\n Data processed with inconsistent software versions.") } } ## Format input alignments ---- ## Determine abundance metrics, with or without UMItags algnmts_summaries <- list( count = dplyr::quo(sum(contrib)), umitag = if( umitag_option ){ dplyr::quo(sum( as.integer(!duplicated(umitag[!is.na(umitag)])) * contrib[!is.na(umitag)] )) }else{ dplyr::quo(0) }, contrib = dplyr::quo(max(contrib)) ) algnmts_summaries <- algnmts_summaries[!sapply(algnmts_summaries, is.null)] algnmts_unmod <- input_data %>% dplyr::arrange(desc(contrib)) %>% dplyr::group_by(seqnames, start, end, strand, specimen, sampleName) %>% dplyr::summarise(!!! algnmts_summaries) %>% dplyr::ungroup() %>% dplyr::mutate( abund = dplyr::case_when( abundance_option == "umi" ~ umitag, abundance_option == "read" ~ count, TRUE ~ contrib ) ) %>% as.data.frame() algnmts <- algnmts_unmod %>% split(.$specimen) %>% lapply(function(x){ alt_names <- combos_exp_specimen_list[[unique(x$specimen)]] if( length(alt_names) > 1 ){ mod_algns <- x[rep(seq_len(nrow(x)), length(alt_names)),] mod_algns$alt_specimen <- rep(alt_names, each = nrow(x)) return(mod_algns) }else if( length(alt_names) == 1 ){ x$alt_specimen <- alt_names return(x) }else{ x$alt_specimen <- x$specimen return(x) } }) %>% dplyr::bind_rows() ## Generate a sample table of the data for log purposes sample_index <- ifelse(nrow(algnmts) > 10, 10, nrow(algnmts)) sample_index <- sample(seq_len(nrow(algnmts)), sample_index, replace = FALSE) cat("\nSample of aligned templates:\n") print( data.frame(algnmts[sample_index,]), right = FALSE, row.names = FALSE ) cat(paste0("\nNumber of alignments: ", nrow(algnmts), "\n")) rm(sample_index) ## Transform the data into a GRanges object algnmts_gr <- GenomicRanges::GRanges( seqnames = algnmts$seqnames, ranges = IRanges::IRanges(start = algnmts$start, end = algnmts$end), strand = algnmts$strand, seqinfo = GenomeInfoDb::seqinfo(ref_genome) ) GenomicRanges::mcols(algnmts_gr) <- dplyr::select(algnmts, c( "alt_specimen", "sampleName", "count", if( umitag_option ) "umitag", "contrib", "abund" )) # Analyze alignments ---- ## Identify groups of alignments or pileups of aligned fragments ## These pileups give strong experimental evidence of directed incorporation of ## the dsODN into a region. Initially, pileups are identified and then checked ## for pairing, or if there is another pileup on the opposite strand in close ## proximity. algnmts_gr$clus.ori <- pileupCluster( gr = algnmts_gr, grouping = "alt_specimen", maxgap = 0L, return = "simple" ) algnmts_gr$paired.algn <- identifyPairedAlgnmts( gr = algnmts_gr, grouping = "alt_specimen", maxgap = upstream_dist * 2 ) algnmts_grl <- split(algnmts_gr, unlist(nuclease)[algnmts_gr$alt_specimen]) annot_clust_info <- dplyr::bind_rows(lapply( seq_along(algnmts_grl), function(i, grl){ gr <- grl[[i]] nuc <- names(grl)[i] if( !nuc %in% names(nuc_profiles) ){ nuc_profile <- NULL }else{ nuc_profile <- nuc_profiles[[nuc]] } ## Create a GRange with only the unique cluster origins split_clus_id <- stringr::str_split( string = unique(paste0(gr$alt_specimen, ":", gr$clus.ori)), pattern = ":", simplify = TRUE ) algn_clusters <- GenomicRanges::GRanges( seqnames = split_clus_id[,2], ranges = IRanges::IRanges( start = as.numeric(split_clus_id[,4]), width = 1 ), strand = split_clus_id[,3], seqinfo = GenomeInfoDb::seqinfo(ref_genome) ) algn_clusters$specimen <- split_clus_id[,1] algn_clusters$clus.ori <- vcollapse(split_clus_id[, 2:4], sep = ":") algn_clusters$clus.seq <- getSiteSeqs( gr = algn_clusters, upstream.flank = upstream_dist, downstream.flank = downstream_dist, ref.genome = ref_genome ) ## Identify which target sequences binding near clusters if( !is.null(nuc_profile) ){ algn_clusters <- compareTargetSeqs( gr.with.sequences = algn_clusters, seq.col = "clus.seq", target.seqs = uniq_target_seqs, tolerance = max_target_mismatch, nuc.profile = nuc_profile, submat = submat, upstream.flank = upstream_dist, downstream.flank = downstream_dist ) }else{ algn_clusters$target.match <- "No_valid_match" algn_clusters$target.mismatch <- NA algn_clusters$target.score <- NA algn_clusters$aligned.sequence <- NA algn_clusters$edit.site <- NA } as.data.frame(GenomicRanges::mcols(algn_clusters)) }, grl = algnmts_grl )) %>% dplyr::rename("alt_specimen" = specimen) ## Merge the target sequence alignment information from the clusters back to all ## unique alignments algnmts <- as.data.frame(merge( x = as.data.frame(algnmts_gr), y = dplyr::select(annot_clust_info, -clus.seq), by = c("alt_specimen", "clus.ori") )) %>% dplyr::mutate( alt_specimen = factor(alt_specimen, level = alt_specimen_levels) ) ## Change guideRNA.match to No_Valid_Match if an inappropriate gRNA is annotated algnmts$target.match <- filterInappropriateComparisons( guideRNA.match = algnmts$target.match, specimen = algnmts$alt_specimen, treatment = treatment ) ## Fragment pileups, paired clustering, and guideRNA alignments have been used ## to characterize the incorporation sites analyzed here. Each metric will be ## used to create a list of incorporation sites that may be nuclease cut sites. ## The following identifies which alignments are associated with each of these ## criteria. tbl_clus_ori <- algnmts %>% dplyr::group_by(alt_specimen, clus.ori) %>% dplyr::filter(dplyr::n() >= pile_up_min) %>% dplyr::ungroup() %$% table(clus.ori) idx_clus_ori <- which(algnmts$clus.ori %in% names(tbl_clus_ori)) tbl_paired_algn <- algnmts %>% dplyr::filter(!is.na(paired.algn)) %$% table(paired.algn) idx_paired_algn <- which(algnmts$paired.algn %in% names(tbl_paired_algn)) idx_matched <- which(algnmts$target.match != "No_valid_match") idx_combined <- sort(unique(c(idx_clus_ori, idx_paired_algn, idx_matched))) idx_df <- data.frame( "Type" = c("PileUp", "Paired", "Target_Matched", "Combined"), "Counts" = sapply( list(idx_clus_ori, idx_paired_algn, idx_matched, idx_combined), length ) ) cat("\nTable of uniquely aligned template counts:\n") print(idx_df, right = FALSE, row.names = FALSE) cat(paste0("\nTotal number of alignments: ", nrow(algnmts), "\n")) probable_algns <- algnmts[idx_combined,] probable_algns$on.off.target <- ifelse( probable_algns$edit.site %in% expandPosStr(on_targets), "On-target", "Off-target" ) cat("\nOn / Off target alignment counts:\n") print(table(probable_algns$on.off.target)) ## Create summary and output formated object related to each of the criteria for ## edited site detection. ## Matched alignments matched_algns <- probable_algns[ probable_algns$target.match != "No_valid_match", ] matched_summaries <- list( on.off.target = dplyr::quo( paste(sort(unique(on.off.target)), collapse = ";") ), paired.algn = dplyr::quo(paste(sort(unique(paired.algn)), collapse = ";")), count = dplyr::quo(sum(count)), umitag = if( umitag_option ) dplyr::quo(sum(umitag)), algns = dplyr::quo(sum(contrib)), abund = dplyr::quo(sum(abund)), orient = dplyr::quo(paste(sort(unique(as.character(strand))), collapse = ";")) ) matched_summaries <- matched_summaries[!sapply(matched_summaries, is.null)] if( nrow(matched_algns) > 0 ){ matched_summary <- matched_algns %>% dplyr::mutate( target.match = stringr::str_replace( string = target.match, pattern = "\\:\\([\\w]+\\)$", replacement = "" ) ) %>% dplyr::group_by( alt_specimen, edit.site, aligned.sequence, target.match, target.mismatch ) %>% dplyr::summarise(!!! matched_summaries) %>% dplyr::ungroup() %>% dplyr::arrange(alt_specimen, target.match, desc(abund)) %>% as.data.frame() }else{ matched_summary <- data.frame( alt_specimen = factor(character(), levels = alt_specimen_levels), edit.site = character(), aligned.sequence = character(), target.match = character(), target.mismatch = numeric(), on.off.target = character(), paired.align = character(), count = numeric(), umitag = if(umitag_option) numeric(), aligns = numeric(), abund = numeric(), orient = character() ) } if( nrow(matched_algns) == 0 ) matched_summary <- matched_summary[0,] ## Paired alignments paired_algns <- probable_algns[ probable_algns$paired.algn %in% names(tbl_paired_algn), ] if( nrow(paired_algns) > 0 ){ paired_summaries <- list( seqnames = dplyr::quo(unique(seqnames)), start = dplyr::quo(min(pos)), end = dplyr::quo(max(pos)), mid = dplyr::quo(start + (end-start)/2), strand = dplyr::quo("*"), width = dplyr::quo(end - start), count = dplyr::quo(sum(count)), umitag = if( umitag_option ) dplyr::quo(sum(umitag)), algns = dplyr::quo(sum(contrib)), abund = dplyr::quo(sum(abund)) ) paired_summaries <- paired_summaries[!sapply(paired_summaries, is.null)] paired_regions <- paired_algns %>% dplyr::group_by(alt_specimen, paired.algn, strand) %>% dplyr::mutate(pos = ifelse(strand == "+", min(start), max(end))) %>% dplyr::group_by(alt_specimen, paired.algn) %>% dplyr::summarise(!!! paired_summaries) %>% dplyr::ungroup() }else{ paired_regions <- data.frame( alt_specimen = factor(character(), levels = alt_specimen_levels), paired.align = logical(), seqnames = character(), start = numeric(), end = numeric(), mid = numeric(), strand = character(), width = numeric(), count = numeric(), umitag = if(umitag_option) numeric(), aligns = numeric(), abund = numeric() ) } if( nrow(paired_regions) > 0 & length(on_targets) > 0 ){ paired_regions <- paired_regions %>% dplyr::group_by(alt_specimen, paired.algn) %>% dplyr::mutate( on.off.target = ifelse( any(sapply( expandPosStr(unlist(on_targets[ which( stringr::str_extract( names(on_targets), "[\\w\\-\\_\\.]+") %in% treatment[[alt_specimen]] ) ])), function(x, seq, st, en){ match_seq <- seq == stringr::str_extract(x, "[\\w]+") within_start <- st <= as.numeric(stringr::str_extract(x, "[\\w]+$")) + downstream_dist within_end <- en >= as.numeric(stringr::str_extract(x, "[\\w]+$")) - downstream_dist match_seq & within_start & within_end }, seq = seqnames, st = start, en = end )), "On-target", "Off-target" ) ) %>% dplyr::ungroup() %>% as.data.frame() }else if( nrow(paired_regions) > 0 & length(on_targets) == 0 ){ paired_regions <- dplyr::mutate( paired_regions, on.off.target = "Off-target" ) }else{ paired_regions <- dplyr::mutate( paired_regions, on.off.target = vector(mode = "character") ) } ## Pile up alignments pile_up_algns <- probable_algns[ probable_algns$clus.ori %in% names(tbl_clus_ori), ] pile_up_summaries <- list( on.off.target = dplyr::quo( paste(sort(unique(on.off.target)), collapse = ";") ), paired.algn = dplyr::quo(paste(sort(unique(paired.algn)), collapse = ";")), count = dplyr::quo(sum(count)), umitag = if( umitag_option ) dplyr::quo(sum(umitag)), algns = dplyr::quo(sum(contrib)), abund = dplyr::quo(sum(abund)) ) pile_up_summaries <- pile_up_summaries[!sapply(pile_up_summaries, is.null)] if( nrow(pile_up_algns) > 0){ pile_up_summary <- pile_up_algns %>% dplyr::mutate( target.match = stringr::str_replace( string = target.match, pattern = "\\:\\([\\w]+\\)$", replacement = "" ) ) %>% dplyr::group_by(alt_specimen, clus.ori) %>% dplyr::summarise(!!! pile_up_summaries) %>% dplyr::ungroup() %>% dplyr::arrange(alt_specimen, desc(abund)) %>% as.data.frame() }else{ pile_up_summary <- data.frame( alt_specimen = factor(character(), levels = alt_specimen_levels), clus.ori = character(), on.off.target = character(), paired.align = character(), count = numeric(), umitag = if(umitag_option) numeric(), aligns = numeric(), abund = numeric() ) } # Generate stats if requested ---- ## If requested, generate stats from the analysis for qc. if( args$stat != FALSE ){ stat_summary <- function(x, y, remove.multi.mock = FALSE){ if(remove.multi.mock){ x <- x %>% dplyr::filter( !stringr::str_detect(alt_specimen, "\\([\\w]+\\)$") %in% names(combos_exp_specimen_list)[ lengths(combos_exp_specimen_list) > 1 ] ) } x %>% dplyr::mutate( metric = y, specimen = stringr::str_remove( as.character(alt_specimen), "\\([\\w]+\\)$" ) ) %>% dplyr::select(-alt_specimen) %>% dplyr::distinct() %>% dplyr::group_by(sampleName, metric) %>% dplyr::summarize(count = sum(abund)) %>% dplyr::ungroup() } total_stat <- stat_summary(algnmts, "total.algns") combined_stat <- stat_summary(probable_algns[, 1:12], "combined.algns") pile_up_stat <- stat_summary(pile_up_algns[, 1:12], "pileup.algns") paired_stat <- stat_summary(paired_algns[, 1:12], "paired.algns") matched_stat <- stat_summary(matched_algns[, 1:12], "matched.algns", TRUE) on_tar_stat <- dplyr::filter( matched_algns, on.off.target == "On-target" ) %>% stat_summary("ontarget.algns", TRUE) off_tar_stat <- dplyr::filter( matched_algns, on.off.target == "Off-target" ) %>% stat_summary("offtarget.algns", TRUE) metric_levels <- c( "total.algns", "combined.algns", "pileup.algns", "paired.algns", "matched.algns" ) stat <- dplyr::bind_rows( total_stat, combined_stat, pile_up_stat, paired_stat, matched_stat, on_tar_stat, off_tar_stat ) %>% dplyr::mutate( metric = factor(metric, levels = metric_levels), sampleName = factor(sampleName, levels = unique(sample_info$sampleName)) ) %>% tidyr::complete(sampleName, metric, fill = list("count" = 0)) write.table( x = stat, file = args$stat, sep = ",", row.names = FALSE, col.names = FALSE, quote = FALSE ) } ## Specimen summary ---- # Summarize components and append to specimen table tbl_algn_summaries <- list( Reads = dplyr::quo(sum(count)), UMItags = if( umitag_option ) dplyr::quo(sum(umitag)), Alignments = dplyr::quo(sum(contrib)) ) tbl_algn_summaries <- tbl_algn_summaries[!sapply(tbl_algn_summaries, is.null)] tbl_algn_counts <- algnmts %>% dplyr::group_by(alt_specimen) %>% dplyr::summarise(!!! tbl_algn_summaries) %>% dplyr::mutate( specimen = stringr::str_remove(as.character(alt_specimen), "\\([\\w]+\\)$"), specimen = factor(specimen, levels = specimen_levels) ) %>% dplyr::filter(alt_specimen %in% sapply(combos_exp_specimen_list, "[[", 1)) %>% dplyr::select(specimen, dplyr::everything(), -alt_specimen) %>% dplyr::arrange(specimen) spec_overview <- dplyr::left_join( spec_overview, tbl_algn_counts, by = "specimen" ) ## Annotate incorporation data ---- matched_summary <- suppressMessages(dplyr::mutate( matched_summary, gene_id = assignGeneID( seqnames = stringr::str_extract(edit.site, "[\\w]+"), positions = as.numeric(stringr::str_extract(edit.site, "[\\w]+$")), reference = ref_genome, ref.genes = ref_genes, onco.genes = onco_genes, special.genes = special_genes ) )) paired_regions <- suppressMessages(dplyr::mutate( paired_regions, gene_id = assignGeneID( seqnames = seqnames, positions = mid, reference = ref_genome, ref.genes = ref_genes, onco.genes = onco_genes, special.genes = special_genes ) )) pile_up_summary <- suppressMessages(dplyr::mutate( pile_up_summary, gene_id = assignGeneID( seqnames = stringr::str_extract(clus.ori, "[\\w]+"), positions = as.numeric(stringr::str_extract(clus.ori, "[\\w]+$")), reference = ref_genome, ref.genes = ref_genes, onco.genes = onco_genes, special.genes = special_genes ) )) ## On-target summary ---- # Algnmts tbl_ot_algn <- algnmts %>% dplyr::group_by(alt_specimen) %>% dplyr::summarise( ot_algns = pNums( sum(abund * as.integer(edit.site %in% expandPosStr(on_targets))) ), ot_algns_pct = 100 * sum( abund * as.integer(edit.site %in% expandPosStr(on_targets)) ) / sum(abund) ) %>% dplyr::ungroup() %>% as.data.frame() if( nrow(algnmts) == 0 ) tbl_ot_algn <- tbl_ot_algn[0,] # Probable edited sites tbl_ot_prob <- probable_algns %>% dplyr::group_by(alt_specimen) %>% dplyr::summarise( ot_prob = pNums( sum(abund * as.integer(edit.site %in% expandPosStr(on_targets))) ), ot_prob_pct = 100 * sum( abund * as.integer(edit.site %in% expandPosStr(on_targets)) ) / sum(abund) ) %>% dplyr::ungroup() %>% as.data.frame() if( nrow(probable_algns) == 0 ) tbl_ot_prob <- tbl_ot_prob[0,] # Pile ups of read alignments tbl_ot_pile <- pile_up_algns %>% dplyr::group_by(alt_specimen) %>% dplyr::summarise( ot_pile = pNums( sum(abund * as.integer(edit.site %in% expandPosStr(on_targets))) ), ot_pile_pct = 100 * sum( abund * as.integer(edit.site %in% expandPosStr(on_targets)) ) / sum(abund) ) %>% dplyr::ungroup() %>% as.data.frame() if( nrow(pile_up_algns) == 0 ) tbl_ot_pile <- tbl_ot_pile[0,] # Paired or flanking algnments tbl_ot_pair <- paired_regions %>% dplyr::mutate( on.off.target = factor( on.off.target, levels = c("On-target", "Off-target") ) ) %>% dplyr::group_by(alt_specimen, on.off.target) %>% dplyr::summarise(cnt = sum(abund)) %>% dplyr::group_by(alt_specimen) %>% dplyr::summarise( ot_pair = pNums(sum(ifelse(on.off.target == "On-target", cnt, 0))), ot_pair_pct = 100 * sum(ifelse(on.off.target == "On-target", cnt, 0)) / sum(cnt) ) %>% dplyr::ungroup() %>% as.data.frame() if( nrow(paired_regions) == 0 ) tbl_ot_pair <- tbl_ot_pair[0,] # Guide RNA matched within 6 mismatches tbl_ot_match <- matched_summary %>% dplyr::group_by(alt_specimen, on.off.target) %>% dplyr::summarise(cnt = sum(abund)) %>% dplyr::group_by(alt_specimen) %>% dplyr::summarise( ot_match = pNums(sum(ifelse(on.off.target == "On-target", cnt, 0))), ot_match_pct = 100 * sum(ifelse(on.off.target == "On-target", cnt, 0)) / sum(cnt) ) %>% dplyr::ungroup() %>% as.data.frame() if( nrow(matched_summary) == 0 ) tbl_ot_match <- tbl_ot_match[0,] tbl_ot_eff <- matched_summary %>% dplyr::group_by(alt_specimen, on.off.target, target.match) %>% dplyr::summarise(cnt = sum(abund)) %>% dplyr::ungroup() %>% dplyr::group_by(alt_specimen, target.match) %>% dplyr::summarise( ot_eff_pct = 100 * sum(ifelse(on.off.target == "On-target", cnt, 0)) / sum(cnt) ) %>% dplyr::ungroup() %>% tidyr::spread(key = target.match, value = ot_eff_pct) %>% tidyr::complete(alt_specimen) %>% as.data.frame() %>% dplyr::left_join( dplyr::select(combo_overview, alt_specimen, annotation), by = "alt_specimen" ) %>% dplyr::select(alt_specimen, annotation, dplyr::everything()) if( nrow(matched_summary) == 0 ) tbl_ot_eff <- tbl_ot_eff[0,] # Summary table ot_tbl_summary <- combo_overview %>% dplyr::mutate( annotation = factor( ifelse(is.na(annotation), "Mock", paste(annotation)), levels = levels(annotation) ) ) %>% dplyr::select(-specimen) ot_tbl_summary <- Reduce( function(x,y) dplyr::left_join(x, y, by = "alt_specimen"), list( tbl_ot_algn[,c(1,3)], tbl_ot_pile[,c(1,3)], tbl_ot_pair[,c(1,3)], tbl_ot_match[,c(1,3)] ), init = ot_tbl_summary ) %>% dplyr::arrange(alt_specimen) %>% dplyr::select(-nuclease, -treatment, -combo) ## On-target incorporation distribution ---- on_tar_dists <- matched_algns %>% dplyr::filter(on.off.target == "On-target") %>% dplyr::mutate( target = stringr::str_extract(string = target.match, pattern = "[\\w]+"), pos = as.numeric( stringr::str_extract(string = edit.site, pattern = "[0-9]+$") ), edit.site.dist = ifelse(strand == "+", start - pos, end - pos) ) %>% dplyr::left_join(combo_overview, by = "alt_specimen") %>% dplyr::select( alt_specimen, target, annotation, edit.site, edit.site.dist, strand, abund ) on_tar_dens <- lapply( split(on_tar_dists, on_tar_dists$annotation), function(x){ if( nrow(x) >= 10 ){ return( density(abs(x$edit.site.dist), from = 0, to = upstream_dist, bw = 1) ) }else{ return(NULL) } } ) on_tar_dists <- dplyr::group_by( on_tar_dists, annotation, target, edit.site.dist, strand ) %>% dplyr::summarise(cnt = sum(abund)) %>% dplyr::ungroup() %>% dplyr::mutate( strand.cnt = ifelse( strand == "+", log(cnt, base = 10), -log(cnt, base = 10)) ) if( nrow(matched_algns) == 0 ) on_tar_dists <- on_tar_dists[0,] if( length(unique(combo_overview$annotation)) == 1 ){ on_tar_dists$annotation <- " " } sites_included <- on_tar_dists %>% dplyr::group_by(annotation, target) %>% dplyr::summarise( prop = 100 * sum(cnt[ abs(edit.site.dist) <= upstream_dist & abs(edit.site.dist) >= -downstream_dist ]) / sum(cnt), x_pos = upstream_dist, y_pos = 0.8 * min(strand.cnt[ abs(edit.site.dist) <= upstream_dist & abs(edit.site.dist) >= -downstream_dist ]) ) %>% dplyr::ungroup() %>% dplyr::mutate(prop = paste0(pNums(prop, digits = 4), "%")) if( nrow(on_tar_dists) == 0 ) sites_included <- sites_included[0,] ## Off-target summary ---- # All alignments tbl_ft_algn <- algnmts %>% dplyr::filter(!edit.site %in% expandPosStr(on_targets)) %>% dplyr::group_by(alt_specimen) %>% dplyr::summarise(ft_algns = dplyr::n_distinct(clus.ori)) %>% dplyr::ungroup() %>% as.data.frame() if( nrow(algnmts) == 0 ) tbl_ft_algn <- tbl_ft_algn[0,] # Probable edit sites tbl_ft_prob <- probable_algns %>% dplyr::filter(on.off.target == "Off-target") %>% dplyr::group_by(alt_specimen) %>% dplyr::summarise(ft_prob = dplyr::n_distinct(clus.ori)) %>% dplyr::ungroup() %>% as.data.frame() if( nrow(probable_algns) == 0 ) tbl_ft_prob <- tbl_ft_prob[0,] # Pile ups tbl_ft_pile <- pile_up_algns %>% dplyr::filter(on.off.target == "Off-target") %>% dplyr::group_by(alt_specimen) %>% dplyr::summarise(ft_pile = dplyr::n_distinct(clus.ori)) %>% dplyr::ungroup() %>% as.data.frame() if( nrow(pile_up_algns) == 0 ) tbl_ft_pile <- tbl_ft_pile[0,] # Paired or flanked loci tbl_ft_pair <- paired_regions %>% dplyr::filter(on.off.target == "Off-target") %>% dplyr::group_by(alt_specimen) %>% dplyr::summarise(ft_pair = n()) %>% dplyr::ungroup() %>% as.data.frame() if( nrow(paired_regions) == 0 ) tbl_ft_pair <- tbl_ft_pair[0,] # target sequence matched tbl_ft_match <- matched_summary %>% dplyr::filter(on.off.target == "Off-target") %>% dplyr::group_by(alt_specimen) %>% dplyr::summarise(ft_match = dplyr::n()) %>% dplyr::ungroup() %>% as.data.frame() if( nrow(matched_summary) == 0 ) tbl_ft_match <- tbl_ft_match[0,] # Off-target summary table ft_tbl_summary <- combo_overview %>% dplyr::mutate( annotation = factor( ifelse(is.na(annotation), "Mock", paste(annotation)), levels = levels(annotation) ) ) %>% dplyr::select(-specimen) ft_tbl_summary <- Reduce( function(x,y) dplyr::left_join(x, y, by = "alt_specimen"), list(tbl_ft_algn, tbl_ft_pile, tbl_ft_pair, tbl_ft_match), init = ft_tbl_summary ) %>% dplyr::arrange(alt_specimen) %>% dplyr::select(-combo, -nuclease, -treatment) # Evaluation summary ---- ot_eff_range <- tbl_ot_eff %>% tidyr::gather(key = "target", value = "eff", -alt_specimen, -annotation) %>% dplyr::group_by(alt_specimen, annotation) %>% dplyr::summarise( min = round(min(eff, na.rm = TRUE), digits = 1), max = round(max(eff, na.rm = TRUE), digits = 1), eff_rg = ifelse( min == max, sprintf("%.1f%%", max), sprintf("%1$.1f - %2$.1f%%", min, max) ) ) %>% dplyr::ungroup() %>% dplyr::mutate(eff_rg = ifelse(grepl("Inf", eff_rg), NA, eff_rg)) %>% dplyr::select(-min, -max) if( nrow(tbl_ot_eff) == 0 ) ot_eff_range <- ot_eff_range[0,] eval_summary <- ot_eff_range %>% dplyr::full_join( ft_tbl_summary, by = c("alt_specimen", "annotation") ) %>% dplyr::mutate( specimen = stringr::str_remove(as.character(alt_specimen), "\\([\\w]+\\)$"), specimen = factor(specimen, levels = specimen_levels) ) %>% dplyr::full_join(tbl_algn_counts, by = "specimen") %>% dplyr::select( "alt_specimen", "annotation", dplyr::case_when( abundance_option == "umi" ~ "UMItags", abundance_option == "read" ~ "Reads", TRUE ~ "Alignments" ), "eff_rg", "ft_match", -"specimen" ) %>% dplyr::rename( "Specimen" = alt_specimen, "Annotation" = annotation, "On-target\nEfficiency" = eff_rg, "Predicted\nOff-targets" = ft_match ) ## Onco-gene enrichment analysis ---- rand_sites <- selectRandomSites( num = max(c( table(paired_regions$alt_specimen), table(matched_summary$alt_specimen) )), ref.genome = ref_genome, drop.extra.seqs = TRUE, rnd.seed = 1 ) rand_sites$gene_id <- suppressMessages(assignGeneID( seqnames = seqnames(rand_sites), positions = start(rand_sites), reference = ref_genome, ref.genes = ref_genes, onco.genes = onco_genes, special.genes = special_genes )) rand_df <- data.frame( annotation = "Random", "total" = length( unique(gsub("\\*", "", rand_sites$gene_id)) ), "onco" = sum(stringr::str_detect( unique(gsub("\\*", "", rand_sites$gene_id)), "~" )), "special" = sum(stringr::str_detect( unique(gsub("\\*", "", rand_sites$gene_id)), "!" )) ) ref_df <- data.frame( annotation = "--", "total" = length(unique(ref_genes$annot_sym)), "onco" = sum(unique(onco_genes) %in% ref_genes$annot_sym), "special" = sum(unique(special_genes) %in% ref_genes$annot_sym) ) pile_up_list <- pile_up_summary %>% dplyr::filter(alt_specimen %in% sapply(combos_exp_specimen_list, "[[", 1)) %>% dplyr::mutate( specimen = stringr::str_remove(as.character(alt_specimen), "\\([\\w]+\\)$"), specimen = factor(specimen, levels = specimen_levels) ) %>% split( f = as.character(annot_overview$annotation)[ match(.$specimen, annot_overview$specimen) ] ) if( length(pile_up_list) > 0){ pile_up_df <- dplyr::bind_rows( lapply( pile_up_list, function(df){ gene_id <- unique(gsub("\\*", "", df$gene_id)) data.frame( "total" = length(gene_id), "onco" = sum(stringr::str_detect(gene_id, "~")), "special" = sum(stringr::str_detect(gene_id, "!")) ) } ), .id = "annotation" ) %>% dplyr::mutate(annotation = as.character(annotation)) }else{ pile_up_df <- data.frame( annotation = character(), total = numeric(), onco = numeric(), special = numeric() ) } paired_list <- paired_regions %>% dplyr::filter(alt_specimen %in% sapply(combos_exp_specimen_list, "[[", 1)) %>% dplyr::mutate( specimen = stringr::str_remove(as.character(alt_specimen), "\\([\\w]+\\)$"), specimen = factor(specimen, levels = specimen_levels) ) %>% split( f = as.character(annot_overview$annotation)[ match(.$specimen, annot_overview$specimen) ] ) if( length(paired_list) > 0 ){ paired_df <- dplyr::bind_rows( lapply( paired_list, function(df){ gene_id <- unique(gsub("\\*", "", df$gene_id)) data.frame( "total" = length(gene_id), "onco" = sum(stringr::str_detect(gene_id, "~")), "special" = sum(stringr::str_detect(gene_id, "!")) ) } ), .id = "annotation" ) %>% dplyr::mutate(annotation = as.character(annotation)) }else{ paired_df <- data.frame( annotation = character(), total = numeric(), onco = numeric(), special = numeric() ) } matched_list <- split( x = matched_summary, f = as.character(combo_overview$annotation)[ match(matched_summary$alt_specimen, combo_overview$alt_specimen) ] ) if( length(matched_list) > 0 ){ matched_df <- dplyr::bind_rows( lapply( matched_list, function(df){ gene_id <- unique(gsub("\\*", "", df$gene_id)) data.frame( "total" = nrow(df), "onco" = sum(stringr::str_detect(gene_id, "~")), "special" = sum(stringr::str_detect(gene_id, "!")) ) } ), .id = "annotation" ) }else{ matched_df <- data.frame( annotation = character(), total = numeric(), onco = numeric(), special = numeric() ) } enrich_df <- dplyr::bind_rows( list( "Reference" = ref_df, "Pile Ups" = pile_up_df, "Flanking Pairs" = paired_df, "Target Matched" = matched_df ), .id = "origin" ) %>% dplyr::filter(total > 0) enrich_df$onco.p.value <- p.adjust( sapply( seq_len(nrow(enrich_df)), function(i){ ref <- enrich_df[1, c("total", "onco"), drop = TRUE] query <- enrich_df[i, c("total", "onco"), drop = TRUE] ref$diff <- abs(diff(as.numeric(ref))) query$diff <- abs(diff(as.numeric(query))) mat <- matrix( c(ref$diff, ref$onco, query$diff, query$onco), nrow = 2 ) fisher.test(mat)$p.value } ), method = "BH" ) enrich_df$special.p.value <- p.adjust( sapply( seq_len(nrow(enrich_df)), function(i){ ref <- enrich_df[1, c("total", "special"), drop = TRUE] query <- enrich_df[i, c("total", "special"), drop = TRUE] ref$diff <- abs(diff(as.numeric(ref))) query$diff <- abs(diff(as.numeric(query))) mat <- matrix( c(ref$diff, ref$special, query$diff, query$special), nrow = 2 ) fisher.test(mat)$p.value } ), method = "BH" ) enrich_df <- enrich_df %>% dplyr::mutate( onco.power = sapply(seq_len(n()), function(i){ statmod::power.fisher.test( p1 = onco[1] / total[1], p2 = onco[i] / total[i], n1 = total[1], n2 = total[i] ) }), special.power = sapply(seq_len(n()), function(i){ statmod::power.fisher.test( p1 = special[1] / total[1], p2 = special[i] / total[i], n1 = total[1], n2 = total[i] ) }) ) %>% dplyr::select( origin, annotation, total, onco, onco.p.value, onco.power, special, special.p.value, special.power ) ## Off-target sequence analysis ---- ft_MESL <- matched_algns %>% dplyr::mutate( edit.site.dist = abs(ifelse( strand == "+", start - as.numeric(stringr::str_extract(edit.site, "[0-9]+$")), as.numeric(stringr::str_extract(edit.site, "[0-9]+$")) - end )) ) %>% dplyr::left_join( dplyr::select(combo_overview, alt_specimen, annotation), by = "alt_specimen" ) if( nrow(ft_MESL) > 0 ){ ft_MESL <- ft_MESL %>% dplyr::group_by(annotation) %>% dplyr::mutate( ESL = predictESProb( z = edit.site.dist, density = on_tar_dens[[unique(annotation)]] ), gene_id = matched_summary$gene_id[ match(edit.site, matched_summary$edit.site) ] ) %>% dplyr::group_by(annotation, edit.site, gene_id) %>% dplyr::summarise(MESL = 100 * max(c(0,ESL), na.rm = TRUE)) %>% dplyr::ungroup() }else{ ft_MESL <- ft_MESL %>% dplyr::mutate( MESL = vector(mode = "numeric"), gene_id = vector(mode = "character") ) %>% dplyr::select(annotation, edit.site, gene_id, MESL) } ft_seqs <- matched_summary %>% dplyr::select( alt_specimen, aligned.sequence, target.match, edit.site, target.mismatch, on.off.target, abund, gene_id ) %>% dplyr::left_join( dplyr::select(combo_overview, alt_specimen, annotation), by = "alt_specimen" ) %>% dplyr::left_join( ft_MESL, by = c("annotation", "edit.site", "gene_id") ) if( is.null(args$support) ){ ft_seqs <- dplyr::group_by( ft_seqs, combo, target.match, edit.site, aligned.sequence, target.mismatch, on.off.target, gene_id ) %>% dplyr::summarise(abund = sum(abund), MESL = max(MESL, na.rm = TRUE)) }else{ ft_seqs <- dplyr::group_by( ft_seqs, annotation, target.match, edit.site, aligned.sequence, target.mismatch, on.off.target, gene_id ) %>% dplyr::summarise(abund = sum(abund), MESL = max(MESL, na.rm = TRUE)) } if( nrow(matched_summary) == 0 ) ft_seqs <- ft_seqs[0,] ft_seqs <- dplyr::arrange( ft_seqs, desc(abund), desc(MESL), target.mismatch ) %>% dplyr::ungroup() %>% dplyr::mutate( on.off.target = stringr::str_extract(on.off.target, "[\\w]+") ) %>% dplyr::rename( "target" = on.off.target, "mismatch" = target.mismatch, "target.seq" = target.match, "abund" = abund ) if( is.null(args$support) ){ ft_seqs_list <- split( ft_seqs, paste0(ft_seqs$target.seq, " (", ft_seqs$combo, ")") ) }else{ ft_seqs_conds <- dplyr::arrange(ft_seqs, annotation, target.seq) %$% unique(paste0(annotation, " - ", target.seq)) ft_seqs_list <- split( x = ft_seqs, f = factor( paste0(ft_seqs$annotation, " - ", ft_seqs$target.seq), levels = ft_seqs_conds ) ) } if( nrow(matched_summary) == 0 ) ft_seqs_list <- NULL # Data consolidated for output object ---- set_names <- ifelse( length(configs) == 1, names(configs), paste0( paste(names(configs)[seq_len(length(configs)-1)], collapse = ", "), ", and ", names(configs)[length(configs)] ) ) ## Write output file saveRDS( object = list( "params" = list( "set_names" = set_names, "configs" = configs, "soft_version" = soft_version, "build_version" = build_version, "input_vc" = vc_check, "specimen_levels" = specimen_levels, "alt_specimen_levels" = alt_specimen_levels ), "spec_info" = list( "sample_info" = sample_info, "target_seqs" = target_seqs, "target_tbl" = target_tbl, "on_targets" = on_targets, "combos_set_tbl" = combos_set_tbl, "treatment" = treatment, "treatment_df" = treatment_df, "nuclease" = nuclease, "nuclease_df" = nuclease_df, "nuclease_treatment_df" = nuclease_treatment_df, "nuclease_profiles" = nuc_profiles, "supp_data" = supp_data, "spec_overview" = spec_overview, "annot_overview" = annot_overview, "combo_overview" = combo_overview ), "incorp_data" = list( "algnmts" = algnmts, "probable_algns" = probable_algns, "matched_algns" = matched_algns, "matched_summary" = matched_summary, "paired_algns" = paired_algns, "paired_regions" = paired_regions, "pile_up_algns" = pile_up_algns, "pile_up_summary" = pile_up_summary ), "summary_tbls" = list( "ot_tbl_summary" = ot_tbl_summary, "ot_eff_summary" = tbl_ot_eff, "ft_tbl_summary" = ft_tbl_summary, "eval_summary" = eval_summary ), "edit_models" = list( "on_tar_dists" = on_tar_dists, "on_tar_dens" = on_tar_dens, "sites_included" = sites_included ), "enrich_data" = list( "rand_sites" = rand_sites, "rand_df" = rand_df, "enrich_df" = enrich_df ), "ft_data" = ft_seqs_list ), file = args$output ) if( !file.exists(args$output) ){ stop("\n Cannot verify existence of output file:\n ", args$output, "\n") }else{ if( !args$quiet ){ cat("Evaluation complete, output writen to:\n ", args$output, "\n") } q(status = 0) } |
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 | options(stringsAsFactors = FALSE, scipen = 99, width = 999) code_dir <- dirname(sub( pattern = "--file=", replacement = "", x = grep("--file=", commandArgs(trailingOnly = FALSE), value = TRUE) )) desc <- yaml::yaml.load_file( file.path(code_dir, "descriptions/filt.desc.yml") ) # Set up arguments and workflow of script -------------------------------------- ## Argument parser ============================================================= parser <- argparse::ArgumentParser( description = desc$program_short_description, usage = "nuc filt <seqFile(s)> [-h/--help, -v/--version] [optional args]" ) parser$add_argument( "seqFile", nargs = "+", type = "character", help = desc$seqFile ) parser$add_argument( "-o", "--output", nargs = "+", type = "character", help = desc$output ) parser$add_argument( "-i", "--index", nargs = "*", type = "character", help = desc$index ) parser$add_argument( "-s", "--seq", nargs = "*", type = "character", help = desc$seq ) parser$add_argument( "-m", "--mismatch", nargs = "+", type = "integer", default = 0, help = desc$mismatch ) parser$add_argument( "-r", "--refseqs", nargs = "+", type = "character", help = desc$refseqs ) parser$add_argument( "--aligntype", nargs = 1, type = "character", default = "ov", help = desc$aligntype ) parser$add_argument( "--pctID", nargs = 1, type = "integer", default = 95, help = desc$pctID ) parser$add_argument( "--pctIDtype", nargs = 1, type = "character", default = "global", help = desc$pctIDtype ) parser$add_argument( "--subMatAdj", nargs = "+", type = "character", default = FALSE, help = desc$subMatAdj ) parser$add_argument( "--gapOpen", nargs = 1, type = "integer", default = 10, help = desc$gapOpen ) parser$add_argument( "--gapExt", nargs = 1, type = "integer", default = 4, help = desc$gapExt ) parser$add_argument( "--minAlignLength", nargs = 1, type = "integer", default = 20, help = desc$minAlignLength ) parser$add_argument( "--readNamePattern", nargs = 1, type = "character", default = "[\\w:-]+", help = desc$readNamePattern ) parser$add_argument( "-c", "--cores", nargs = 1, default = 1, type = "integer", help = desc$cores ) parser$add_argument( "--stat", nargs = 1, default = FALSE, type = "character", help = desc$stat ) parser$add_argument( "--header", action = "store_true", help = desc$header ) parser$add_argument( "-n", "--negSelect", action = "store_true", help = desc$negSelect ) parser$add_argument( "--any", action = "store_true", help = desc$any ) parser$add_argument( "--compress", action = "store_true", help = desc$compress ) parser$add_argument( "-q", "--quiet", action = "store_true", help = desc$quiet ) ## Parse cmd line args ========================================================= args <- parser$parse_args(commandArgs(trailingOnly = TRUE)) ## Checks and balance ========================================================== if( args$cores > 1 ){ # Stop code since parallel operation has not been constructed yet stop("\n Parallel options have not yet been implemented.\n") if( args$cores > parallel::detectCores() ){ cat( "\n Requested cores is greater than availible for system.", "Changing cores to max allowed.\n" ) args$cores <- detectCores() } }else if( args$cores < 1 ){ args$cores <- 1 } if( length(args$seqFile) != length(args$output) ){ stop( "\n The same number of input and output file names need to be provided.\n") } if( length(args$index) > 1 ){ stop( "\n Only one index file can be used at a time. ", "Please consolidate indices.\n" ) } if( length(args$mismatch) != length(args$seq) ){ args$mismatch <- rep(args$mismatch[1], length(args$seq)) } if( length(args$seq) > 0 ){ args$seq <- toupper(gsub("U", "T", args$seq)) if( any(!unlist(strsplit(paste(args$seq, collapse = ""), "")) %in% names(Biostrings::IUPAC_CODE_MAP)) ){ stop("\n Unknown nucleotides detected in input filtering sequence(s).\n") } } if( !args$pctIDtype %in% c("global", "local") ){ stop("\n Input '--pctIDtype' must be either 'local' or 'global' [default].") } # Determine input sequence file type(s) seq_type <- unlist(strsplit(args$seqFile, "/")) seq_type <- seq_type[length(seq_type)] seq_type <- stringr::str_extract(seq_type, ".fa[\\w]*") if( any(!seq_type %in% c(".fa", ".fq", ".fasta", ".fastq")) ){ stop( "\n Unrecognized sequence file type, please convert to '*.fasta' or ", "'*.fastq'. Gzip compression is acceptable as well.\n" ) } seq_type <- ifelse(seq_type %in% c(".fa", ".fasta"), "fasta", "fastq") # Determine sequence output file type(s) if( length(args$output) > 0 ){ out_type <- unlist(strsplit(args$output, "/")) out_type <- out_type[length(out_type)] out_type <- stringr::str_extract(out_type, ".fa[\\w]*") if( any(!out_type %in% c(".fa", ".fq", ".fasta", ".fastq")) ){ stop( "\n Unrecognized output sequence file type, please change to ", "'*.fasta' or '*.fastq'.\n" ) } out_type <- ifelse(out_type %in% c(".fa", ".fasta"), "fasta", "fastq") } # Identify filtering type select_methods <- c() if( length(args$index) == 1 ) select_methods <- c(select_methods, 1) if( length(args$seqFile) > 1 ) select_methods <- c(select_methods, 2) if( length(args$seq) > 0 ) select_methods <- c(select_methods, 3) if( length(args$refseqs) > 0 ) select_methods <- c(select_methods, 4) methods <- c( "input indices", "multiple file input indices", "sequence content", "sequence matching reference(s)" )[select_methods] filt_type <- paste0( ifelse(args$negSelect, "negative", "positive"), " selection using ", paste(methods, collapse = ifelse(args$any, " or ", " and ")), "." ) ## Input arguments table ======================================================= input_table <- data.frame( "Variables" = paste0(names(args), " :"), "Values" = sapply(seq_along(args), function(i){ paste(args[[i]], collapse = ", ") }) ) input_table <- input_table[ match( c("seqFile :", "output :", "index :", "header :", "negSelect :", "seq :", "mismatch :", "refseqs :", "aligntype :", "pctID :", "pctIDtype :", "subMatAdj :", "gapOpen :", "gapExt :", "minAlignLength :", "readNamePattern :", "compress :", "cores :"), input_table$Variables) ,] if( !args$quiet ){ cat("\nFilter Inputs:\n") print( data.frame(input_table, row.names = NULL), right = FALSE, row.names = FALSE ) cat("\n Filtering methods include", filt_type, "\n") } # Additional supporting functions ---------------------------------------------- source(file.path(code_dir, "supporting_scripts", "writeSeqFiles.R")) source(file.path(code_dir, "supporting_scripts", "nucleotideScoringMatrices.R")) source(file.path(code_dir, "supporting_scripts", "substituteAdjustments.R")) source(file.path(code_dir, "supporting_scripts", "utility_funcs.R")) #' Filter sequences based on input arguments #' This function is the basis for the script. filterSeqFile <- function(input.seqs, args){ ## Identify sequence names matching across multiple sequence files if( length(input.seqs) > 1 ){ multi_input_ids <- lapply(input_seqs, function(seq){ stringr::str_extract( string = as.character(unique(ShortRead::id(seq))), pattern = args$readNamePattern ) }) multi_input_tbl <- table(unlist(multi_input_ids)) if( args$negSelect ){ multi_input_names <- names(multi_input_tbl)[which(multi_input_tbl == 1)] }else if( args$any ){ multi_input_names <- names(multi_input_tbl)[which(multi_input_tbl > 1)] }else{ multi_input_names <- names(multi_input_tbl)[ which(multi_input_tbl == length(input_seqs)) ] } multi_filter_idx <- lapply(input_seqs, function(seqs, idx){ ids <- stringr::str_extract( string = as.character(ShortRead::id(seqs)), pattern = args$readNamePattern ) which(ids %in% idx) }, idx = multi_input_names ) } ## Identify sequence names by matching to index file if( length(args$index) == 1 ){ input_ids <- lapply(input_seqs, function(seq){ stringr::str_extract( string = as.character(ShortRead::id(seq)), pattern = args$readNamePattern ) }) index_df <- read.delim(args$index, header = args$header) index <- stringr::str_extract( string = as.character(index_df[,1]), pattern = args$readNamePattern ) index_filter_idx <- lapply(input_ids, function(ids, idx){ which(ids %in% idx) }, idx = index ) } ## Identify sequences by matching input nucleotide sequence if( length(args$seq) > 0 ){ seq_filter_idx <- lapply( input_seqs, function(seqs, pattern, mismatch, neg, any){ vcp <- mapply(function(pat, mis, seqs, neg){ v <- Biostrings::vcountPattern( pat, ShortRead::sread(seqs), max.mismatch = mis, fixed = FALSE) if( neg ){ return(which(v == 0)) }else{ return(which(v > 0)) } }, pat = pattern, mis = mismatch, MoreArgs = list(seqs = seqs, neg = neg), SIMPLIFY = FALSE ) vcp_tbl <- table(unlist(vcp)) if( any ){ return(as.numeric(names(vcp_tbl[which(vcp_tbl >= 1)]))) }else{ return(as.numeric(names(vcp_tbl[which(vcp_tbl == length(pattern))]))) } }, pattern = args$seq, mismatch = args$mismatch, neg = args$negSelect, any = args$any ) } ## Identify sequence that match to reference sequence(s) if( length(args$refseqs) > 0 ){ ref_filter_idx <- lapply( input.seqs, function(seqs, refs, alntype, pctID, idtype, subadj, gapOpen, gapExt, minAlignLength, neg){ # Load reference sequences ref_types <- unlist(strsplit(refs, "/")) ref_types <- ref_types[length(ref_types)] ref_types <- stringr::str_extract(ref_types, ".fa[\\w]*") if( any(!ref_types %in% c(".fa", ".fq", ".fasta", ".fastq")) ){ stop( "\n Unrecognized sequence file type, please convert to '*.fasta' or ", "'*.fastq'. Gzip compression is acceptable as well.\n" ) } ref_types <- ifelse(ref_types %in% c(".fa", ".fasta"), "fasta", "fastq") refs <- mapply( function(file, file_type){ if( file_type == "fasta" ){ return(ShortRead::readFasta(file)) }else{ return(ShortRead::readFastq(file)) } }, file = refs, file_type = ref_types, SIMPLIFY = FALSE ) if( length(refs) > 1 ){ refs <- serialAppendS4(refs) }else{ refs <- refs[[1]] } # Alignment type align_types <- structure( c("global", "local", "overlap", "global-local", "local-global"), names = c("gg", "ll", "ov", "gl", "lg") ) alntype <- align_types[alntype] # Score only? SO <- idtype == 'global' # Interpret adjustment if any input_adjs <- stringr::str_extract( subadj[grep("^i", subadj)], "[\\w]{2}$" ) refer_adjs <- stringr::str_extract( subadj[grep("^r", subadj)], "[\\w]{2}$" ) # Apply adjustments and convert to character vectors seqs <- substituteAdjustments(ShortRead::sread(seqs), input_adjs) refs <- substituteAdjustments(ShortRead::sread(refs), refer_adjs) alignments <- lapply( refs, function(ref, seqs, alntype, gapOpen, gapExt, SO){ Biostrings::pairwiseAlignment( pattern = seqs, subject = ref, type = alntype, gapOpening = gapOpen, gapExtension = gapExt, substitutionMatrix = usanmat(), scoreOnly = SO ) }, seqs = Biostrings::DNAStringSet(seqs), alntype = alntype, gapOpen = gapOpen, gapExt = gapExt, SO = SO ) if( idtype == "global" ){ max_score <- 100 * apply( matrix(unlist(alignments), ncol = length(refs)), 1, max ) / nchar(seqs) }else if( idtype == "local" ){ local_score <- matrix( unlist(lapply(alignments, function(x) Biostrings::score(x))), ncol = length(refs) ) local_size <- matrix( unlist(lapply(alignments, function(x) x@pattern@range@width)), ncol = length(refs) ) top_score_idx <- apply(100 * local_score / local_size, 1, function(x){ which(x == max(x)) }) top_score_len <- unlist(lapply( seq_along(top_score_idx), function(i){ unique(local_size[i, top_score_idx[[i]], drop = TRUE]) } )) top_score <- unlist(lapply( seq_along(top_score_idx), function(i){ unique(local_score[i, top_score_idx[[i]], drop = TRUE]) } )) max_score <- 100 * top_score / top_score_len }else{ stop("\n Input error, pctIDtype must be either 'local' or 'global'.") } if( neg ){ return( which(max_score < pctID | top_score_idx < minAlignLength) ) }else{ return( which(max_score >= pctID & top_score_len >= minAlignLength) ) } }, refs = args$refseqs, alntype = args$aligntype, pctID = args$pctID, idtype = args$pctIDtype, subadj = args$subMatAdj, gapOpen = args$gapOpen, gapExt = args$gapExt, minAlignLength = args$minAlignLength, neg = args$negSelect ) } # Consolidate indices from each method employed lapply(seq_along(input_seqs), function(i){ idx <- NULL cnt <- 0 if( exists("multi_filter_idx") ){ cnt <- cnt + 1 idx <- c(idx, multi_filter_idx[[i]]) } if( exists("index_filter_idx") ){ cnt <- cnt + 1 idx <- c(idx, index_filter_idx[[i]]) } if( exists("seq_filter_idx") ){ cnt <- cnt + 1 idx <- c(idx, seq_filter_idx[[i]]) } if( exists("ref_filter_idx") ){ cnt <- cnt + 1 idx <- c(idx, ref_filter_idx[[i]]) } if( args$any ){ return(unique(idx)) }else{ idx_tbl <- table(idx) return(as.numeric(names(idx_tbl)[idx_tbl == cnt])) } }) } # Identify indices of input file(s) for filtering ------------------------------ input_seqs <- mapply( function(file, file_type){ if( file_type == "fasta" ){ return(ShortRead::readFasta(file)) }else{ return(ShortRead::readFastq(file)) } }, file = args$seqFile, file_type = seq_type, SIMPLIFY = FALSE ) output_indices <- filterSeqFile(input_seqs, args) output_seqs <- mapply( function(seqs, idx){ seqs[idx] }, seqs = input_seqs, idx = output_indices, SIMPLIFY = FALSE ) # Write output files ----------------------------------------------------------- if( args$stat != FALSE ){ sample_name <- strsplit(args$output, "/", fixed = TRUE) sample_name <- mapply("[[", sample_name, lengths(sample_name)) sample_name <- strsplit(sample_name, ".fa", fixed = TRUE) sample_name <- mapply("[[", sample_name, 1) write.table( data.frame( sampleName = sample_name, metric = "reads", count = lengths(output_seqs) ), file = args$stat, sep = ",", row.names = FALSE, col.names = FALSE, quote = FALSE ) } null <- sapply(args$output, unlink) null <- mapply( writeSeqFiles, seqs = output_seqs, file = args$output, MoreArgs = list(compress = args$compress) ) q() |
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 | options(stringsAsFactors = FALSE, scipen = 99, width = 180) # Set up and gather command line arguments ---- parser <- argparse::ArgumentParser( description = "Generate an iGUIDE report for input evaluation data.", usage = paste( "Rscript generate_IGUIDE_report.R <eval.rds> -o <output>", "[-h/--help, -v/--version] [optional args]" ) ) parser$add_argument( "eval", nargs = 1, type = "character", help = paste( "Evaluation dataset, in rds format. Can be generated by the", "'iguide eval' subcommand." ) ) parser$add_argument( "-o", "--output", nargs = 1, type = "character", required = TRUE, help = "Output report file, extension not required." ) parser$add_argument( "-b", "--tables", action = "store_true", help = "Generate tables along with output report (csv formats)." ) parser$add_argument( "-f", "--figures", action = "store_true", help = "Generate figures along with output report (pdf and png formats)." ) parser$add_argument( "-d", "--data", action = "store_true", help = "Data to generate the report will be saved as an R image with output." ) parser$add_argument( "-t", "--format", nargs = 1, type = "character", default = "html", help = "Output format for report. Either 'pdf' or 'html' (default)." ) parser$add_argument( "-g", "--graphic", action = "store_true", help = "Includes an opening graphic on the report." ) parser$add_argument( "--template", nargs = 1, type = "character", default = "tools/rscripts/report_templates/iGUIDE_report_template.Rmd", help = "File path to standard or custom iGUIDE report template." ) parser$add_argument( "--iguide_dir", nargs = 1, type = "character", default = "IGUIDE_DIR", help = "iGUIDE install directory path, do not change for normal applications." ) args <- parser$parse_args(commandArgs(trailingOnly = TRUE)) if( !dir.exists(args$iguide_dir) ){ root_dir <- Sys.getenv(args$iguide_dir) }else{ root_dir <- args$iguide_dir } if( !dir.exists(root_dir) ){ stop(paste0("\n Cannot find install path to iGUIDE: ", root_dir, ".\n")) }else{ args$iguide_dir <- root_dir } report_formats <- c("html" = "html_document", "pdf" = "pdf_document") if( !args$format %in% names(report_formats) ){ stop("Please input either 'html' or 'pdf' for format.\n", "Other formats not supported.") } output_format <- report_formats[args$format] ## Resolve template file path. if( file.exists(file.path(root_dir, args$template)) ){ template_path <- normalizePath(file.path(root_dir, args$template)) }else if( file.exists(file.path(args$template)) ){ template_path <- normalizePath(file.path(args$template)) }else{ stop("\nCannot find template file: ", args$template, ".\n") } ## Construct input table and print to terminal input_table <- data.frame( "Variables" = paste0(names(args), " :"), "Values" = sapply(seq_along(args), function(i){ paste(args[[i]], collapse = ", ") }) ) input_table <- input_table[ match( c( "eval :", "output :", "tables :", "figures :", "data :", "graphic :", "format :", "template :", "iguide_dir :" ), input_table$Variables), ] cat("\niGUIDE Report Inputs:\n") print( data.frame(input_table), right = FALSE, row.names = FALSE ) # Load dependancies ---- cat("\nLoading dependencies.\n") add_packs <- c("magrittr", "knitr", "iguideSupport") add_packs_loaded <- suppressMessages( sapply(add_packs, require, character.only = TRUE) ) if( !all(add_packs_loaded) ){ print( data.frame( "R-Packages" = names(add_packs_loaded), "Loaded" = add_packs_loaded ), right = FALSE, row.names = FALSE ) stop("Check dependancies.\n") } # Import metadata and consolidate into report objects ---- cat("Importing evaluation data...\n") if( file.exists(file.path(root_dir, args$eval)) ){ eval_path <- normalizePath(file.path(root_dir, args$eval)) }else if( file.exists(file.path(args$eval)) ){ eval_path <- normalizePath(file.path(args$eval)) }else{ stop("\n Cannot find evaluation dataset: ", args$eval, "\n") } eval_data <- readRDS(eval_path) ## Configuration configs <- eval_data$params$configs ## Load reference genome if( grepl(".fa", unique(sapply(configs, "[[", "Ref_Genome"))) ){ if( !( file.exists( file.path(root_dir, unique(sapply(configs, "[[", "Ref_Genome"))) ) | file.exists(unique(sapply(configs, "[[", "Ref_Genome"))) ) ){ stop("Specified reference genome file not found.") } ref_file_type <- ifelse( grepl(".fastq", unique(sapply(configs, "[[", "Ref_Genome"))), "fastq", "fasta" ) if( file.exists( file.path(root_dir, unique(sapply(configs, "[[", "Ref_Genome"))) ) ){ ref_genome <- Biostrings::readDNAStringSet( filepath = file.path( root_dir, unique(sapply(configs, "[[", "Ref_Genome")) ), format = ref_file_type ) }else{ ref_genome <- Biostrings::readDNAStringSet( filepath = unique(sapply(configs, "[[", "Ref_Genome")), format = ref_file_type ) } }else{ ref_genome <- unique(sapply(configs, "[[", "Ref_Genome")) genome <- grep( pattern = ref_genome, x = unique(BSgenome::installed.genomes()), value = TRUE ) if( length(genome) == 0 ){ cat("\nInstalled genomes include:") print(unique(BSgenome::installed.genomes())) cat("\nSelected reference genome not in list.") stop("Error: Genome not available.") }else if( length(genome) > 1 ){ cat("\nInstalled genomes include:") print(unique(BSgenome::installed.genomes())) cat( "\nPlease be more specific about reference genome.", "Multiple matches to input." ) stop("Error: Multiple genomes requested.") } suppressMessages(library(genome, character.only = TRUE)) ref_genome <- get(genome) } ## Get versioning and params soft_version <- eval_data$params$soft_version build_version <- eval_data$params$build_version signature <- paste( unique(sort(unlist(lapply(configs, "[[", "signature")))), collapse = ", ") ## Determine processing parameters ## Some parameters will need to be an "all or nothing" approach, including: ## - UMItags ## - recoverMultihits ## Depending on these parameters others (upstream/downstream_dist, ...) may need ## to be consistent between runs otherwise, the primary config file (first one), ## will be used for parameterization. umitag_option <- all(unlist(lapply(configs, "[[", "UMItags"))) multihit_option <- all(unlist(lapply(configs, "[[", "recoverMultihits"))) abundance_option <- unique( tolower(unlist(lapply(configs, "[[", "Abundance_Method"))) )[1] if( is.na(abundance_option) ) abundance_option <- "Fragment" if( abundance_option == "umi" & !umitag_option ){ stop( "\n Abundance method has been set to use UMItags, yet the current", "\n configuration does not capture UMItag data (UMItags : FALSE).", "\n Please correct this inconsistency before continuing analysis." ) } if( multihit_option ){ upstream_dist <- unique(sapply(configs, function(x) x$upstreamDist)) downstream_dist <- unique(sapply(configs, function(x) x$downstreamDist)) pile_up_min <- unique(sapply(configs, function(x) x$pileUpMin)) if( length(upstream_dist) > 1 | length(downstream_dist) > 1 | length(pile_up_min) > 1 ){ stop( "\n Inconsistant upstream or downstream distances between config files.\n", " Comparisons between groups with different run specific criteria\n", " is not recommended when considering the recover multihit option.\n" ) } }else{ upstream_dist <- configs[[1]]$upstreamDist downstream_dist <- configs[[1]]$downstreamDist pile_up_min <- configs[[1]]$pileUpMin } ## Combine sampleInfo files sample_info <- eval_data$spec_info$sample_info specimen_levels <- eval_data$params$specimen_levels alt_specimen_levels <- eval_data$params$alt_specimen_levels support_present <- nrow(eval_data$spec_info$supp_data) > 0 ## Identify all targets used target_tbl <- eval_data$spec_info$target_tbl %>% dplyr::select(-run_set) %>% dplyr::distinct() %>% dplyr::rename( "Nuclease" = nuclease, "Target Name" = target, "Sequence" = sequence ) ## Identify on-target edit sites on_targets <- eval_data$spec_info$on_targets ## Treatment across runs treatment <- eval_data$spec_info$treatment treatment_df <- eval_data$spec_info$treatment_df ## Nuclease profiles nuc_profiles <- eval_data$spec_info$nuclease_profiles ## Combo information nuc_treatment_unmod_df <- eval_data$spec_info$nuclease_df %>% dplyr::full_join(treatment_df, by = c("run_set", "specimen")) nuclease_treatment_df <- eval_data$spec_info$nuclease_treatment_df combos_set_tbl <- eval_data$spec_info$combos_set_tbl combos_tbl <- combos_set_tbl %>% dplyr::select(-run_set) %>% dplyr::distinct() %>% dplyr::mutate(combo = paste0("(", combo, ")")) %>% dplyr::rename( "Combination" = combo, "Nuclease" = nuclease, "Treatment" = treatment ) ## Load in supporting information ---- supp_data <- eval_data$spec_info$supp_data ## Consolidate supplementary data ---- spec_overview <- eval_data$spec_info$spec_overview %>% dplyr::mutate( specimen = ifelse( nuc_treatment_unmod_df$nuclease[ match(specimen, nuc_treatment_unmod_df$specimen) ] == "Mock" | nuc_treatment_unmod_df$treatment[ match(specimen, nuc_treatment_unmod_df$specimen) ] == "Mock", as.character(specimen), as.character(nuclease_treatment_df$alt_specimen)[ match(specimen, nuclease_treatment_df$specimen) ] ) ) if( length(unique(spec_overview$run_set)) == 1 ){ spec_overview <- dplyr::select(spec_overview, -run_set) }else{ spec_overview <- dplyr::rename(spec_overview, "Run Name" = run_set) } annot_overview <- eval_data$spec_info$annot_overview combo_overview <- nuclease_treatment_df %>% dplyr::left_join(annot_overview, by = "specimen") %>% dplyr::mutate( annotation = paste0(as.character(annotation), " (", combo, ")"), annotation = factor(annotation, levels = unique(annotation)) ) ## Read in experimental data and contatenate different sets ---- incorp_data <- eval_data$incorp_data ## Info graphic data ---- graphic_order <- c("algnmts", "pile_up_algns", "paired_algns", "matched_algns") graphic_data <- incorp_data[graphic_order] graphic_grl <- GenomicRanges::GRangesList(lapply( graphic_data, GenomicRanges::makeGRangesFromDataFrame, seqinfo = GenomicRanges::seqinfo(ref_genome) )) # Genomic Distribution of edited sites ---- genomic_grl <- GenomicRanges::GRangesList(lapply( graphic_data, function(x){ y <- makeGRangesFromDataFrame(x, seqinfo = seqinfo(ref_genome)) mcols(y) <- combo_overview[ match(x$alt_specimen, combo_overview$alt_specimen), "annotation", drop = FALSE ] y } )) num_conds <- max(length(unique(combo_overview$annotation)), 1) names(genomic_grl) <- c( "All Align.", "Pileup Align.", "Flanking Pairs", "Target Matched" ) # On-target summary ---- ot_tbl_summary <- eval_data$summary_tbls$ot_tbl_summary %>% dplyr::rename("specimen" = alt_specimen) %>% dplyr::mutate( annotation = stringr::str_remove(annotation, "\\([\\w]+\\)$") ) %>% dplyr::select( "specimen", "annotation", "ot_algns_pct", "ot_pile_pct", "ot_pair_pct", "ot_match_pct" ) ot_eff_summary <- eval_data$summary_tbls$ot_eff_summary %>% dplyr::rename("specimen" = alt_specimen) %>% dplyr::mutate( annotation = stringr::str_remove(annotation, "\\([\\w]+\\)$") ) %>% dplyr::select(specimen, annotation, dplyr::everything()) eval_summary <- eval_data$summary_tbls$eval_summary # On-target distribution of incorporations ---- on_tar_dists <- eval_data$edit_models$on_tar_dists sites_included <- eval_data$edit_models$sites_included # Off-target summary ---- ft_tbl_summary <- eval_data$summary_tbls$ft_tbl_summary %>% dplyr::rename("specimen" = alt_specimen) %>% dplyr::mutate( annotation = stringr::str_remove(annotation, "\\([\\w]+\\)$") ) %>% dplyr::select( "specimen", "annotation", "ft_algns", "ft_pile", "ft_pair", "ft_match" ) # Off-target sequence analysis ---- ft_seqs_list <- eval_data$ft_data # Onco-gene enrichment analysis ---- enrich_df <- eval_data$enrich_data$enrich_df # Data passed to Rmd for report generation ---- set_names <- eval_data$params$set_names # Normalize file output path write(c(), file = args$output) args$output <- normalizePath(args$output) unlink(args$output) output_path <- unlist(strsplit(args$output, "/")) output_dir <- paste(output_path[seq_len(length(output_path)-1)], collapse = "/") output_file <- output_path[length(output_path)] if( args$format == "html" & !stringr::str_detect(output_file, ".html$") ){ output_file <- paste0(output_file, ".html") } if( args$format == "pdf" & !stringr::str_detect(output_file, ".pdf$") ){ output_file <- paste0(output_file, ".pdf") } figure_path <- file.path( output_dir, gsub("[\\w]+$", "figures", output_file, perl = TRUE) ) null <- dir.create(figure_path) if( args$tables ){ tables_path <- file.path( output_dir, gsub("[\\w]+$", "tables", output_file, perl = TRUE) ) null <- dir.create(tables_path) } if( args$data ){ if( args$format == "html" ){ save.image(file = file.path( output_dir, stringr::str_replace(output_file, ".html$", ".RData") )) }else if( args$format == "pdf" ){ save.image(file = file.path( output_dir, stringr::str_replace(output_file, ".pdf$", ".RData") )) } } if( args$format == "html" ){ css_path <- normalizePath( file.path(root_dir, "tools/rscripts/report_templates/iguide.css") ) rmarkdown::render( input = template_path, output_format = output_format, output_file = output_file, output_dir = output_dir, output_options = list("css" = css_path) ) }else{ rmarkdown::render( input = template_path, output_format = output_format, output_file = output_file, output_dir = output_dir ) } if( !args$figures ){ tmp_fig_paths <- c( list.files( path = figure_path, pattern = "incorp_dist", full.names = TRUE ), list.files( path = figure_path, pattern = "genomic_dens", full.names = TRUE ), list.files( path = figure_path, pattern = "off_target_seqs", full.names = TRUE ) ) cat(sprintf("Removing temporary files: %s\n", tmp_fig_paths), sep = "") null <- file.remove(tmp_fig_paths) cat("Removing temorary directory:", figure_path, "\n") null <- file.remove(figure_path) } q() |
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 | options(stringsAsFactors = FALSE, scipen = 99, width = 180) set.seed(1) # Set up and gather command line arguments ---- parser <- argparse::ArgumentParser( description = "Generate an iGUIDE summary from input evaluation data.", usage = paste( "Rscript generate_IGUIDE_summary.R <eval.rds> [optional args]", "[-h/--help, -v/--version]" ) ) parser$add_argument( "eval", nargs = 1, type = "character", help = paste( "Evaluation dataset, in rds format. Can be generated by the", "'iguide eval' subcommand." ) ) parser$add_argument( "-o", "--output", nargs = 1, type = "character", default = FALSE, help = paste( "Output report file, extention not required. Will be writen as text", "file. If no output given, results will be printed to screen.", "Example output name: summary.iGUIDE_Run.txt or summary.iguide_run" ) ) parser$add_argument( "-p", "--power_filt", nargs = 1, type = "integer", default = 0, help = paste( "Specify a integer between 0 and 100 indicating the percent for", "which to filter statistical comparisons for gene enrichment based", "on power." ), metavar = "INT" ) parser$add_argument( "-m", "--mesl_filt", nargs = 1, type = "integer", default = 0, help = paste( "Specify a integer between 0 and 100 indicating the likelyhood for", "which to filter off-target sites based on the Mean Edit Site", "Likelyhood (MESL) model." ), metavar = "INT" ) parser$add_argument( "--iguide_dir", nargs = 1, type = "character", default = "IGUIDE_DIR", help = "iGUIDE install directory path, do not change for normal applications." ) args <- parser$parse_args(commandArgs(trailingOnly = TRUE)) if( !dir.exists(args$iguide_dir) ){ root_dir <- Sys.getenv(args$iguide_dir) }else{ root_dir <- args$iguide_dir } if( !dir.exists(root_dir) ){ stop(paste0("\n Cannot find install path to iGUIDE: ", root_dir, ".\n")) }else{ args$iguide_dir <- root_dir } # Normalize file output path if( args$output != FALSE ){ write(c(), file = args$output) args$output <- normalizePath(args$output) unlink(args$output) output_path <- unlist(strsplit(args$output, "/")) output_dir <- paste(output_path[seq_len(length(output_path)-1)], collapse = "/") output_file <- output_path[length(output_path)] if( !stringr::str_detect(output_file, ".txt$") ){ output_file <- paste0(output_file, ".txt") } args$output <- file.path(output_dir, output_file) unlink(args$output) } ## Additional functions to help with output catOrWrite <- function(obj, args, big.mark = ",", style = "simple", ...){ if( is.data.frame(obj) ){ obj <- pander::pandoc.table.return( obj, row.names = FALSE, split.cells = Inf, split.tables = Inf, style = style, justify = ifelse( sapply(seq_len(ncol(obj)), function(i){ is.numeric(obj[, i, drop = TRUE]) }), "right", "centre" ), plain.ascii = TRUE, ... ) obj <- stringr::str_remove(obj, "\n") }else{ obj <- paste0(obj, "\n") } if( args$output != FALSE ){ cat(obj, file = args$output, append = TRUE) }else{ cat(obj) } } # Load dependancies ---- add_packs <- c("magrittr", "iguideSupport") add_packs_loaded <- suppressMessages( sapply(add_packs, require, character.only = TRUE) ) if( !all(add_packs_loaded) ){ print( data.frame( "R-Packages" = names(add_packs_loaded), "Loaded" = add_packs_loaded ), right = FALSE, row.names = FALSE ) stop("Check dependancies.\n") } # Import metadata and consolidate into report objects ---- if( file.exists(file.path(root_dir, args$eval)) ){ eval_path <- normalizePath(file.path(root_dir, args$eval)) }else if( file.exists(file.path(args$eval)) ){ eval_path <- normalizePath(file.path(args$eval)) }else{ stop("\n Cannot find evaluation dataset: ", args$eval, "\n") } eval_data <- readRDS(eval_path) ## Configuration configs <- eval_data$params$configs ## Get versioning and params set_names <- eval_data$params$set_names soft_version <- eval_data$params$soft_version build_version <- eval_data$params$build_version signature <- paste( unique(sort(unlist(lapply(configs, "[[", "signature")))), collapse = ", ") umitag_option <- all(unlist(lapply(configs, "[[", "UMItags"))) abundance_option <- unique( tolower(unlist(lapply(configs, "[[", "Abundance_Method"))) )[1] if( is.na(abundance_option) ) abundance_option <- "Fragment" if( tolower(abundance_option) == "umi" & !umitag_option ){ stop( "\n Abundance method has been set to use UMItags, yet the current", "\n configuration does not capture UMItag data (UMItags : FALSE).", "\n Please correct this inconsistency before continuing analysis." ) } # Start summary ---- null <- catOrWrite( paste0( "iGUIDE Summary:\n", " run(s) : ", set_names, "\n", " author(s): ", signature, "\n", " generated : ", "[", paste(Sys.time()), "]\n", " software version : ", soft_version, "\n", " build version : ", build_version, "\n", "\n************************************************************\n" ), args ) # Analysis overview table ---- eval_summary <- eval_data$summary_tbls$eval_summary %>% dplyr::mutate(Specimen = stringr::str_remove(Specimen, "\\([\\w]+\\)$")) eval_summary[is.na(eval_summary)] <- 0 null <- catOrWrite( "Table 1. Analysis overview with specific data highlights.", args ) null <- catOrWrite(eval_summary, args, missing = 0, style = "multiline") null <- catOrWrite("", args) # Specimen summary table ---- specimen_levels <- eval_data$params$specimen_levels alt_specimen_levels <- eval_data$params$alt_specimen_levels spec_overview <- eval_data$spec_info$spec_overview on_targets <- eval_data$spec_info$on_targets if( length(unique(spec_overview$run_set)) == 1 ){ spec_overview <- dplyr::select(spec_overview, -run_set) }else{ spec_overview <- dplyr::rename(spec_overview, "Run Name" = run_set) } spec_overview <- eval_data$incorp_data$algnmts %>% dplyr::mutate(type = ifelse( is.na(edit.site), "Independent", ifelse(edit.site %in% expandPosStr(on_targets), "On-target", "Off-target") ) ) %>% dplyr::group_by(alt_specimen, type) %>% dplyr::summarise(abund = sum(abund)) %>% dplyr::ungroup() %>% dplyr::mutate( alt_specimen = factor(alt_specimen, levels = alt_specimen_levels), type = factor(type, levels = c("On-target", "Off-target", "Independent")) ) %>% tidyr::spread(key = "type", value = "abund", fill = 0) %>% tidyr::complete( alt_specimen, fill = list("On-target" = 0, "Off-target" = 0, "Independent" = 0) ) %>% dplyr::mutate( specimen = factor( stringr::str_remove(as.character(alt_specimen), "\\([\\w]+\\)$"), levels = specimen_levels ) ) %>% dplyr::left_join(spec_overview, ., by = "specimen") %>% dplyr::select(alt_specimen, dplyr::everything(), -specimen) %>% dplyr::rename(specimen = alt_specimen) null <- catOrWrite( "Table 2. Specimen overview covering reads, umitags, and alignments:", args ) null <- catOrWrite(spec_overview, args, missing = 0, style = "multiline") null <- catOrWrite("", args) # Combination info table ---- combo_overview <- eval_data$spec_info$combo_overview combos_tbl <- eval_data$spec_info$combos_set_tbl %>% dplyr::select(-run_set) %>% dplyr::distinct() %>% dplyr::mutate(combo = paste0("(", combo, ")")) %>% dplyr::rename( "Combination" = combo, "Nuclease" = nuclease, "Treatment" = treatment ) null <- catOrWrite( "Table 3. Combinations of nuclease(s) and treatment(s).", args ) null <- catOrWrite(combos_tbl, args) # Target info table ---- ## Identify all targets used target_tbl <- eval_data$spec_info$target_tbl %>% dplyr::select(-run_set) %>% dplyr::distinct() %>% dplyr::rename( "Nuclease" = nuclease, "Target Name" = target, "Sequence" = sequence ) %>% dplyr::mutate( "Edit Loci" = sapply( `Target Name`, function(x){ paste(on_targets[which(names(on_targets) == x)], collapse = "\n") } ) ) null <- catOrWrite( "Table 4. Target pattern table specifying sequences and edited loci:", args ) null <- catOrWrite( target_tbl, args, style = "multiline", keep.line.breaks = TRUE ) null <- catOrWrite("", args) # On-target summary table ---- ot_tbl_summary <- eval_data$summary_tbls$ot_tbl_summary %>% dplyr::mutate( specimen = combo_overview$specimen[ match(alt_specimen, combo_overview$alt_specimen) ] ) %>% dplyr::select( "specimen", "annotation", "ot_algns_pct", "ot_pile_pct", "ot_pair_pct", "ot_match_pct" ) names(ot_tbl_summary) <- c( "Specimen", "Annotation", "All\nAlign.", "Align.\nPileups", "Flanking\nPairs", "Target\nMatched" ) null <- catOrWrite( "Table 5. On-target editing percentages based on alignment criteria:", args ) null <- catOrWrite( ot_tbl_summary, args, digits = 4, round = 2, style = "multiline", missing = 0, keep.line.breaks = TRUE ) null <- catOrWrite("", args) # On-target distribution of incorporations ---- on_tar_dists <- eval_data$edit_models$on_tar_dists sites_included <- eval_data$edit_models$sites_included on_tar_dist_summary <- on_tar_dists %>% dplyr::group_by(annotation, target) %>% dplyr::summarise( quant = paste( round(quantile(S4Vectors::Rle(abs(edit.site.dist), cnt)), digits = 0), collapse = ";" ) ) %>% dplyr::ungroup() %>% dplyr::left_join( dplyr::select(sites_included, annotation, target, prop), by = c("annotation", "target") ) %>% dplyr::select(annotation, target, prop, quant) %>% tidyr::separate( quant, paste0(as.character(100*seq(0, 1, 0.25)), "%"), sep = ";" ) %>% dplyr::rename( "Annotation" = annotation, "Target" = target, "Inclusion Pct." = prop ) null <- catOrWrite( "Table 6. On-target incorporation profile, quantile counts given in % columns:", args ) null <- catOrWrite(on_tar_dist_summary, args, style = "multiline", missing = 0) null <- catOrWrite("", args) # On-target editing efficiency ---- ot_eff_summary <- eval_data$summary_tbls$ot_eff_summary %>% dplyr::mutate( specimen = combo_overview$specimen[ match(alt_specimen, combo_overview$alt_specimen) ] ) %>% dplyr::select(specimen, dplyr::everything(), -alt_specimen) names(ot_eff_summary)[c(1,2)] <- c("Specimen", "Annotation") null <- catOrWrite( "Table 7. Estimate of On-target editing efficiency (percent) for each target by specimen.", args ) null <- catOrWrite(ot_eff_summary, args, style = "multiline", missing = "-") null <- catOrWrite("", args) # Off-target summary ---- ft_tbl_summary <- eval_data$summary_tbls$ft_tbl_summary %>% dplyr::mutate( specimen = combo_overview$specimen[ match(alt_specimen, combo_overview$alt_specimen) ] ) %>% dplyr::select( "specimen", "annotation", "ft_algns", "ft_pile", "ft_pair", "ft_match" ) names(ft_tbl_summary) <- c( "Specimen", "Annotation", "All\nAlign.", "Align.\nPileups", "Flanking\nPairs", "Target\nMatched" ) null <- catOrWrite( "Table 8. Off-target loci counts from criteria-based alignments:", args ) null <- catOrWrite( ft_tbl_summary, args, digits = 1, big.mark = ",", missing = 0, keep.line.breaks = TRUE, style = "multiline" ) null <- catOrWrite("", args) # Onco-gene enrichment analysis ---- enrich_df <- eval_data$enrich_data$enrich_df %>% dplyr::select( origin, annotation, total, onco, onco.p.value, onco.power, special, special.p.value, special.power ) %>% dplyr::filter( onco.power >= args$power_filt / 100 | special.power >= args$power_filt / 100 ) names(enrich_df) <- c( "Origin", "Annotation", "Total Gene Count", "Onco Related Count", "Onco Enrich. p-value", "Onco Test Power", "Special Gene Count", "Special Enrich. p-value", "Special Test Power" ) null <- catOrWrite( "Table 9. Off-target gene enrichment:", args ) if( nrow(enrich_df) > 0 ){ names(enrich_df) <- gsub(" ", "\n", names(enrich_df)) enriched_idx <- which(enrich_df <= 0.05, arr.ind = TRUE) enriched_idx <- enriched_idx[enriched_idx[,2] >= 6, , drop = FALSE] enrich_df[,5] <- sprintf("%.3f", round(enrich_df[,5], digits = 3)) enrich_df[,6] <- sprintf("%.3f", round(enrich_df[,6], digits = 3)) enrich_df[,8] <- sprintf("%.3f", round(enrich_df[,8], digits = 3)) enrich_df[,9] <- sprintf("%.3f", round(enrich_df[,9], digits = 3)) null <- catOrWrite( enrich_df, args, digits = 4, style = "multiline", keep.line.breaks = TRUE ) }else if( args$power_filt > 0){ null <- catOrWrite( paste0( " No gene enrichment was observed with at a power ", "greater than or equal to ", args$power_filt, "%." ), args ) }else{ null <- catOrWrite(" No gene enrichment was observed.", args) } null <- catOrWrite("", args) # Off-target sequence analysis ---- nuc_profiles <- eval_data$spec_info$nuclease_profiles ft_seqs_list <- eval_data$ft_data full_target_seqs <- structure( sapply(seq_len(nrow(target_tbl)), function(i){ nuc <- target_tbl$Nuclease[i] sequence <- target_tbl$Sequence[i] ifelse( nuc_profiles[[nuc]]$PAM_Loc == "3p", paste0(sequence, nuc_profiles[[nuc]]$PAM), ifelse( nuc_profiles[[nuc]]$PAM_Loc == "5p", paste0(nuc_profiles[[nuc]]$PAM, sequence), sequence ) ) }), names = target_tbl$`Target Name` ) null <- lapply(seq_along(ft_seqs_list), function(i){ null <- catOrWrite(paste0("Table ", i+9, ". Off-Target Loci:"), args) null <- catOrWrite(paste0(" Annotation : ", names(ft_seqs_list)[i]), args) target_ref_seq <- full_target_seqs[unique(ft_seqs_list[[i]]$target.seq)] null <- dplyr::select( ft_seqs_list[[i]], target, gene_id, edit.site, abund, MESL, aligned.sequence, mismatch ) %>% dplyr::mutate( aligned.sequence = divSeq(aligned.sequence, target_ref_seq) ) %>% dplyr::rename( "Target" = target, "Gene ID" = gene_id, "Edit Site" = edit.site, "Abund." = abund, "Aligned Sequence" = aligned.sequence, "Mismatch" = mismatch ) %>% dplyr::filter(MESL >= args$mesl_filt) %>% catOrWrite(args) null <- catOrWrite("", args) }) q() |
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | args <- commandArgs(trailingOnly = TRUE) if( length(args) > 2 ){ stop("More than genome and output file name supplied.") }else if( length(args) < 2 ){ stop("Please provide inputs as: genome outputfile.") } genome <- args[1] outfile <- args[2] # Conditional checks suppressMessages(library(BSgenome)) genName <- grep(genome, unique(installed.genomes()), value = TRUE) if( length(genName) < 1 ){ stop("No matched BSgenome installed. Please install.") }else if( length(genName) > 1 ){ message("Installed matching genomes:\n") message(paste(genName, collapse = ", ")) stop("Ambiguous match to requested genome. Please specify.") } if( file.exists(outfile) ) stop("Output file already exists.") # Load requested genome suppressMessages(library(genName, character.only = TRUE)) genome <- BiocGenerics::get(genName) # Check outputfile name if( !grepl(".2bit$", outfile) & !grepl(".fasta$", outfile) ){ stop("Specify output format by output file extention: .2bit or .fasta") } if( grepl(".2bit$", outfile) ){ # Write to 2bit output format BSgenome::export(genome, outfile, format = "2bit") }else{ # Write to fasta output format BSgenome::export(genome, outfile, format = "fasta", compress = FALSE) } if( file.exists(outfile) ){ message("Genome ", genName, " written to file.") }else{ message("Check for output file: ", outfile) } q() |
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 | options(stringsAsFactors = FALSE, scipen = 99, width = 120) # Set up and gather command line arguments ---- parser <- argparse::ArgumentParser( description = "Generate an iGUIDE Stat report for core and eval data.", usage = paste( "Rscript generate_stat_report.R <core.stat> <eval.stat> -o <output>", "-c <config> [-h/--help, -v/--version] [optional args]" ) ) parser$add_argument( "-r", "--core", nargs = 1, type = "character", help = paste( "Core stat object generated by iGUIDE run command. Requires csv format." ) ) parser$add_argument( "-e", "--eval", nargs = 1, type = "character", help = paste( "Eval stat object generated by iGUIDE run command. Requires csv format." ) ) parser$add_argument( "-i", "--incorpSites", nargs = 1, type = "character", required = TRUE, help = "Unique sites csv file from project directory." ) parser$add_argument( "-o", "--output", nargs = 1, type = "character", required = TRUE, help = "Output report file, extension not required." ) parser$add_argument( "-c", "--config", nargs = 1, type = "character", required = TRUE, help = "Run specific config file in yaml format." ) parser$add_argument( "-f", "--format", nargs = 1, type = "character", default = "html", help = "Output format for report. Either 'pdf' or 'html' (default)." ) parser$add_argument( "-t", "--template", nargs = 1, type = "character", default = "tools/rscripts/report_templates/iGUIDE_stat_template.Rmd", help = "File path to standard or custom stat report template." ) parser$add_argument( "--iguide_dir", nargs = 1, type = "character", default = "IGUIDE_DIR", help = "iGUIDE install directory path, do not change for normal applications." ) args <- parser$parse_args(commandArgs(trailingOnly = TRUE)) if( !dir.exists(args$iguide_dir) ){ root_dir <- Sys.getenv(args$iguide_dir) }else{ root_dir <- args$iguide_dir } if( !dir.exists(root_dir) ){ stop(paste0("\n Cannot find install path to iGUIDE: ", root_dir, ".\n")) }else{ args$iguide_dir <- root_dir } code_dir <- dirname(sub( pattern = "--file=", replacement = "", x = grep("--file=", commandArgs(trailingOnly = FALSE), value = TRUE) )) # Check input file ---- core_file <- args$core eval_file <- args$eval sites_file <- args$incorpSites if( !file.exists(core_file) | !file.exists(eval_file) | !file.exists(sites_file) ){ stop("\n Cannot find input stat files. Check inputs.") } if( file.exists(args$output) ){ cat("Removing existing output file of the same name: ", args$output, "\n") unlink(args$output) } # Check config input ---- if( !file.exists(args$config) ){ stop("\n Cannot find config file: ", args$config, ".\n") } config <- yaml::yaml.load_file(args$config) # Check config for defaults ---- if( !"UMItags" %in% names(config) ) config$UMItags <- TRUE if( !"Alternate_UMI_Method" %in% names(config) ){ config$Alternate_UMI_Method <- FALSE } # Check for format ---- report_formats <- c("html" = "html_document", "pdf" = "pdf_document") if( !tolower(args$format) %in% names(report_formats) ){ stop( "\n Please input either 'html' or 'pdf' for format.\n", " Other formats not supported." ) } output_format <- report_formats[tolower(args$format)] # Check for template path ---- if( file.exists(file.path(root_dir, args$template)) ){ template_path <- normalizePath(file.path(root_dir, args$template)) }else if( file.exists(file.path(args$template)) ){ template_path <- normalizePath(file.path(args$template)) }else{ stop("\n Cannot find template file: ", args$template, ".\n") } # Load required r-packages ---- packs_loaded <- sapply( c("magrittr", "knitr"), require, character.only = TRUE ) if( !any(packs_loaded) ){ stop( "\n Could not find required r-package: ", paste(names(packs_loaded)[packs_loaded], collapse = ", "), ".\n" ) } # Get versioning ---- soft_version <- as.character(read.delim( file = file.path(root_dir, ".version"), header = FALSE )) build_version <- list.files(file.path(root_dir, "etc")) %>% grep(pattern = "build.b[0-9\\.]+.*", x = ., value = TRUE) %>% stringr::str_extract(pattern = "b[0-9]+\\.[0-9]+\\.[0-9]+") signature <- config[["signature"]] # Load input data ---- core_stat_df <- read.csv(core_file) %>% dplyr::select( -align.unique.reads, -align.unique.algns, -align.unique.loci ) eval_stat_df <- read.csv(eval_file) site_stat_df <- readRDS(sites_file)$reads %>% dplyr::filter(type == "uniq") %>% dplyr::group_by(sampleName) %>% dplyr::summarise( align.unique.reads = dplyr::n_distinct(ID), align.unique.algns = dplyr::n_distinct(seqnames, start, end, strand), align.unique.loci = dplyr::n_distinct( seqnames, strand, ifelse(strand == "+", start, end) ) ) stat_df <- dplyr::full_join(core_stat_df, eval_stat_df, by = "sampleName") %>% dplyr::full_join(site_stat_df, by = "sampleName") %>% dplyr::mutate_all(function(x) ifelse(is.na(x), rep(0, length(x)), x)) sampleName_levels <- unique(stat_df$sampleName) if( any(c("ambiguous_reads", "degenerate_reads", "unassigned_reads") %in% sampleName_levels) ){ sampleNames <- sampleName_levels[ -match( c("ambiguous_reads", "degenerate_reads", "unassigned_reads"), sampleName_levels ) ] }else{ sampleNames <- sampleName_levels } sampleName_levels <- c( sampleNames, "ambiguous_reads", "degenerate_reads", "unassigned_reads" ) # Read attrition table ---- read_tbl <- dplyr::select( stat_df, c( "sampleName", "demulti.reads", "R1.trim.reads", if( config$Alternate_UMI_Method ) "R1.primer.trim.reads", if( !config$Alternate_UMI_Method ) "R2.primer.trim.reads", "R2.trim.reads", if( config$UMItags ) "umitags.reads", "filt.reads", if( tolower(config$Aligner) == "blat" ) "R1.consol.reads", if( tolower(config$Aligner) == "blat" ) "R2.consol.reads", "align.unique.reads", "align.chimera.reads", "align.multihit.reads" )) %>% dplyr::mutate(sampleName = factor(sampleName, levels = sampleName_levels)) %>% dplyr::arrange(sampleName) names(read_tbl) <- stringr::str_replace(names(read_tbl), ".reads$", "") # Alignment outcome table ---- algn_tbl <- dplyr::select( stat_df, sampleName, align.unique.reads, align.unique.algns, align.unique.loci, align.multihit.reads, align.multihit.lengths, align.multihit.clusters, align.chimera.reads ) %>% dplyr::filter(sampleName %in% sampleNames) %>% dplyr::mutate(sampleName = factor(sampleName, levels = sampleNames)) %>% dplyr::arrange(sampleName) names(algn_tbl) <- stringr::str_replace(names(algn_tbl), "align.", "") # Incorporation breakdown table ---- incorp_levels <- c( "eval.total.algns", "eval.combined.algns", "eval.pileup.algns", "eval.paired.algns", "eval.matched.algns", "eval.ontarget.algns", "eval.offtarget.algns" ) incorp_tbl <- stat_df[, names(stat_df) %in% c("sampleName", incorp_levels)] %>% tidyr::gather(key = "metric", value = "counts", -sampleName) %>% dplyr::mutate(metric = factor(metric, levels = incorp_levels)) %>% tidyr::complete(metric) %>% dplyr::mutate(metric = as.character(metric)) %>% tidyr::spread(key = metric, value = counts) %>% dplyr::select( sampleName, eval.total.algns, eval.combined.algns, eval.pileup.algns, eval.paired.algns, eval.matched.algns, eval.ontarget.algns, eval.offtarget.algns ) %>% dplyr::filter(sampleName %in% sampleNames) %>% dplyr::mutate(sampleName = factor(sampleName, levels = sampleNames)) %>% dplyr::arrange(sampleName) names(incorp_tbl) <- stringr::str_replace(names(incorp_tbl), "eval.", "") names(incorp_tbl) <- stringr::str_replace(names(incorp_tbl), ".algns$", "") # Initiate report generation ---- # Normalize file output path write(c(), file = args$output) output_file <- normalizePath(args$output) unlink(output_file) output_path <- unlist(strsplit(output_file, "/")) output_dir <- paste(output_path[seq_len(length(output_path)-1)], collapse = "/") output_file <- output_path[length(output_path)] if( output_format == "html_document" & !stringr::str_detect(output_file, ".html$") ){ output_file <- paste0(output_file, ".html") } if( output_format == "pdf_document" & !stringr::str_detect(output_file, ".pdf$") ){ output_file <- paste0(output_file, ".pdf") } if( output_format == "html_document" ){ css_path <- normalizePath(file.path(code_dir, "report_templates/iguide.css")) rmarkdown::render( input = template_path, output_format = output_format, output_file = output_file, output_dir = output_dir, output_options = list("css" = css_path) ) }else{ rmarkdown::render( input = template_path, output_format = output_format, output_file = output_file, output_dir = output_dir ) } q() |
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 | options(stringsAsFactors = FALSE, scipen = 99, warn = -1) suppressMessages(library("magrittr")) # Set up and gather command line arguments ---- parser <- argparse::ArgumentParser( description = "List samples associated with a config file for iGUIDE.", usage = "iguide list_samples <path/to/config.file> <options>" ) parser$add_argument( "config", nargs = 1, type = "character", help = "Run specific config file in yaml format." ) parser$add_argument( "-o", "--output", nargs = 1, type = "character", default = FALSE, help = "Output file name .csv, .tsv, or .rds format." ) parser$add_argument( "-v", "--verbose", action = "store_true", help = "Turns on diagnositc-based messages." ) parser$add_argument( "--install_path", nargs = 1, type = "character", default = "IGUIDE_DIR", help = "iGUIDE install directory path, do not change for normal applications." ) ## Set arguments with parser args <- parser$parse_args(commandArgs(trailingOnly = TRUE)) root_dir <- Sys.getenv("IGUIDE_DIR") code_dir <- dirname(sub( pattern = "--file=", replacement = "", x = grep("--file=", commandArgs(trailingOnly = FALSE), value = TRUE) )) input_table <- data.frame( "Variables" = paste0(names(args), " :"), "Values" = sapply( seq_along(args), function(i) paste(args[[i]], collapse = ", ") ) ) input_table <- input_table[ match( c("config :", "output :", "verbose :", "install_path :"), input_table$Variables ), ] ## Log inputs if( args$verbose ){ cat("List Sample Inputs\n") print( x = data.frame(input_table), right = FALSE, row.names = FALSE ) } # Load files ---- ## Config if( file.exists(args$config) ){ config <- yaml::yaml.load_file(args$config) }else{ stop("\nCannot find config file: ", args$config, ".\n") } ## Sample Info if( file.exists(config$Sample_Info) ){ sample_info <- data.table::fread(config$Sample_Info, data.table = FALSE) }else if( file.exists(file.path(root_dir, config$Sample_Info)) ){ sample_info <- data.table::fread( input = file.path(root_dir, config$Sample_Info), data.table = FALSE ) }else{ stop("\nCannot find associated Sample Info file: ", configs$Sample_Info, ".\n") } ## Supplemental Info if( config$Supplemental_Info != "." ){ if( file.exists(config$Supplemental_Info) ){ supp_info <- data.table::fread(config$Supplemental_Info) }else if( file.exists(file.path(root_dir, config$Supplemental_Info)) ){ supp_info <- data.table::fread( input = file.path(root_dir, config$Supplemental_Info), data.table = FALSE ) }else{ warning( "Cannot find Supplemental Info file: ", configs$Supplemental_Info, ".\n" ) } } # Join appropriate tables together and / or format for output ---- sample_col <- match(config$Sample_Name_Column, names(sample_info)) if( is.na(sample_col) ){ stop("\nCannot isolate sampleName column: ", config$Sample_Name_Column, ".\n") } names(sample_info)[sample_col] <- "sampleName" sample_info <- sample_info %>% dplyr::mutate( specimen = stringr::str_extract(sample_info$sampleName, "[\\w]+") ) %>% dplyr::group_by(specimen) %>% dplyr::summarise(replicates = n()) %>% dplyr::ungroup() if( exists("supp_info") ){ sample_info <- dplyr::left_join(sample_info, supp_info, by = "specimen") } # Output consolidated information ---- if( args$output != FALSE ){ source(file.path(code_dir, "supporting_scripts/writeOutputFile.R")) writeOutputFile(as.data.frame(sample_info), args$output) }else{ run_name <- stringr::str_extract(args$config, "[\\w]+.config.yml$") %>% stringr::str_extract("[\\w]+") cat(paste0("\nSpecimen Info for : ", run_name, ".")) pander::pandoc.table(sample_info, style = "simple", split.table = Inf) } q() |
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 | options(stringsAsFactors = FALSE, scipen = 99, width = 120) suppressMessages(library("magrittr")) code_dir <- dirname(sub( pattern = "--file=", replacement = "", x = grep("--file=", commandArgs(trailingOnly = FALSE), value = TRUE) )) desc <- yaml::yaml.load_file( file.path(code_dir, "descriptions/samqc.desc.yml") ) # Set up and gather command line arguments parser <- argparse::ArgumentParser( description = desc$program_short_description, usage = "Rscript samqc.R <bam> <bai> [-h/--help, -v/--version] [optional args]" ) parser$add_argument( "bam", nargs = 1, type = "character", help = desc$bam ) parser$add_argument( "bai", nargs = 1, type = "character", help = desc$bai ) parser$add_argument( "-o", "--uniqOutput", nargs = 1, type = "character", required = TRUE, help = desc$uniqOutput ) parser$add_argument( "--condSites", nargs = 1, type = "character", help = desc$condSites ) parser$add_argument( "--chimeras", nargs = 1, type = "character", help = desc$chimeras ) parser$add_argument( "--multihits", nargs = 1, type = "character", help = desc$multihits ) parser$add_argument( "--stat", nargs = 1, type = "character", default = FALSE, help = desc$stat ) parser$add_argument( "-g", "--refGenome", nargs = 1, type = "character", default = "hg38", help = desc$refGenome ) parser$add_argument( "--maxAlignStart", nargs = 1, type = "integer", default = 5L, help = desc$maxAlignStart ) parser$add_argument( "--minPercentIdentity", nargs = 1, type = "integer", default = 95L, help = desc$minPercentIdentity ) parser$add_argument( "--minTempLength", nargs = 1, type = "integer", default = 30L, help = desc$minTempLength ) parser$add_argument( "--maxTempLength", nargs = 1, type = "integer", default = 2500L, help = desc$maxTempLength ) parser$add_argument( "--keepAltChr", action = "store_true", help = desc$keepAltChr ) parser$add_argument( "--batches", nargs = 1, type = "integer", default = 25L, help = paste( "A tuning parameter to batch process the alignments, specifies how many", "batches to do. Default: 500." ) ) parser$add_argument( "--readNamePattern", nargs = 1, type = "character", default = "[\\w\\:\\-\\+]+", help = desc$readNamePattern ) parser$add_argument( "--saveImage", nargs = 1, type = "character", help = desc$saveImage ) args <- parser$parse_args(commandArgs(trailingOnly = TRUE)) # Print Inputs to terminal input_table <- data.frame( "Variables" = paste0(names(args), " :"), "Values" = sapply(seq_along(args), function(i){ paste(args[[i]], collapse = ", ") }) ) input_table <- input_table[ match( c("bam :", "bai :", "uniqOutput :", "condSites :", "chimeras :", "multihits :", "stat :", "refGenome :", "maxAlignStart :", "minPercentIdentity :", "minTempLength :", "maxTempLength :", "keepAltChr :", "readNamePattern :" ), input_table$Variables ), ] cat("\nSAM QC Inputs:\n") print( data.frame(input_table), right = FALSE, row.names = FALSE ) # Load supporting scripts source(file.path(code_dir, "supporting_scripts", "printHead.R")) source(file.path(code_dir, "supporting_scripts", "condenseSites.R")) source(file.path(code_dir, "supporting_scripts", "writeOutputFile.R")) if( !all(c("printHead", "condenseSites", "writeOutputFile") %in% ls()) ){ stop( "\n Cannot load supporting scripts. ", "You may need to clone from github again.\n" ) } # Load reference genome if( grepl(".fa", args$refGenome) ){ if( !file.exists(args$refGenome) ){ stop("\n Specified reference genome file not found.\n") } ref_file_type <- ifelse(grepl(".fastq", args$refGenome), "fastq", "fasta") ref_genome <- Biostrings::readDNAStringSet( args$refGenome, format = ref_file_type ) }else{ genome <- grep( args$refGenome, unique(BSgenome::installed.genomes()), value = TRUE ) if( length(genome) == 0 ){ cat("\nInstalled genomes include:\n") print(paste(unique(BSgenome::installed.genomes()), collapse = "\n")) stop("\n Selected reference '", args$refGenome, "'genome not in list.\n") }else if( length(genome) > 1 ){ cat("\nInstalled genomes include:\n") print(paste(unique(BSgenome::installed.genomes(), collapse = "\n"))) stop( "\n Please be more specific about reference genome. ", "Multiple matches to input.\n" ) } suppressMessages(library(genome, character.only = TRUE)) ref_genome <- get(genome) } ## Determine an associated sample name sampleName <- unlist(strsplit(args$uniqOutput, "/")) sampleName <- unlist( strsplit(sampleName[length(sampleName)], ".", fixed = TRUE) )[1] ## Set up stat object if( args$stat != FALSE ){ stat <- data.frame( sampleName = vector("character"), metric = vector("character"), count = vector("character") ) } # Additional functions ---- #' Load sorted BAM file into a data.frame #' @param bam path to sorted BAM file (*.bam). #' @param bai path to BAM index file (*.bai). #' @param params character vector indicating the fields to import. Refer to #' SAMtools or BWA manual for field names. #' @param tags character vector indicating the additional tags to import. Again, #' refer to the SAMtools or BWA manual for tag names. loadBAM <- function(bam, bai, params, tags, onlyPairMapped = TRUE){ algn <- unlist(Rsamtools::scanBam( file = bam, index = bai, param = Rsamtools::ScanBamParam( flag = Rsamtools::scanBamFlag( isPaired = ifelse(onlyPairMapped, TRUE, NA), isUnmappedQuery = ifelse(onlyPairMapped, FALSE, NA), hasUnmappedMate = ifelse(onlyPairMapped, FALSE, NA) ), what = params, tag = tags ) ), recursive = FALSE ) df <- as.data.frame(algn[seq_along(params)]) for(t in tags){ df[,t] <- algn$tag[[t]] } df } #' Calculate the global percent identity for alignments from cigar and MD tags #' @param cigar character vector of cigar strings. #' @param MD character vector of MDz tags. #' @description Both input parameters must be the same length of vectors and #' indexed accordingly. Function calculates the global percent identity of the #' alignment. calcPctID <- function(cigar, MD){ # Must have same length to calc pct ID stopifnot( length(cigar) == length(MD) ) data.frame("cig" = cigar, "md" = MD, stringsAsFactors = FALSE) %>% dplyr::mutate( mismatch = rowSums(matrix( stringr::str_extract_all(md, "[ATGC]", simplify = TRUE) %in% c("A", "T", "G", "C"), nrow = n()), na.rm = TRUE ), match = rowSums(matrix(as.numeric(gsub( "M", "",stringr::str_extract_all(cig, "[0-9]+M", simplify = TRUE) )), nrow = n()), na.rm = TRUE ) - mismatch, length = rowSums(matrix(as.numeric(gsub( "[HSMIDX=]", "", stringr::str_extract_all( cig, "[0-9]+[HSMIDX=]", simplify = TRUE ) )), nrow = n()), na.rm = TRUE ), pctID = round(100 * (match / length), digits = 1) ) %>% .$pctID } #' Count clipped bases at start or end of aligments from cigar strings #' @param cigar character string with cigar information #' @param type character indicating hard ("H", "h"), soft ("S", "s"), or both #' ("both", default) clipping to be counted. #' @param end character indicating the 5-prime ("5p", default) or 3-prime ("3p") #' end of the alignment. cntClipped <- function(cigar, type = "both", end = "5p"){ # Format inputs type <- tolower(type) end <- tolower(end) # Check inputs stopifnot( type %in% c("both", "h", "s") ) stopifnot( end %in% c("5p", "3p") ) # Assign query if( type == "both" ){ query_pat <- "[0-9]+[HS]" }else if( type == "h" ){ query_pat <- "[0-9]+[H]" }else{ query_pat <- "[0-9]+[S]" } # Assign end if( end == "5p" ){ query_pat <- paste0("^", query_pat) }else{ query_pat <- paste0(query_pat, "$") } # Capture all patterns and return integer of clipped bases rowSums(matrix(as.numeric( gsub("[HS]", "", stringr::str_extract_all( cigar, query_pat, simplify = TRUE )) ), nrow = length(cigar) ), na.rm = TRUE ) } #' Process alignment data to valid paired-end alignments representing the input #' template DNA. #' @param id character vector indicating grouping of alignments. #' @param chr character vector of seqnames. If using reference genome, these #' will need to match seqnames present in the reference object passed to #' `refGen`. #' @param strand character vector of strand or alignment orientation, must be #' either "+" or "-". #' @param pos numeric or integer vector indicating the "start" of the alignment. #' @param width numeric or integer vector indicating the width of the alignment. #' @param type character vector indicating type of alignment #' ("anchor" or "adrift"). #' @param maxLen numeric or integer value indicating the minimum distance #' between the two alignments that should be considered. #' @param maxLen numeric or integer value indicating the maximum distance #' between the two alignments that should be considered. #' @param refGen BSgenome object or other object with GenomeInfoDb::seqinfo. #' This method is currently depreciated for the latter method. .processAlignments <- function(id, chr, strand, pos, width, type, minLen = 30L, maxLen = 2500L, refGen = NULL){ # Check inputs inputs <- list( "grp" = id, "chr" = chr, "strand" = strand, "pos" = pos, "width" = width, "type" = type ) stopifnot( length(unique(sapply(inputs, length))) == 1 ) # All same length # Combine into data.frame and build GenomicRanges input_df <- as.data.frame(inputs) %>% dplyr::mutate( grp = as.character(grp), start = pos, end = pos + width - 1, type = as.character(type), strand = as.character(strand), posid = paste0(type, ":", chr, strand, ifelse(strand == "+", start, end)) ) %>% dplyr::select(grp, chr, strand, start, end, type, posid) input_gr <- GenomicRanges::GRanges( seqnames = as.character(input_df$chr), ranges = IRanges::IRanges( start = as.numeric(input_df$start), end = as.numeric(input_df$end) ), strand = as.character(input_df$strand), seqinfo = if(!is.null(refGen)){ GenomeInfoDb::seqinfo(refGen) }else{ NULL }, grp = as.character(input_df$grp), type = as.character(input_df$type), posid = as.character(input_df$posid) ) # Find overlaps within maxLen for anchors and adrift grl <- GenomicRanges::split( GenomicRanges::flank(input_gr, width = -1, start = TRUE), input_gr$type ) # Flip strand of adrift hits to enforce opposite strand requirement GenomicRanges::strand(grl$adrift) <- ifelse( GenomicRanges::strand(grl$adrift) == "+", "-", "+" ) # Reduce to unique locations to minimize work red_list <- lapply( grl, GenomicRanges::reduce, min.gapwidth = 0L, with.revmap = TRUE ) # ID all anchor-to-adrift alignment pairs ovlp_hits <- GenomicRanges::findOverlaps( red_list$anchor, red_list$adrift, maxgap = maxLen ) # Gather data for each type anchor_df <- as.data.frame(red_list$anchor) %>% dplyr::mutate( seqnames = as.character(seqnames), strand = as.character(strand), type = "anchor", anchorid = seq_len(n()), posid = paste0("anchor:", seqnames, strand, start) ) adrift_df <- as.data.frame( red_list$adrift[S4Vectors::subjectHits(ovlp_hits)] ) %>% dplyr::mutate( seqnames = as.character(seqnames), strand = as.character(strand), type = "adrift", anchorid = S4Vectors::queryHits(ovlp_hits), posid = paste0( "adrift:", seqnames, ifelse(strand == "+", "-", "+"), start ) ) # Combine hits to form valid paired-end alignments combo_df <- dplyr::bind_rows(anchor_df, adrift_df) %>% dplyr::group_by(anchorid) %>% dplyr::mutate( anchor.dist = start[type == "anchor"] - start, anchor.upstream = ifelse( type == "adrift", ifelse(strand == "+", anchor.dist < 0, anchor.dist > 0), TRUE ), right.size = ifelse( type == "adrift", abs(anchor.dist) >= minLen & abs(anchor.dist) <= maxLen, TRUE ) ) %>% dplyr::filter(anchor.upstream & right.size) %>% dplyr::ungroup() cond_df <- combo_df %>% dplyr::group_by(anchorid) %>% dplyr::mutate( anchor.posid = posid[type == "anchor"], adrift.posid = posid, start = ifelse(strand == "+", start - abs(anchor.dist), start), end = ifelse(strand == "+", end, end + abs(anchor.dist)) ) %>% dplyr::filter(type == "adrift") %>% dplyr::ungroup() adrift_revmap <- cond_df$revmap cond_df[rep(seq_len(nrow(cond_df)), lengths(adrift_revmap)),] %>% dplyr::mutate( grp = grl$adrift$grp[BiocGenerics::unlist(adrift_revmap)] ) %>% dplyr::filter( paste0(grp, ":", anchor.posid) %in% paste0(input_df$grp, ":", input_df$posid) ) %>% dplyr::mutate(grp = factor(grp, levels = unique(id))) %>% dplyr::arrange(grp) %>% dplyr::mutate(grp = as.character(grp)) %>% dplyr::select("id" = grp, "chr" = seqnames, strand, start, end) } #' Process alignment data to valid paired-end alignments representing the input #' template DNA. #' @param id character vector indicating grouping of alignments. #' @param chr character vector of seqnames. If using reference genome, these #' will need to match seqnames present in the reference object passed to #' `refGen`. #' @param strand character vector of strand or alignment orientation, must be #' either "+" or "-". #' @param pos numeric or integer vector indicating the "start" of the alignment. #' @param width numeric or integer vector indicating the width of the alignment. #' @param type character vector indicating type of alignment #' ("anchor" or "adrift"). #' @param maxLen numeric or integer value indicating the minimum distance #' between the two alignments that should be considered. #' @param maxLen numeric or integer value indicating the maximum distance #' between the two alignments that should be considered. #' @param refGen BSgenome object or other object with GenomeInfoDb::seqinfo. #' @param batches integer indicating the number of batches to serialize the #' data processing with. The number of reads analyzed within a batch will be #' the number of unique `id`'s divided by the `batches`. processAlignments <- function(id, chr, strand, pos, width, type, minLen = 30L, maxLen = 2500L, refGen = NULL, batches = 25L){ # Check inputs inputs <- list( "grp" = id, "chr" = chr, "strand" = strand, "pos" = pos, "width" = width, "type" = type ) stopifnot( length(unique(sapply(inputs, length))) == 1 ) # All same length # Combine into data.frame and build GenomicRanges input_df <- as.data.frame(inputs) %>% dplyr::mutate( grp = as.character(grp), start = pos, end = pos + width - 1, type = as.character(type), strand = as.character(strand), pos = ifelse(strand == "+", start, end) ) %>% dplyr::select(grp, chr, strand, pos, type) idx_list <- IRanges::IntegerList(split(seq_len(nrow(input_df)), input_df$grp)) anchor_idx_list <- idx_list[ IRanges::LogicalList(split(input_df$type == "anchor", input_df$grp)) ] adrift_idx_list <- idx_list[ IRanges::LogicalList(split(input_df$type == "adrift", input_df$grp)) ] batch_list <- split( seq_along(idx_list), ceiling(seq_along(idx_list) / (length(idx_list) / batches)) ) dplyr::bind_rows(lapply(seq_along(batch_list), function(i){ print(i) idxs <- batch_list[[i]] # Identify which reads to analyze x <- names(idx_list)[idxs] # Pull in all anchors associated with reads anchor_aligns <- input_df[unlist(anchor_idx_list[x]),] # Pull in all adrift alignments associated with reads adrift_aligns <- input_df[unlist(adrift_idx_list[x]),] %>% dplyr::select(grp, "chr.d" = chr, "strand.d" = strand, "pos.d" = pos) anc_idx <- IRanges::IntegerList( split(seq_len(nrow(anchor_aligns)), anchor_aligns$grp) ) adr_idx <- IRanges::IntegerList( split(seq_len(nrow(adrift_aligns)), adrift_aligns$grp) ) exp_anc_idxs <- unlist(lapply( seq_along(anc_idx), function(i) rep(anc_idx[[i]], each = length(adr_idx[[i]])) )) adrift_aligns[ unlist(unname(adr_idx[rep(names(anc_idx), lengths(anc_idx))])), ] %>% dplyr::mutate( chr.n = anchor_aligns$chr[exp_anc_idxs], strand.n = anchor_aligns$strand[exp_anc_idxs], pos.n = anchor_aligns$pos[exp_anc_idxs] ) %>% dplyr::filter( # Filter for opposite strands strand.n != strand.d, # Filter for correct size window ifelse(strand.n == "+", pos.d - pos.n, pos.n - pos.d) >= minLen, ifelse(strand.n == "+", pos.d - pos.n, pos.n - pos.d) <= maxLen, # Filter for same chromosome chr.n == chr.d ) %>% dplyr::mutate( start = ifelse(strand.n == "+", pos.n, pos.d), end = ifelse(strand.n == "+", pos.d, pos.n) ) %>% dplyr::select( "id" = grp, "chr" = chr.n, "strand" = strand.n, start, end ) })) } #' Determine if pair of reads are mapped #' @param flag numeric or integer vector of flag codes indicating mapping #' status. This integer will be converted into binary bits and decoded to #' determine if the flag indicates paired mapping. #' @description Given flag integer codes, this function returns a logical to #' indicate if the pair of reads are both mapped. If one or both reads are #' unmapped, then the return is "FALSE". pair_is_mapped <- function(flag){ #Check if input is in correct format. stopifnot( all(is.numeric(flag) | is.integer(flag)) ) # Switch flag codes to binary bit matrix x <- matrix(as.integer(intToBits(flag)), ncol = 32, byrow = TRUE) # Flag codes designate 3rd and 4th bits to indicate unmapped read or mate # As long as both are zero, then the pair of reads are both mapped rowSums(x[,c(3,4)]) == 0 } #' Determine the alignment is for the read or mate #' @param flag numeric or integer vector of flag codes indicating mapping #' status. This integer will be converted into binary bits and decoded to #' determine if the flag indicates read or mate maping. #' @param output character vector of length 2, indicating the output designation #' for if the alignment is for the read or the mate. #' @description Given flag integer codes, this function returns a logical or #' character vector to indicate if the alignment is for the read or mate read_or_mate <- function(flag, output = NULL){ #Check if input is in correct format. stopifnot( all(is.numeric(flag) | is.integer(flag)) ) # Switch flag codes to binary bit matrix x <- matrix(as.integer(intToBits(flag)), ncol = 32, byrow = TRUE) # Flag codes designate 7th bit to indicate 1st read (read) and the 8th for mate # As long as both are zero, then the pair of reads are both mapped if( is.null(output) ){ return(x[,c(7)] == 1) }else{ return(ifelse(x[,c(7)] == 1, output[1], output[2])) } } # Additional parameters ---- # BAM parameters to get from file bam_params <- c( "qname", "flag", "rname", "strand", "pos", "qwidth", "mapq", "cigar" ) # BAM Tags to get from files bam_tags <- c("MD") # Import read alignments and filter on input criteria ---- input_hits <- loadBAM( bam = args$bam, bai = args$bai, params = bam_params, tags = bam_tags ) # Top of inputs from alignments printHead( input_hits, title = "Head of input alignments", caption = sprintf( "%1$s total alignments from %2$s reads.", nrow(input_hits), length(unique(input_hits$qname)) ) ) # Stop if there are no remaining alignments if( nrow(input_hits) == 0 ){ cat("\nNo alignments in input bam file.\n") writeNullOutput(args) q() } ## Initial quality filtering: min percent ID, minimum size, max align start ---- read_hits <- input_hits %>% dplyr::mutate( pairMapped = pair_is_mapped(flag), type = read_or_mate(flag, c("anchor", "adrift")) ) %>% dplyr::filter(pairMapped) %>% dplyr::mutate( clip5p = cntClipped(cigar), pctID = calcPctID(cigar, MD) ) %>% dplyr::filter( pctID >= args$minPercentIdentity, qwidth >= args$minTempLength, clip5p <= args$maxAlignStart ) read_wo_pairs_after_init_filter <- read_hits %>% dplyr::group_by(qname) %>% dplyr::summarise( anchors = sum(type == "anchor"), adrifts = sum(type == "adrift") ) %>% dplyr::filter(anchors == 0 | adrifts == 0) %>% dplyr::pull(qname) read_hits <- dplyr::filter( read_hits, !qname %in% read_wo_pairs_after_init_filter ) # Stop if there are no remaining alignments if( nrow(read_hits) == 0 | dplyr::n_distinct(read_hits$type) == 1 ){ cat( "\nNo valid alignments were found within the data given input criteria.\n" ) writeNullOutput(args) q() } ## Additional quality filtering: orientation structure, min and max size ---- all_valid_aligns <- with( read_hits, processAlignments( qname, rname, strand, pos, qwidth, type, refGen = ref_genome, batches = args$batches ) ) %>% dplyr::mutate( lociPairKey = paste0( as.integer(factor( paste0(chr, strand, ifelse(strand == "+", start, end)) )), ":", as.integer(factor( paste0(chr, strand, ifelse(strand == "+", end, start)) )) ), readPairKey = as.integer(factor(id)) ) ## Remove alternative sequence alignments if requested during input ---- if( !args$keepAltChr ){ all_valid_aligns <- dplyr::filter( all_valid_aligns, !stringr::str_detect(chr, stringr::fixed("_")) ) } ### Print out top of valid alignments printHead( all_valid_aligns, title = "Head of valid alignments", caption = sprintf( "%1$s valid alignments from %2$s reads.", nrow(all_valid_aligns), length(unique(all_valid_aligns$id)) ) ) # Stop if there are no remaining alignments if( nrow(all_valid_aligns) == 0 ){ cat("\nNo valid alignments were found after QC filtering.\n") writeNullOutput(args) q() } ## Group alignments into unique and multihit alignments ---- uniq_aligns <- all_valid_aligns %>% dplyr::group_by(id) %>% dplyr::filter(n() == 1) %>% dplyr::ungroup() multihits <- all_valid_aligns %>% dplyr::group_by(id) %>% dplyr::filter(n() > 1) %>% dplyr::ungroup() ## Recover any reads not captured in the two groups above ---- failed_reads <- input_hits %>% dplyr::filter( !qname %in% c(unique(uniq_aligns$id), unique(multihits$id)) ) # Log allocated read counts cat( "\nReads associated with types of alignments:\n", " unique alignments : ", format(length(unique(uniq_aligns$id)), big.mark = ","), "\n", " multihit alignments: ", format(length(unique(multihits$id)), big.mark = ","), "\n", " chimera artifacts : ", format(length(unique(failed_reads$qname)), big.mark = ","), "\n" ) # Bin reads that would map to different loci on the same read (chimeras) # All unique and multihit templates are mapped successfully to # genomic loci, yet some templates are sequenced but do not make it through # the selection criteria. These templates either do not have alignments to the # reference genome (anchor or adrift did not align) or map to two distant # genomic loci. The latter are termed chimeras and are considered to be # artifacts of PCR amplification. if( !is.null(args$chimeras) ){ if( args$stat != FALSE ){ add_stat <- data.frame( sampleName = sampleName, metric = "chimera.reads", count = length(unique(failed_reads$qname)) ) stat <- rbind(stat, add_stat) } chimeraData <- list( "failed_reads" = failed_reads ) writeOutputFile(chimeraData, file = args$chimeras, format = "rds") } ## Write unique (and condensed) output and record stats ---- uniq_sites <- uniq_aligns %>% dplyr::mutate( width = as.integer(end - start + 1), sampleName = sampleName ) %>% dplyr::select( "seqnames" = chr, start, end, width, strand, lociPairKey, readPairKey, sampleName, "ID" = id ) %>% GenomicRanges::makeGRangesFromDataFrame( keep.extra.columns = TRUE, seqinfo = GenomeInfoDb::seqinfo(ref_genome) ) writeOutputFile(uniq_sites, file = args$uniqOutput) ### Print out head of uniq_sites for reference. printHead( uniq_sites, title = "Head of uniquely mapped genomic loci", caption = sprintf( paste( "Alignments yeilded %1$s unique anchor sites from %2$s", "properly-paired and aligned reads." ), length(GenomicRanges::reduce( GenomicRanges::flank(uniq_sites, -1, start = TRUE), min.gapwidth = 0L )), length(uniq_sites) ) ) if( args$stat != FALSE ){ add_stat <- data.frame( sampleName = sampleName, metric = c("unique.reads", "unique.algns", "unique.loci"), count = c( length(unique(uniq_sites$ID)), length(unique(uniq_sites)), length(GenomicRanges::reduce( x = GenomicRanges::flank(uniq_sites, width = -1, start = TRUE), min.gapwidth = 0L )) ) ) stat <- rbind(stat, add_stat) } ## Generate condensed sites ---- if( !is.null(args$condSites) ){ cond_sites <- condenseSites( uniq_sites, keep.cols = "sampleName", list.bp.counts = TRUE ) writeOutputFile(cond_sites, file = args$condSites) printHead( cond_sites, title = "Head of unique anchor sites", caption = sprintf( paste( "There were %1$s unique anchor sites identified with a total", "of %2$s unique template lengths and %3$s read counts." ), length(cond_sites), sum(cond_sites$fragLengths), sum(cond_sites$counts) ) ) } ## Write multihits output and record stats ---- if( !is.null(args$multihits) ){ unclustered_multihits <- GenomicRanges::GRanges() clustered_multihit_positions <- GenomicRanges::GRangesList() clustered_multihit_lengths <- list() if( nrow(multihits) > 0 ){ #' As the loci are expanded from the coupled_loci object, unique templates #' and readPairKeys are present in the readPairKeys unlisted from the #' paired_loci object. multihit_templates <- multihits %>% dplyr::mutate( width = end - start + 1, sampleName = sampleName ) %>% dplyr::select( "seqnames" = chr, start, end, width, strand, lociPairKey, readPairKey, "ID" = id, sampleName ) %>% GenomicRanges::makeGRangesFromDataFrame( keep.extra.columns = TRUE, seqinfo = GenomeInfoDb::seqinfo(ref_genome) ) multihit_keys <- multihits %>% dplyr::mutate(sampleName = sampleName) %>% dplyr::distinct(sampleName, "ID" = id, readPairKey) %>% dplyr::select(sampleName, ID, readPairKey) #' Medians are based on all the potential sites for a given read, which will #' be identical for all reads associated with a readPairKey. multihit_medians <- round( median(GenomicRanges::width(split( x = multihit_templates, f = multihit_templates$readPairKey ))) ) multihit_keys$medians <- multihit_medians[ as.character(multihit_keys$readPairKey) ] multihits_pos <- GenomicRanges::flank( x = multihit_templates, width = -1, start = TRUE ) multihits_red <- GenomicRanges::reduce( x = multihits_pos, min.gapwidth = 5L, with.revmap = TRUE ) #! Should make min.gapwidth a option revmap <- multihits_red$revmap axil_nodes <- as.character(S4Vectors::Rle( values = multihit_templates$readPairKey[min(revmap)], lengths = lengths(revmap) )) nodes <- multihit_templates$readPairKey[unlist(revmap)] edgelist <- unique(matrix( c(axil_nodes, nodes), ncol = 2 )) multihits_cluster_data <- igraph::clusters( igraph::graph.edgelist(el = edgelist, directed = FALSE) ) clus_key <- data.frame( row.names = unique(as.character(t(edgelist))), "clusID" = multihits_cluster_data$membership ) multihits_pos$clusID <- clus_key[ as.character(multihits_pos$readPairKey), "clusID" ] multihits_pos <- multihits_pos[order(multihits_pos$clusID)] clustered_multihit_index <- as.data.frame( GenomicRanges::mcols(multihits_pos) ) multihit_loci_rle <- S4Vectors::Rle(factor( x = clustered_multihit_index$lociPairKey, levels = unique(clustered_multihit_index$lociPairKey) )) multihit_loci_intL <- split( multihit_loci_rle, clustered_multihit_index$clusID ) clustered_multihit_positions <- GenomicRanges::granges( x = multihits_pos[ match( x = BiocGenerics::unlist(S4Vectors::runValue(multihit_loci_intL)), table = clustered_multihit_index$lociPairKey ) ] ) clustered_multihit_positions <- GenomicRanges::split( x = clustered_multihit_positions, f = S4Vectors::Rle( values = seq_along(multihit_loci_intL), lengths = S4Vectors::width(S4Vectors::runValue( multihit_loci_intL )@partitioning) ) ) readPairKey_cluster_index <- unique( clustered_multihit_index[,c("readPairKey", "clusID")] ) multihit_keys$clusID <- readPairKey_cluster_index$clusID[ match( as.character(multihit_keys$readPairKey), readPairKey_cluster_index$readPairKey ) ] multihit_keys <- multihit_keys[order(multihit_keys$medians),] clustered_multihit_lengths <- split( x = S4Vectors::Rle(multihit_keys$medians), f = multihit_keys$clusID ) #' Expand the multihit_templates object from readPairKey specific to read #' specific. multihit_keys <- multihit_keys[order(multihit_keys$readPairKey),] multihit_readPair_read_exp <- IRanges::IntegerList( split(x = seq_len(nrow(multihit_keys)), f = multihit_keys$readPairKey) ) unclustered_multihits <- multihit_templates multihit_readPair_read_exp <- multihit_readPair_read_exp[ as.character(unclustered_multihits$readPairKey) ] unclustered_multihits <- unclustered_multihits[S4Vectors::Rle( values = seq_along(unclustered_multihits), lengths = S4Vectors::width(multihit_readPair_read_exp@partitioning) )] names(unclustered_multihits) <- multihit_keys$ID[ BiocGenerics::unlist(multihit_readPair_read_exp) ] unclustered_multihits$ID <- multihit_keys$ID[ BiocGenerics::unlist(multihit_readPair_read_exp) ] unclustered_multihits$sampleName <- multihit_keys$sampleName[ BiocGenerics::unlist(multihit_readPair_read_exp) ] } stopifnot( length(clustered_multihit_positions) == length(clustered_multihit_lengths) ) multihitData <- list( unclustered_multihits, clustered_multihit_positions, clustered_multihit_lengths ) names(multihitData) <- c( "unclustered_multihits", "clustered_multihit_positions", "clustered_multihit_lengths" ) writeOutputFile(multihitData, file = args$multihits, format = "rds") printHead( data.frame( "multihit_reads" = length(unique(names(unclustered_multihits))), "multihit_alignments" = length(unique(unclustered_multihits)), "multihit_clusters" = length(clustered_multihit_positions), "multihit_lengths" = sum(lengths(clustered_multihit_lengths)) ), title = "Multihit metrics", caption = "Metrics highlighting the observation of multiple aligning reads." ) if( args$stat != FALSE ){ add_stat <- data.frame( sampleName = sampleName, metric = c("multihit.reads", "multihit.lengths", "multihit.clusters"), count = c( length(unique(names(unclustered_multihits))), sum(lengths(clustered_multihit_lengths)), length(clustered_multihit_positions)) ) stat <- rbind(stat, add_stat) } } if( args$stat != FALSE ){ write.table( x = stat, file = args$stat, sep = ",", row.names = FALSE, col.names = FALSE, quote = FALSE ) } if( !is.null(args$saveImage) ) save.image(args$saveImage) q() |
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 | options(stringsAsFactors = FALSE, scipen = 99, width = 999) code_dir <- dirname(sub( pattern = "--file=", replacement = "", x = grep("--file=", commandArgs(trailingOnly = FALSE), value = TRUE) )) desc <- yaml::yaml.load_file( file.path(code_dir, "descriptions/trim.desc.yml") ) #' Set up and gather command line arguments parser <- argparse::ArgumentParser( description = desc$program_short_description, usage = "Rscript trim.R <seqFile> [-h/--help, -v/--version] [optional args]" ) parser$add_argument( "seqFile", nargs = 1, type = "character", help = desc$seqFile ) parser$add_argument( "-o", "--output", nargs = 1, type = "character", help = desc$output ) parser$add_argument( "-l", "--leadTrimSeq", nargs = 1, type = "character", default = ".", help = desc$leadTrimSeq ) parser$add_argument( "-r", "--overTrimSeq", nargs = 1, type = "character", default = ".", help = desc$overTrimSeq ) parser$add_argument( "--phasing", nargs = 1, type = "integer", default = 0, help = desc$phasing ) parser$add_argument( "--maxMismatch", nargs = 1, type = "integer", help = desc$maxMismatch ) parser$add_argument( "--leadMismatch", nargs = "+", type = "integer", default = 0, help = desc$leadMismatch ) parser$add_argument( "--overMismatch", nargs = 1, type = "integer", default = 0, help = desc$overMismatch ) parser$add_argument( "--overMaxLength", nargs = 1, type = "integer", default = 20, help = desc$overMaxLength ) parser$add_argument( "--overMinLength", nargs = 1, type = "integer", default = 3, help = desc$overMinLength ) parser$add_argument( "--minSeqLength", nargs = 1, type = "integer", default = 30, help = desc$minSeqLength ) parser$add_argument( "--collectRandomIDs", nargs = "+", type = "character", default = FALSE, help = desc$collectRandomIDs ) parser$add_argument( "--badQualBases", nargs = 1, type = "integer", default = 5, help = desc$badQualBases ) parser$add_argument( "--qualSlidingWindow", nargs = 1, type = "integer", default = 10, help = desc$qualSlidingWindow ) parser$add_argument( "--qualThreshold", nargs = 1, type = "character", default = '?', help = desc$qualThreshold ) parser$add_argument( "--stat", nargs = 1, type = "character", default = FALSE, help = desc$stat ) parser$add_argument( "-c", "--cores", nargs = 1, default = 1, type = "integer", help = desc$cores ) parser$add_argument( "--compress", action = "store_true", help = desc$compress ) parser$add_argument( "--noFiltering", action = "store_true", help = desc$noFiltering ) parser$add_argument( "--noQualTrimming", action = "store_true", help = desc$noQualTrimming ) args <- parser$parse_args(commandArgs(trailingOnly = TRUE)) if( is.null(args$seqFile) ){ stop("\n Please choose a sequence file (fasta or fastq).\n") } if( !is.null(args$maxMismatch) ){ args$leadMismatch <- args$maxMismatch args$overMismatch <- args$maxMismatch } if( args$overMaxLength == 0 ){ args$overMaxLength <- nchar(args$overTrimSeq) } if( all(args$collectRandomIDs != FALSE) ){ if( !grepl("N", args$leadTrimSeq) ){ cat( "\n No random nucleotides (Ns) found in leadTrimSeq.", "Turning off collection of randomIDs.\n" ) args$collectRandomIDs <- FALSE } } if( args$leadTrimSeq == "." ){ args$leadTrimSeq <- "" } if( args$overTrimSeq == "." ){ args$overTrimSeq <- "" } if( args$cores <= 0 ){ args$cores <- 1 } input_table <- data.frame( "Variables" = paste0(names(args), " :"), "Values" = sapply( seq_along(args), function(i) paste(args[[i]], collapse = ", ") ) ) input_table <- input_table[ match( c("seqFile :", "output :", "leadTrimSeq :", "overTrimSeq :", "phasing :", "maxMismatch :", "leadMismatch :", "overMismatch :", "overMaxLength :", "overMinLength :", "minSeqLength :", "collectRandomIDs :", "noFiltering :", "noQualTrimming :", "badQualBases :", "qualSlidingWindow :", "qualThreshold :", "stat :", "compress :", "cores :"), input_table$Variables) ,] cat("\nTrim Inputs:\n") print( data.frame(input_table, row.names = NULL), right = FALSE, row.names = FALSE ) # Reduce number of requested cores if needed. if( args$cores > 1 ){ if( args$cores > parallel::detectCores() ){ cat( "\n Requested cores is greater than availible for system.", "Changing cores to max allowed." ) args$cores <- detectCores() } } # Load supporting scripts source(file.path(code_dir, "supporting_scripts", "trimLeading.R")) source(file.path(code_dir, "supporting_scripts", "trimOverreading.R")) source(file.path(code_dir, "supporting_scripts", "writeSeqFiles.R")) source(file.path(code_dir, "supporting_scripts", "utility_funcs.R")) if( !all( c("trimLeading", "trimOverreading", "writeSeqFiles", "logSeqData", "serialAppendS4") %in% ls() )){ stop( "\n Cannot load supporting scripts. ", "You may need to clone from github again.\n" ) } # Determine sequence file types seq_type <- seqFileType(args$seqFile) out_type <- seqFileType(args$output) # Determine random output file type if( all(args$collectRandomIDs != FALSE) ){ random_type <- seqFileType(args$collectRandomIDs) } # Read sequence file if( seq_type == "fasta" ){ seqs <- ShortRead::readFasta(args$seqFile) }else{ seqs <- ShortRead::readFastq(args$seqFile) } # Log info input_tbl <- logSeqData(seqs) cat("\nInput sequence information:\n") print(input_tbl, row.names = FALSE) # If no reads remaining, terminate and write output if( length(seqs) == 0 ){ cat( "\n No reads remaining to trim. Terminating script after writing output.\n" ) writeNullFile( file = args$output, write.random = args$collectRandomIDs, stat = args$stat, compress = args$compress ) q() } # Quality trimming, trim from left to remove consecutive bad quality bases. ## Below block sets the OpenMP threads to the cores specified in args. if( !args$noQualTrimming & seq_type == "fastq" ){ nthreads <- .Call(ShortRead:::.set_omp_threads, as.integer(args$cores)) on.exit(.Call(ShortRead:::.set_omp_threads, nthreads)) seqs <- ShortRead::trimTailw( object = seqs, k = args$badQualBases, a = args$qualThreshold, halfwidth = round(args$qualSlidingWindow/2) ) # Log info qual_trimmed_tbl <- logSeqData(seqs) cat("\nSequence information remaining after quality trimming:\n") print(qual_trimmed_tbl, row.names = FALSE) } # If no reads remaining, terminate and write output if( length(seqs) == 0 ){ cat( "\n No reads remaining to trim. Terminating script after writing output.\n" ) writeNullFile( file = args$output, write.random = args$collectRandomIDs, stat = args$stat, compress = args$compress ) q() } # Remove sequences that do not contain enough sequence information seqs <- seqs[ Biostrings::width(seqs) >= ( args$minSeqLength + nchar(args$leadTrimSeq) + args$phasing ) ] len_trimmed_tbl <- logSeqData(seqs) cat("\nSequence information remaining after minimum length trimming:\n") print(len_trimmed_tbl, row.names = FALSE) # Trim sequences, either on a single core or multiple cores if( args$cores <= 1 ){ # Trim 5' end or leading end. Conditionals present for added features. if( nchar(args$leadTrimSeq) > 0 ){ trimmed_seqs <- trimLeading( seqs, trim.sequence = args$leadTrimSeq, phasing = args$phasing, max.mismatch = args$leadMismatch, collect.random = all(args$collectRandomIDs != FALSE), filter = !args$noFiltering ) }else{ trimmed_seqs <- seqs } # Collect random sequences if desired. if( all(args$collectRandomIDs != FALSE) ){ random_seqs <- trimmed_seqs$randomSequences trimmed_seqs <- trimmed_seqs$trimmedSequences } # Log info lead_trimmed_tbl <- logSeqData(trimmed_seqs) cat("\nSequence information remaining after lead trimming:\n") print(lead_trimmed_tbl, row.names = FALSE) # Overread trimming if( nchar(args$overTrimSeq) > 0 ){ # Determine percent identity from allowable mismatch. percent_id <- (nchar(args$overTrimSeq) - args$overMismatch) / nchar(args$overTrimSeq) # Trim 3' end or overreading protion of sequences. trimmed_seqs <- trimOverreading( seqs = trimmed_seqs, trim.sequence = args$overTrimSeq, percent.id = percent_id, max.seq.length = args$overMaxLength, min.seq.length = args$overMinLength ) # Log info over_trimmed_tbl <- logSeqData(trimmed_seqs) cat("\nSequence information remaining after overreading trimming:\n") print(over_trimmed_tbl, row.names = FALSE) } }else{ # Split sequences up evenly across cores for trimming split.seqs <- split( seqs, ceiling(seq_along(seqs)/(length(seqs)/args$cores)) ) # Set up buster the cluster buster <- parallel::makeCluster(args$cores) # Trim 5' end or leading section of sequence while capturing random sequences, # if desired. Added features required workflow changes. if( nchar(args$leadTrimSeq) > 0 ){ trimmed_seqs <- parallel::parLapply( buster, split.seqs, trimLeading, trim.sequence = args$leadTrimSeq, phasing = args$phasing, max.mismatch = args$leadMismatch, collect.random = all(args$collectRandomIDs != FALSE), filter = !args$noFiltering ) if( all(args$collectRandomIDs != FALSE) ){ random_seqs <- lapply(trimmed_seqs, "[[", "randomSequences") random_seqs <- lapply(seq_along(random_seqs[[1]]), function(i){ serialAppendS4( lapply(seq_along(random_seqs), function(j){ random_seqs[[j]][[i]] }) ) }) trimmed_seqs <- lapply(trimmed_seqs, "[[", "trimmedSequences") } }else{ trimmed_seqs <- split.seqs } trimmed_seqs <- serialAppendS4(trimmed_seqs) # Log info lead_trimmed_tbl <- logSeqData(trimmed_seqs) cat("\nSequence information remaining after lead trimming:\n") print(lead_trimmed_tbl, row.names = FALSE) # The method for overread trimming sequentially aligns shorter fragments of # the overTrimSeq, and solely requiring mismatches could lead to some issues. # Therefore the same percent identity is requried across all alignments, # however long. if( nchar(args$overTrimSeq) > 0 ){ trimmed_seqs <- split( x = trimmed_seqs, f = ceiling(seq_along(trimmed_seqs)/(length(trimmed_seqs)/args$cores)) ) percent_id <- (nchar(args$overTrimSeq) - args$overMismatch) / nchar(args$overTrimSeq) # Trim 3' end or overreading protion of the sequence. trimmed_seqs <- parallel::parLapply( buster, trimmed_seqs, trimOverreading, trim.sequence = args$overTrimSeq, percent.id = percent_id, max.seq.length = args$overMaxLength, min.seq.length = args$overMinLength ) trimmed_seqs <- serialAppendS4(trimmed_seqs) # Log info over_trimmed_tbl <- logSeqData(trimmed_seqs) cat("\nSequence information remaining after overreading trimming:\n") print(over_trimmed_tbl, row.names = FALSE) } # Stop buster before he gets out of control. parallel::stopCluster(buster) } # If no reads remaining, terminate and write output if( length(seqs) == 0 ){ cat( "\n No reads remaining to trim. Terminating script after writing output.\n" ) writeNullFile( file = args$output, write.random = args$collectRandomIDs, stat = args$stat, compress = args$compress ) q() } # Second check for sequences below minimum length trimmed_seqs <- trimmed_seqs[ Biostrings::width(trimmed_seqs) >= args$minSeqLength ] # Recover filtered reads if requested if( args$noFiltering ){ if( seq_type == "fasta" ){ inputSeqs <- ShortRead::readFasta(args$seqFile) }else{ inputSeqs <- ShortRead::readFastq(args$seqFile) } matched_idx <- which(id(inputSeqs) %in% id(trimmed_seqs)) unmatched_idx <- which(!id(inputSeqs) %in% id(trimmed_seqs)) untrimmed_seqs <- inputSeqs[unmatched_idx] output_seqs <- Biostrings::append(trimmed_seqs, untrimmed_seqs) output_seqs <- output_seqs[order(c(matched_idx, unmatched_idx))] }else{ output_seqs <- trimmed_seqs } # Log info final_trimmed_tbl <- logSeqData(output_seqs) cat("\nSequence information remaining:\n") print(final_trimmed_tbl, row.names = FALSE) # Write stats if requested if( args$stat != FALSE ){ sample_name <- unlist(strsplit(args$output, "/")) sample_name <- unlist( strsplit(sample_name[length(sample_name)], ".fa", fixed = TRUE) )[1] write.table( data.frame( sampleName = sample_name, metric = "reads", count = length(output_seqs) ), file = args$stat, sep = ",", row.names = FALSE, col.names = FALSE, quote = FALSE ) } # Collect RandomIDs if requested if( all(args$collectRandomIDs != FALSE) ){ random_seqs <- lapply( seq_along(random_seqs), function(i, ids){ random_seqs[[i]][ which(as.character(ShortRead::id(random_seqs[[i]])) %in% ids) ] }, ids = as.character(ShortRead::id(trimmed_seqs)) ) } # Sequences have been trimmed and random sequnces collected (if desired). # Next step is to write to output file(s). # For fasta format, this is as simple as writing out the sequences currently in # the environment. For fastq format, the quality scores for the trimmed bases # must be loaded and trimmed as well. # Write sequence file. writeSeqFiles( seqs = output_seqs, file = args$output, compress = args$compress ) # Write randomID file. if( all(args$collectRandomIDs != FALSE) ){ if( length(args$collectRandomIDs) != length(random_seqs) ){ new_file_name <- unlist(strsplit(args$collectRandomIDs[[1]], ".fa")) new_names <- paste0( new_file_name[[1]], ".", 1:length(random_seqs), ".", random_type ) args$collectRandomIDs <- new_names } null <- mapply( writeSeqFiles, seqs = random_seqs, file = args$collectRandomIDs, MoreArgs = list(compress = args$compress) ) } cat("\nScript completed.\n") q() |
Support
- Future updates
Related Workflows





