Integrated Mapping and Profiling of Allelically-expressed Loci with Annotations
Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output, operation, topic
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .

Integrated Mapping and Profiling of Allelically-expressed Loci with Annotations
This Snakemake workflow calls allele-specific expression genes using short-read RNA-seq. Phasing information derived from long-read data by tools such as WhatsHap can be provided to increase the performance of the tool, and to link results to features of interest. Copy number variant data, allelic methylation data and somatic variant data can also be provided to analyze genes with allele specific expression.
Table of Contents
Overall Workflow

Installation
This will clone the repository. You can run the IMPALA within this directory.
git clone https://github.com/bcgsc/IMPALA.git
Dependencies
To run this workflow, you must have snakemake (v6.12.3) and singularity (v3.5.2-1.1.el7). You can install snakemake using this guide and singularity using this guide . The remaining dependencies will be downloaded automatically within the snakemake workflow.
Input Files
Method 1
†: RNA reads:
- RNA paired end reads (R1 & R2 fastq file)
Method 2
§: RNA alignment:
-
RNA alignment alignment (bam file)
-
Expression Matrix
-
Expression in RPKM/TPM
-
Gene name must be in HGNC format
-
Column name is "Gene" and sample names
-
Optional Inputs:
-
Phase VCF
-
Can be obtained using WhatsHap with DNA long reads
-
Significantly improves precision of ASE calling
-
Adds TFBS mutation and stop gain/loss information
-
-
Copy Number Variant Data
- Can be optained using ploidetect
-
Allelic Methylation
- Can be optained using NanoMethPhase
-
Somatic mutations
- Finds somatic mutations in ASE gene and promoters
-
Tumor Content
-
Used to calcualte the expected major allele frequency
-
Assumes 1.0 if not specified
-
-
Tissue type
-
Include data for average MAF in normal tissue in summary table
-
Otained from GTex database which ran phASER to calcualte allelic expression
-
Running Workflow
Edit the config files
Example parameters.yaml:
Config files to specify parameters and paths needed for the workflow. The main parameter to include is the genome name, path to expression matrix, major allele frequency threshold and threads as well as settings for using phased vcf and doing cancer analysis.
# genome_name should match bams
genome_name: hg38/hg19/hg38_no_alt_TCGA_HTMCP_HPVs
# RPKM matrix of the samples
matrix: /path/to/expression/matrix.tsv
# Major allele frequency threshold for ASE (0.5 - 0.75)
maf_threshold: 0.65
# Threads for STAR, RSEM, Strelka and MBASED
threads: 72
# Use phased vcf (True or False)
# Uses pseudphasing algorithm if False
phased: True
# Perform cancer analysis
# Intersect with optional input
cancer_analysis: True
# Paths for annotation
annotationPath:
snpEff_config:
/path/to/snpEff/config
snpEff_datadir:
/path/to/snpEff/binaries/data
snpEff_genomeName:
GRCh38.100
snpEff_javaHeap:
64g
# Paths for references
# Only needed if RNA read is provided instead of RNA bam
starReferencePath:
/path/to/star/ref
rsemReferencePath:
/path/to/rsem/ref
Example samples.yaml:
Main config file to specify input files. For input method 1 using R1 and R2 fastq file, use
R1
and
R2
tag. For input method 2 using RNA bam file, use
rna
tag. All other tags are optional.
samples: # Sample Name must match expression matrix sampleName_1: # Method 1 R1: /path/to/RNA/R1.fq R2: /path/to/RNA/R2.fq somatic_snv: /path/to/somatic/snv.vcf somatic_indel: /path/to/somatic/indel.vcf tissueType: Lung sampleName_2: # Method 2 rna: /path/to/RNA/alignment.bam phase: /path/to/phase.vcf.gz cnv: /path/to/cnv/data methyl: /path/to/methyl/data.bed tumorContent: 0.80
Example defaults.yaml:
Config file for specify path for reference genome, annotation bed file and centromere bed file. Annotation and centromere bed file for hg38 are included in the repository.
genome:
hg19:
/path/to/hg19/ref.fa
hg38:
/path/to/hg38/ref.fa
hg38_no_alt_TCGA_HTMCP_HPVs:
/path/to/hg38_no_alt_TCGA_HTMCP_HPVs/ref.fa
annotation:
hg19:
/path/to/hg19/annotation.fa
hg38:
annotation/biomart_ensembl100_GRCh38.sorted.bed
hg38_no_alt_TCGA_HTMCP_HPVs:
annotation/biomart_ensembl100_GRCh38.sorted.bed
centromere:
hg19:
/path/to/hg19/centromere.bed
hg38:
annotation/hg38_centromere_positions.bed
hg38_no_alt_TCGA_HTMCP_HPVs:
annotation/hg38_centromere_positions.bed
Run snakemake
This is the command to run it with singularity. The
-c
parameter can be used to specify maximum number of threads. The
-B
parameter is used to speceify paths for the docker container to bind.
snakemake -c 30 --use-singularity --singularity-args "-B /projects,/home,/gsc"
Output Files
All output and intermediary files is found in
output/{sample}
directory. The workflow has four main section, alignment, variant calling, mbased and cancer analysis and their outputs can be found in the corrosponding directories. The key outputs from the workflow is located below
-
MBASED related outputs (found in
output/{sample}/mbased
)-
The tabular results of the output
MBASED_expr_gene_results.txt
-
The rds object of the MBASED raw output
MBASEDresults.rds
-
-
Summary table of all outputs
-
Found in
output/{sample}/summaryTable.tsv
-
Data of all phased genes with ASE information along potential causes based on optional inputs
-
-
Figures
-
Found in
output/{sample}/figures
-
Example figure shown below
-
Summary Table Description
Column | Description |
---|---|
gene | HGNC gene symbol |
Expression | Expression level |
allele1IsMajor | T/F if allele 1 is the major allele (allele 1 = HP1) |
majorAlleleFrequency | Major allele frequency |
padj | Benjamini-Hochberg adjusted pvalue |
aseResults | ASE result based on MAF threshold (and pval) |
cnv.A1 | Copy Number for allele 1 |
cnv.B1 | Copy Number for allele 2 |
expectedMAF1 | Expect Major Allele Frequency based on CNV |
cnv_state1 | Allelic CNV state (Loss of Heterozygosity, Allelic balance/imbalabnce) |
methyl_state2 | Methylation difference in promter region (Allele 1 - Allele 2) |
tf_allele3 | Allele where there is gain of transcription factor binding site |
transcriptionFactor3 | Transcription Factor for gain TFBS |
stop_variant_allele3 | Allele where stop gain/stop loss variant is found |
somaticSNV4 | Somatic SNV found in (or around) gene (T/F) |
somaticIndel4 | Somatic Indel found in (or around) gene (T/F) |
normalMAF5 | Add MAF for gene in normal tissue |
cancer_gene |
T/F if gene is a known cancer gene (based on
annotation/cancer_gene.txt
)
|
sample | Sample Name |
Columns only included if optional input is included:
1 Copy number variant 2 Allelic methylation 3 Phased vcf 4 Somatic SNV and Indel 5 Tissue type
Example Figures
Several figures are automatically generate based on the optional inputs. They can be found in
output/{sample}/figures
. The main figure is
karyogram.pdf
which show co-locationzation of ASE genes with allelic methylation and somatic copy number alteration. Example figures can be found
here
.
Contributors
The contributors of this project are Glenn Chang, Vannessa Porter, and Kieran O'Neill.
License
IMPALA
is licensed under the terms of the
GNU GPL v3
.
Code Snippets
66 67 68 69 70 71 72 73 74 75 76 77 78 | shell: """ date >> {output} 2> {log} printf "{wildcards.sample}\n------------------------\n\n" >> {output} 2> {log} echo {params.sample_info}| sed 's/{{//' | sed 's/}}//' | tr , '\n' >> {output} 2> {log} echo expression_matrix: {params.expressionMatrix} >> {output} 2> {log} printf "\n------------------------\n" >> {output} 2> {log} echo Major Allele Frequency Threshold: {params.maf} >> {output} 2> {log} echo Genome: {params.genome_name} >> {output} 2> {log} echo Phased: {params.phase} >> {output} 2> {log} echo Cancer analysis: {params.cancer} >> {output} 2> {log} echo Threads: {params.threads} >> {output} 2> {log} """ |
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 | shell: """ mkdir -p output/{wildcards.sample}/0_alignment STAR \ --genomeDir {params.ref} \ --runThreadN {threads} \ --readFilesIn {input.r1} {input.r2} \ --outFileNamePrefix output/{wildcards.sample}/0_alignment/star \ --outSAMtype BAM SortedByCoordinate \ --outSAMunmapped Within \ --outSAMattributes Standard \ --waspOutputMode SAMtag \ --varVCFfile {input.vcf} \ --quantMode TranscriptomeSAM \ --twopassMode Basic \ --twopass1readsN -1 &> {log} """ |
121 122 123 124 125 | shell: """ samtools view -h {input} | grep -e '^@' -e 'vW:i:1' | samtools view -b -S > {output} 2> {log} samtools index {output} &> {log} """ |
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 | shell: """ mkdir -p output/{wildcards.sample}/0_alignment STAR \ --genomeDir {params.ref} \ --runThreadN {threads} \ --readFilesIn {input.r1} {input.r2} \ --outFileNamePrefix output/{wildcards.sample}/0_alignment/star \ --outSAMtype BAM SortedByCoordinate \ --outSAMunmapped Within \ --outSAMattributes Standard \ --quantMode TranscriptomeSAM \ --twopassMode Basic \ --twopass1readsN -1 &> {log} """ |
166 167 168 169 170 171 172 173 174 175 | shell: """ rsem-calculate-expression \ --alignments \ -p {threads} \ --paired-end \ {input} \ {params.ref} \ output/{wildcards.sample}/0_alignment/star &> {log} """ |
184 185 186 187 188 189 190 191 | shell: """ Rscript src/generateExpressionMatrix.R \ -i {input} \ -o output/{wildcards.sample}/0_alignment \ -a {params.annotation} \ -s {wildcards.sample} &> {log} """ |
203 204 205 206 207 | shell: """ mkdir -p output/{wildcards.sample}/1_variant zcat {input.phase} | grep -E '(PASS|#)' | grep -E '(0/1|\||#)' | awk '/^#/||length($4)==1 && length($5)==1' | bgzip > {output} 2> {log} """ |
217 218 | shell: "tabix {input.vcf} &> {log}" |
237 238 239 240 241 242 243 244 245 246 247 | shell: """ configureStrelkaGermlineWorkflow.py \ --bam={input.bam} \ --referenceFasta={input.ref} \ --forcedGT={input.vcf} \ --rna \ --runDir=output/{wildcards.sample}/StrelkaRNA &> {log} output/{wildcards.sample}/StrelkaRNA/runWorkflow.py -m local -j {threads} &> {log} """ |
258 259 260 261 262 263 264 265 266 | shell: """ configureStrelkaGermlineWorkflow.py \ --bam={input.bam} \ --referenceFasta={input.ref} \ --rna \ --runDir=output/{wildcards.sample}/StrelkaRNA &> {log} output/{wildcards.sample}/StrelkaRNA/runWorkflow.py -m local -j {threads} &> {log} """ |
275 276 | shell: "zcat {input.vcf} | grep -E '(PASS|#)' | bgzip > {output} 2> {log} && rm -rf output/{wildcards.sample}/StrelkaRNA/" |
285 286 | shell: "tabix {input.vcf} &> {log}" |
301 302 303 304 305 306 | shell: """ bcftools isec {input.vcf2} {input.vcf1} -p output/{wildcards.sample}/isec -n =2 -w 1 &> {log} mv output/{wildcards.sample}/isec/0000.vcf {output} rm -rf output/{wildcards.sample}/isec """ |
313 | shell: "bgzip {input} &> {log}" |
334 335 336 337 338 339 340 341 342 | shell: """ snpEff -Xmx{params.heapSize} \ -v {params.genome} \ -c {params.snpEff_config} \ -dataDir {params.snpEff_datadir} \ -noStats \ {input} > {output} 2> {log} """ |
352 353 354 355 356 357 358 | shell: """ SnpSift -Xmx{params.heapSize} filter "( exists ANN[0].GENE )" {input} > {output.geneFilter} 2> {log} SnpSift -Xmx{params.heapSize} extractFields {output.geneFilter} \ CHROM POS GEN[0].AD REF ALT ANN[0].GENE ANN[0].BIOTYPE > {output.tsv} 2> {log} """ |
374 375 376 377 378 379 380 381 | shell: """ Rscript src/mbased.snpEff.R \ --threads={threads} \ --phase={input.phase} \ --rna={input.tsv} \ --outdir=output/{wildcards.sample}/2_mBASED &> {log} """ |
391 392 393 394 395 396 397 | shell: """ Rscript src/mbased.snpEff.R \ --threads={threads} \ --rna={input.tsv} \ --outdir=output/{wildcards.sample}/2_mBASED &> {log} """ |
409 410 411 412 413 414 415 416 417 418 | shell: """ Rscript src/addExpression.R \ --mbased={input.rds} \ --sample={wildcards.sample} \ --rpkm={input.rpkm} \ --min=1 \ --maf_threshold={params.maf} \ --outdir=output/{wildcards.sample}/2_mBASED &> {log} """ |
431 432 433 434 435 436 437 438 439 440 441 442 | shell: """ mkdir -p output/{wildcards.sample}/figures Rscript src/figures.R \ --mbased={input.txt} \ --rpkm={input.rpkm} \ --gene={input.bed} \ --sample={wildcards.sample} \ --maf_threshold={params.maf} \ --outdir=output/{wildcards.sample}/figures &> {log} """ |
458 459 460 461 462 463 464 465 | shell: """ mkdir -p output/{wildcards.sample}/3_cancer/raw cat {input} | cut -f1 > {output.gene} 2> {log} awk 'NR == FNR {{ keywords[$1]=1; next; }} {{ if ($4 in keywords) print; }}' {output.gene} {params.annotation} | \ cut -f 1,2,3,4 | uniq > {output.bed} 2> {log} """ |
472 473 474 475 | shell: """ cut -f 1,2 {input} > {output} 2> {log} """ |
486 487 488 489 | shell: """ bedtools flank -l 2000 -r 500 -i {input.gene} -g {input.length} > {output} 2> {log} """ |
499 500 501 502 503 504 505 | shell: """ Rscript src/cnv_preprocess.R \ --cnv={input} \ --tumorContent={params.tumor} \ --outdir=output/{wildcards.sample}/3_cancer/raw &> {log} """ |
514 515 516 517 518 | shell: """ mkdir -p output/{wildcards.sample}/3_cancer/intersect bedtools intersect -loj -a {input.gene} -b {input.cnv} | awk '$10 != "." {{print $0}}' > {output} 2> {log} """ |
530 531 532 533 534 535 | shell: """ Rscript src/methyl_preprocess.R \ --methyl={input} \ --outdir=output/{wildcards.sample}/3_cancer/raw &> {log} """ |
545 546 547 548 549 | shell: """ mkdir -p output/{wildcards.sample}/3_cancer/intersect bedtools intersect -loj -a {input.gene} -b {input.methyl} | awk '$10 != "." {{print $0}}' > {output} 2> {log} """ |
563 564 565 566 567 568 | shell: """ mkdir -p output/{wildcards.sample}/3_cancer/tfbs awk 'BEGIN {{print "sequence_id\tgene"}}; {{print $1 ":" $2 "-" $3 "\t" $4}}' {input} > {output.id2gene} 2> {log} cut -f1 {output.id2gene} | tail -n +2 > {output.id} """ |
578 579 | shell: "samtools faidx -r {input} {params.ref} > {output} 2> {log}" |
589 590 591 592 | shell: """ cat {input.ref_promoter} | bcftools consensus {input.phase_vcf} -H {wildcards.num}pIu > {output} 2> {log} """ |
601 602 603 604 | shell: """ fimo --text {params.motifFile} {input} > {output} 2> {log} """ |
616 617 618 619 620 621 622 623 624 625 626 627 | shell: """ Rscript src/compareTFBS.R \ --allele1={input.a1} \ --allele2={input.a2} \ --expression_matrix={input.expression_matrix} \ --id2gene={input.id2gene} \ --tf={params.tf_list} \ --min=10 \ --outdir=output/{wildcards.sample}/3_cancer/tfbs \ --sample={wildcards.sample} 2> {log} """ |
643 644 645 646 647 648 649 650 651 652 653 654 | shell: """ mkdir -p output/{wildcards.sample}/3_cancer/stopVar snpEff -Xmx{params.heapSize} \ -v {params.genome} \ -c {params.snpEff_config} \ -dataDir {params.snpEff_datadir} \ -noStats \ {input} > {output} 2> {log} """ |
660 661 662 663 | shell: """ cat {input} | src/vcfEffOnePerLine.pl > {output} 2> {log} """ |
672 673 674 675 676 677 | shell: """ SnpSift -Xmx{params.heapSize} \ extractFields {input} \ ANN[0].GENE ANN[0].EFFECT GEN[0].GT FILTER > {output} 2> {log} """ |
684 685 686 687 688 689 | shell: """ Rscript src/stopVariant.R \ --annotation={input} \ --outdir=output/{wildcards.sample}/3_cancer/stopVar &> {log} """ |
703 704 705 706 707 | shell: """ mkdir -p output/{wildcards.sample}/3_cancer/somatic bedtools slop -l 5000 -r 1000 -i {input.gene} -g {input.length} > {output} 2> {log} """ |
717 718 719 720 | shell: """ bedtools intersect -a {input.genes} -b {input.variants} > {output} 2> {log} """ |
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 | shell: """ Rscript src/summaryTable.R \ --cnv={input.cnv} \ --methyl={input.methyl} \ --tfbs={input.tfbs} \ --stop={input.stopVar} \ --snv={input.snv} \ --indel={input.indel} \ --ase={input.ase} \ --sample={wildcards.sample} \ --cancer={params.cancer} \ --tissue={params.tissue} \ --tumorContent={params.tumorContent} \ --normal={params.normal} \ --outdir=output/{wildcards.sample} 2> {log} """ |
772 773 774 775 776 777 778 779 780 | shell: """ mkdir -p output/{wildcards.sample}/figures/tables Rscript src/cancerFigures.R \ --summary={input} \ --outdir=output/{wildcards.sample}/figures \ --sample={wildcards.sample} &> {log} """ |
797 798 799 800 801 802 803 804 805 806 807 | shell: """ Rscript src/karyogramFigure.R \ --chromSize={input.chromSize} \ --centPos={input.centromere} \ --cna={input.cnv} \ --dmr={input.dmr} \ --ase={input.ase} \ --genes={input.annotation} \ --out=output/{wildcards.sample}/figures/karyogram &> {log} """ |
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 | suppressMessages(library(optparse)) suppressMessages(library(dplyr)) ## --------------------------------------------------------------------------- ## OPTIONS ## --------------------------------------------------------------------------- # Make help options option_list = list( make_option(c("-b", "--mbased"), type="character", default=NULL, help="mbased rds file", metavar="character"), make_option(c("-s", "--sample"), type="character", default = NULL, help="Sample name from the RPKM matrix (HTMCP written like e.g. HTMCP.03.06.02109)", metavar="character"), make_option(c("-r", "--rpkm"), type="character", default = NULL, help="RPKM matrix", metavar="character"), make_option(c("-m", "--min"), type="numeric", default = 1, help="Minimum RPKM value", metavar="numeric"), make_option(c("-t", "--maf_threshold"), type="numeric", default = 0.60, help="Threshold for MAF to consider as ASE", metavar="numeric"), make_option(c("-o", "--outdir"), type="character", default = "mBASED", help="Output directory name", metavar="character") ) ## --------------------------------------------------------------------------- ## VARIABLES ## --------------------------------------------------------------------------- opt_parser <- OptionParser(option_list=option_list) opt <- parse_args(opt_parser) out <- opt$outdir sample <- opt$sample rpkm <- read.delim(opt$rpkm, header = T, stringsAsFactors = F) results <- readRDS(opt$mbased) min <- opt$min maf_threshold <- opt$maf_threshold ## --------------------------------------------------------------------------- ## VARIABLES ## --------------------------------------------------------------------------- print("Adding expression") # fix sample name sample <- ifelse(length(grep("-", sample)) == 0, sample, gsub("-", ".", sample)) # select the RPKM of this sample rpkm_sample <- rpkm[,c("gene", sample)] # expressed genes in the sample results$geneOutput$RPKM <- rpkm_sample[match(results$geneOutput$gene, gsub(" ", "", rpkm_sample$gene, fixed = TRUE)), 2] results_filt <- results$geneOutput[results$geneOutput$RPKM > min, ] # filter for genes that have an RPKM calculated results_filt <- results_filt[!is.na(results_filt$RPKM),] # MAF filter results_filt$MAF <- as.factor(ifelse(results_filt$majorAlleleFrequency > maf_threshold, paste0("MAF > ", maf_threshold), paste0("MAF < ", maf_threshold))) results_filt$aseResults <- as.factor(ifelse(results_filt$majorAlleleFrequency > maf_threshold & results_filt$padj < 0.05, "ASE", "BAE")) # rearrange columns to a logical order results_filt <- results_filt[,c("gene", "geneBiotype", "RPKM", "allele1IsMajor","majorAlleleFrequency", "pValueASE", "pValueHeterogeneity", "padj", "significance", "MAF", "aseResults")] # save the data frame as a table write.table(results_filt, paste0(out, "/MBASED_expr_gene_results.txt"), quote = F, col.names = T, row.names = F, sep = "\t") |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 | suppressMessages(library(tidyverse)) suppressMessages(library(optparse)) suppressMessages(library("ggsci")) # Make help options option_list = list( make_option(c("-s", "--summary"), type="character", default=NULL, help="Summary Table file", metavar="character"), make_option(c("-o", "--outdir"), type="character", default = NULL, help="Output directory name", metavar="character"), make_option(c("-a", "--sample"), type="character", default = NULL, help="Sample name", metavar="character") ) # load in options opt_parser <- OptionParser(option_list=option_list) opt <- parse_args(opt_parser) out <- opt$outdir sample <- opt$sample summary_path <- opt$summary summary_table <- read.delim(summary_path, header = T, stringsAsFactors = F, sep = "\t") column <- colnames(summary_table) ############ #CNV Figures ############ if ("cnv_state" %in% column) { print("Creating CNV figure...") cnvBar <- summary_table %>% dplyr::filter(!is.na(cnv_state)) %>% dplyr::filter(padj <= 0.05) %>% ggplot(aes(cnv_state)) + geom_bar(aes(fill = aseResults), position = "dodge") + ggtitle(paste0("Gene frequency in each copy number variant state"), subtitle = sample) + ylab("Gene Count") + xlab("Copy number variant state") + theme_bw() + scale_color_npg() + scale_fill_npg() + theme(axis.line = element_line(colour = "black"), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.border = element_blank(), panel.background = element_blank()) ggsave(filename = paste0(out, "/cnvBar.pdf"), plot = cnvBar, units = "in") expectMAF <- summary_table %>% dplyr::filter(!is.na(cnv_state)) %>% dplyr::filter(padj <= 0.05) %>% dplyr::mutate(cnvRatioDiff = majorAlleleFrequency - expectedMAF) %>% ggplot(aes(cnvRatioDiff, padj)) + geom_point(aes(colour = cnv_state)) + geom_vline(xintercept = 0.10) + geom_hline(yintercept = 0.05) + xlab("MAF - Expectd MAF from CNV") + ylab("Adjusted pvalue") + ggtitle(paste0("Copy Number Variants adjusted for expected MAF"), subtitle = sample) + theme_bw() + scale_fill_npg() + scale_color_npg() + theme(axis.line = element_line(colour = "black"), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.border = element_blank(), panel.background = element_blank()) ggsave(filename = paste0(out, "/expectMAF.pdf"), plot = expectMAF, units = "in") #### TEST CORRELATION PLOT #### correlationPlot <- summary_table %>% dplyr::filter(cnv_state == "imbalance") %>% dplyr::filter(padj <= 0.05) %>% dplyr::filter(!is.na(cnv_state)) %>% dplyr::mutate(rawExpectedMAF = pmax(cnv.A, cnv.B)/(cnv.A + cnv.B)) %>% ggplot(aes(majorAlleleFrequency, rawExpectedMAF)) + geom_point(aes(color = aseResults), alpha = 0.5) + geom_smooth(method = "lm", se = FALSE) + ylab("CNV expected MAF") + xlab("MBASED Major Allele Frequency") + ggtitle("Correlation between CNV expected MAF and \nMBASED MAF for CNV Imbalanced genes", subtitle = sample) + theme_bw() + scale_fill_npg() + scale_color_npg() + theme(axis.line = element_line(colour = "black"), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.border = element_blank(), panel.background = element_blank()) ggsave(filename = paste0(out, "/cnvMAFcorrlation.pdf"), plot = correlationPlot, units = "in") } ############## # DMR Figures ############## if ("methyl_state" %in% column) { print("Creating DMR figures...") if ("cnv_state" %in% column) { dmr <- summary_table %>% dplyr::filter(!is.na(methyl_state)) %>% dplyr::filter(cnv_state == "balance") %>% dplyr::filter(aseResults == "ASE") %>% dplyr::mutate(methylation = case_when( methyl_state < 0 ~ "allele2Methyl", TRUE ~ "allele1Methyl" )) %>% dplyr::mutate(expression = case_when( allele1IsMajor ~ "alelle1Expression", TRUE ~ "alelle2Expression" )) %>% dplyr::select(methylation, expression) %>% group_by(methylation, expression) %>% summarize(n=n()) } else { dmr <- summary_table %>% dplyr::filter(!is.na(methyl_state)) %>% dplyr::filter(aseResults == "ASE") %>% dplyr::mutate(methylation = case_when( methyl_state < 0 ~ "allele2Methyl", TRUE ~ "allele1Methyl" )) %>% dplyr::mutate(expression = case_when( allele1IsMajor ~ "alelle1Expression", TRUE ~ "alelle2Expression" )) %>% dplyr::select(methylation, expression) %>% group_by(methylation, expression) %>% summarize(n=n()) } dmr_contigency <- ggplot(data = dmr, mapping = aes(x = methylation, y = expression)) + geom_tile(aes(fill = n), colour = "white") + geom_text(aes(label = sprintf("%1.0f", n)), vjust = 1, colour = "white") + scale_fill_gradient(low = "blue", high = "red") + ggtitle("Allelic Methylation and Expression Contigency Table", subtitle = sample) + theme_bw() + theme(legend.position = "none", panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.border = element_blank(), axis.ticks.x = element_blank(), axis.ticks.y = element_blank(), axis.title.x=element_blank(), axis.title.y=element_blank()) ggsave(filename = paste0(out, "/dmrContingency.pdf"), plot = dmr_contigency, units = "in") dmr %>% dplyr::mutate(sample = sample) %>% write.table(file = paste0(out, "/tables/dmrContingency.tsv"), quote = F, sep = "\t", row.names = T, col.names = T) } ############## # Stop Var Figures ############## if ("stop_variant_allele" %in% column) { print("Creating Stop gain/loss figures...") stop <- summary_table %>% dplyr::select(gene, allele1IsMajor, aseResults, stop_variant_allele) %>% dplyr::filter(!is.na(stop_variant_allele)) %>% dplyr::filter(aseResults == "ASE") %>% dplyr::mutate(expression = case_when( allele1IsMajor ~ "alelle1Expression", TRUE ~ "alelle2Expression" )) %>% dplyr::mutate(stop = case_when( stop_variant_allele == 1 ~ "alelle1StopVar", TRUE ~ "alelle2StopVar" )) %>% group_by(expression, stop) %>% summarize(n=n()) stop %>% dplyr::mutate(sample = sample) %>% write.table(file = paste0(out, "/tables/stopVarContingency.tsv"), quote = F, sep = "\t", row.names = T, col.names = T) stopContingency <- ggplot(data = stop, mapping = aes(x = stop, y = expression)) + geom_tile(aes(fill = n), colour = "white") + geom_text(aes(label = sprintf("%1.0f", n)), vjust = 1, colour = "white") + scale_fill_gradient(low = "blue", high = "red") + theme_bw() + ggtitle("ASE vs Stop gain/loss contingency table", subtitle = sample) + theme(legend.position = "none", panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.border = element_blank(), axis.ticks.x = element_blank(), axis.ticks.y = element_blank(), axis.title.x=element_blank(), axis.title.y=element_blank()) ggsave(filename = paste0(out, "/stopVarContingency.pdf"), plot = stopContingency, units = "in") stopVarTable <- summary_table %>% dplyr::mutate(stopVar = !is.na(stop_variant_allele)) %>% dplyr::select(aseResults, stopVar) %>% group_by(aseResults, stopVar) %>% summarize(n=n()) %>% dplyr::mutate(percent = n/sum(n)) %>% dplyr::mutate(sample = sample) write.table(stopVarTable, file = paste0(out, "/tables/stopVarTable.tsv"), quote = F, sep = "\t", row.names = F, col.names = T) stopBar <- stopVarTable %>% dplyr::filter(stopVar) %>% ggplot(aes(aseResults, percent)) + geom_bar(aes(fill = aseResults ), stat = "identity") + ylab("Proportion of genes") + coord_flip() + ggtitle("Proportion of genes with stop gain or loss variant", subtitle = sample) + theme_bw() + scale_fill_npg() + scale_color_npg() + theme(axis.line = element_line(colour = "black"), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.border = element_blank(), panel.background = element_blank(), legend.position = "none") ggsave(filename = paste0(out, "/stopVarBar.pdf"), plot = stopBar, units = "in") } ############## # Somatic SNV ############## if ("somaticSNV" %in% column) { print("Creating somatic SNV figures...") snvTable <- summary_table %>% dplyr::select(gene, aseResults, somaticSNV) %>% group_by(aseResults, somaticSNV) %>% summarize(n=n()) %>% dplyr::mutate(percent = n/sum(n)) %>% dplyr::mutate(sample = sample) write.table(snvTable, file = paste0(out, "/tables/snvTable.tsv"), quote = F, sep = "\t", row.names = F, col.names = T) snv <- snvTable %>% dplyr::filter(somaticSNV) %>% ggplot(aes(aseResults, percent)) + geom_bar(aes(fill = aseResults), stat = "identity") + ylab("Proportion of genes") + coord_flip() + ggtitle("Proportion of genes with somatic SNV mutation", subtitle = sample) + theme_bw() + scale_fill_npg() + scale_color_npg() + theme(axis.line = element_line(colour = "black"), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.border = element_blank(), panel.background = element_blank(), legend.position = "none") ggsave(filename = paste0(out, "/somaticSNVbar.pdf"), plot = snv, units = "in") } ############## # Somatic Indel ############## if ("somaticIndel" %in% column) { print("Creating somatic indel figures...") indelTable <- summary_table %>% dplyr::select(gene, aseResults, somaticIndel) %>% group_by(aseResults, somaticIndel) %>% summarize(n=n()) %>% dplyr::mutate(percent = n/sum(n)) %>% dplyr::mutate(sample = sample) write.table(indelTable, file = paste0(out, "/tables/indelTable.tsv"), quote = F, sep = "\t", row.names = F, col.names = T) indel <- indelTable %>% dplyr::filter(somaticIndel) %>% ggplot(aes(aseResults, percent)) + geom_bar(aes(fill = aseResults), stat = "identity") + ylab("Proportion of genes") + coord_flip() + ggtitle("Proportion of genes with somatic indel mutation", subtitle = sample) + theme_bw() + scale_fill_npg() + scale_color_npg() + theme(axis.line = element_line(colour = "black"), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.border = element_blank(), panel.background = element_blank(), legend.position = "none") ggsave(filename = paste0(out, "/somaticIndelBar.pdf"), plot = indel, units = "in") } ############## # TFBS Figures ############## if ("tf_allele" %in% column) { print("Creating TFBS figures...") tfbsTable <- summary_table %>% dplyr::select(gene, aseResults, transcriptionFactor) %>% dplyr::mutate(tfbsVar = !is.na(transcriptionFactor)) %>% group_by(aseResults, tfbsVar) %>% summarize(n=n()) %>% dplyr::mutate(percent = n/sum(n)) %>% dplyr::mutate(sample = sample) write.table(tfbsTable, file = paste0(out, "/tables/tfbsTable.tsv"), quote = F, sep = "\t", row.names = F, col.names = T) tfbs <- tfbsTable %>% dplyr::filter(tfbsVar) %>% ggplot(aes(aseResults, percent)) + geom_bar(aes(fill = aseResults), stat = "identity")+ ylab("Proportion of genes") + coord_flip() + ggtitle("Proportion of genes with mutation in \ntranscription factor binding site", subtitle = sample) + theme_bw() + scale_fill_npg() + scale_color_npg() + theme(axis.line = element_line(colour = "black"), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.border = element_blank(), panel.background = element_blank(), legend.position = "none") ggsave(filename = paste0(out, "/tfbsBar.pdf"), plot = tfbs, units = "in") } ####################### # Cancer Figures ####################### cancer_bar <- summary_table %>% dplyr::filter(cancer_gene) %>% ggplot(aes(aseResults)) + geom_bar(aes(fill = aseResults)) + theme_bw() + scale_fill_npg() + scale_color_npg() + ggtitle("MBASED result for cancer genes", subtitle=sample) + theme(axis.line = element_line(colour = "black"), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.border = element_blank(), panel.background = element_blank(), legend.position = "none") ggsave(filename = paste0(out, "/cancerBar.pdf"), plot = cancer_bar, units = "in") ####################### # Mechanism function ####################### causeFunction <- function(dataset) { summaryTableExplain <- dataset %>% dplyr::filter(aseResults == "ASE") ASEunknown <- summaryTableExplain cause_final <- tibble() if ("cnv_state" %in% column) { loh <- summaryTableExplain %>% dplyr::filter(cnv_state == "LOH") %>% nrow() cause_final <- bind_rows(cause_final, tibble(cause = "LOH", num = loh)) ASEunknown <- ASEunknown %>% dplyr::filter(cnv_state != "LOH") summaryTableExplain$cnvRatioDiff = summaryTableExplain$majorAlleleFrequency - summaryTableExplain$expectedMAF ASEunknown$cnvRatioDiff = ASEunknown$majorAlleleFrequency - ASEunknown$expectedMAF cnv <- summaryTableExplain %>% dplyr::filter(cnv_state != "LOH") %>% dplyr::filter(cnvRatioDiff< 0.10) %>% nrow() cause_final <- bind_rows(cause_final, tibble(cause = "CNV imbalance", num = cnv)) ASEunknown <- ASEunknown %>% dplyr::filter(cnvRatioDiff <= 0.10) } if ("somaticSNV" %in% column) { somaticSNV <- summaryTableExplain %>% dplyr::filter(somaticSNV) %>% nrow() cause_final <- bind_rows(cause_final, tibble(cause = "Somatic SNV", num = somaticSNV)) ASEunknown <- ASEunknown %>% dplyr::filter(!somaticSNV) } if ("somaticIndel" %in% column) { somaticIndel <- summaryTableExplain %>% dplyr::filter(somaticIndel) %>% nrow() cause_final <- bind_rows(cause_final, tibble(cause = "Somatic Indel", num = somaticIndel)) ASEunknown <- ASEunknown %>% dplyr::filter(!somaticIndel) } if ("methyl_state" %in% column) { methyl <- summaryTableExplain %>% dplyr::filter((methyl_state < 0 & allele1IsMajor) | (methyl_state > 0 & !allele1IsMajor)) %>% nrow() cause_final <- bind_rows(cause_final, tibble(cause = "Allelic methylation", num = methyl)) ASEunknown <- ASEunknown %>% dplyr::filter(is.na(methyl_state) | !((methyl_state < 0 & allele1IsMajor) | (methyl_state > 0 & !allele1IsMajor))) } if ("stop_variant_allele" %in% column) { stop <- summaryTableExplain %>% dplyr::filter((allele1IsMajor & stop_variant_allele == 2) | (!allele1IsMajor & stop_variant_allele == 1)) %>% nrow() cause_final <- bind_rows(cause_final, tibble(cause = "Stop variant", num = stop)) ASEunknown <- ASEunknown %>% dplyr::filter(is.na(stop_variant_allele) | !((allele1IsMajor & stop_variant_allele == 2) | (!allele1IsMajor & stop_variant_allele == 1))) } if ("tf_allele" %in% column) { tfbs <- summaryTableExplain %>% dplyr::filter(!is.na(transcriptionFactor)) %>% nrow() cause_final <- bind_rows(cause_final, tibble(cause = "TFBS variant", num = tfbs)) ASEunknown <- ASEunknown %>% dplyr::filter(is.na(transcriptionFactor)) } unknown <- nrow(ASEunknown) cause_final <- bind_rows(cause_final, tibble(cause = "Unknown", num = unknown)) return(cause_final) } ################ # ASE mechanism ################ aseMechanism <- causeFunction(summary_table) aseCause <- aseMechanism %>% ggplot(aes(reorder(cause, -num), num)) + geom_bar(aes(fill = cause), stat = "identity") + theme_bw() + scale_fill_npg() + scale_color_npg() + theme(axis.line = element_line(colour = "black"), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.border = element_blank(), panel.background = element_blank(), legend.position = "none") + theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) + xlab("ASE mechanism") + ylab("Gene frequency") + ggtitle("Frequency of all ASE genes for each genetic mechanism", subtitle = sample) ggsave(filename = paste0(out, "/aseCause.pdf"), plot = aseCause, units = "in") write.table(aseMechanism, file = paste0(out, "/tables/aseCause.tsv"), quote = F, sep = "\t", row.names = F, col.names = T) ################################ # Cancer ASE mechanism ################################ cancerMechanism <- summary_table %>% dplyr::filter(cancer_gene) %>% causeFunction() cancerCause <- cancerMechanism %>% ggplot(aes(reorder(cause, -num), num)) + geom_bar(aes(fill = cause), stat = "identity") + theme_bw() + scale_fill_npg() + scale_color_npg() + theme(axis.line = element_line(colour = "black"), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.border = element_blank(), panel.background = element_blank(), legend.position = "none") + theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) + xlab("ASE mechanism") + ylab("Gene frequency") + ggtitle("Frequency of cancer ASE genes for each genetic mechanism", subtitle = sample) ggsave(filename = paste0(out, "/cancerCause.pdf"), plot = cancerCause, units = "in") write.table(cancerMechanism, file = paste0(out, "/tables/cancerCause.tsv"), quote = F, sep = "\t", row.names = F, col.names = T) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | suppressMessages(library(tidyverse)) suppressMessages(library(optparse)) # Make help options option_list = list( make_option(c("-c", "--cnv"), type="character", default=NULL, help="CNV file (from Ploidetect)", metavar="character"), make_option(c("-o", "--outdir"), type="character", default = "mBASED", help="Output directory name", metavar="character"), make_option(c("-t", "--tumorContent"), type="double", default = 1.0, help="Tumor Content (0.0-1.0)", metavar="character") ) # load in options opt_parser <- OptionParser(option_list=option_list) opt <- parse_args(opt_parser) out <- opt$outdir TumorContent <- opt$tumorContent cnv <- read.delim(opt$cnv, header = T, comment.char = "#", stringsAsFactors = F) cnv %>% dplyr::mutate(type = case_when( zygosity == "HOM" ~ "LOH", A != B ~ "imbalance", A == B ~ "balance" )) %>% dplyr::select(chr, pos, end, A, B, type) %>% #dplyr::mutate(chr2 = case_when( # grepl("^chr", chr) ~ chr, # TRUE ~ paste0("chr", chr) #)) %>% dplyr::mutate(chr = ifelse(grepl("^chr", chr), chr, paste0("chr", chr))) %>% dplyr::mutate(rawExpectedMAF = pmax(A, B)/(A + B)) %>% dplyr::mutate(expectedMAF = (rawExpectedMAF * TumorContent) + (0.5 * (1 - TumorContent))) %>% dplyr::select(-rawExpectedMAF) %>% dplyr::mutate(pos = gsub(" ", "", format(pos, scientific=F), fixed = TRUE)) %>% dplyr::mutate(end = gsub(" ", "", format(end, scientific=F), fixed = TRUE)) %>% write.table(paste0(out, "/cnv.bed"), quote = F, sep = "\t", row.names = F, col.names = F) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 | suppressMessages(library(optparse)) suppressMessages(library(tidyverse)) option_list = list( make_option(c("-e", "--expression_matrix"), type="character", default=NULL, help="Expression Matrix", metavar="character"), make_option(c("-t", "--tf"), type="character", default = NULL, help="Transcription Factor", metavar="character"), make_option(c("-a", "--allele1"), type="character", default = NULL, help="Allele 1", metavar="character"), make_option(c("-b", "--allele2"), type="character", default = NULL, help="Allele 2", metavar="character"), make_option(c("-i", "--id2gene"), type="character", default = NULL, help="id to gene tsv", metavar="character"), make_option(c("-m", "--min"), type="integer", default = 10, help="min expression level", metavar="character"), make_option(c("-o", "--outdir"), type="character", default = NULL, help="output directory", metavar="character"), make_option(c("-s", "--sample"), type="character", default = NULL, help="sample name", metavar="character") ) # load in options opt_parser <- OptionParser(option_list=option_list) opt <- parse_args(opt_parser) min <- opt$min outdir <- opt$outdir sample <- opt$sample ## GET EXPRESSED TF expressionMatrix <- read.delim(opt$expression_matrix, sep = "\t", header = T) transcriptionFactor <- read.delim(opt$tf, sep = "\t", header = T) %>% separate(Transcription.factor, sep = ":", into=c("human", "transcriptionFactor")) %>% dplyr::select(-human) expressionMatrix <- expressionMatrix[,c("gene", sample)] colnames(expressionMatrix) <- c("gene", "expression") expressionMatrix_filt <- expressionMatrix %>% dplyr::filter(gene %in% transcriptionFactor$transcriptionFactor) %>% dplyr::filter(expression > min) tf_expression <- transcriptionFactor %>% left_join(expressionMatrix_filt, by=c("transcriptionFactor"="gene")) %>% dplyr::filter(!is.na(expression)) # GET ALLELE 1 TFBS allele1MEME <- read.delim(opt$allele1) %>% dplyr::mutate(id = paste0(motif_id, "::", sequence_name)) %>% pull(id) # GET ALLELE 2 TFBS allele2MEME <- read.delim(opt$allele2) %>% dplyr::mutate(id = paste0(motif_id, "::", sequence_name)) %>% pull(id) # GET GAIN OR LOSS OF TFBS Gene <- read.delim(opt$id2gene, header = T) difference <- rbind(tibble(id = setdiff(allele1MEME, allele2MEME), allele = 1), tibble(id = setdiff(allele2MEME, allele1MEME), allele = 2)) %>% separate(id, sep = "::", into = c("motif_id", "sequence_id")) %>% left_join(Gene) %>% dplyr::filter(motif_id %in% tf_expression$Model) %>% left_join(tf_expression, by = c("motif_id"="Model")) %>% dplyr::select(transcriptionFactor, gene, allele) %>% write_tsv(paste0(outdir, "/motifDiff.tsv")) |
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 | suppressMessages(library(optparse)) suppressMessages(library(dplyr)) suppressMessages(library(ggplot2)) suppressMessages(library(RColorBrewer)) suppressMessages(library(tibble)) suppressMessages(library(chromPlot)) suppressMessages(library(networkD3)) suppressMessages(library(htmlwidgets)) suppressMessages(library(reshape2)) suppressMessages(library(ggrepel)) suppressMessages(library(ggsci)) ## --------------------------------------------------------------------------- ## FIGURES ## --------------------------------------------------------------------------- # Make help options option_list = list( make_option(c("-b", "--mbased"), type="character", default=NULL, help="mbased dataframe output", metavar="character"), make_option(c("-r", "--rpkm"), type="character", default=NULL, help="RPKM matrix", metavar="character"), make_option(c("-g", "--gene"), type="character", default = NULL, help="Ensembl gene annotation", metavar="character"), make_option(c("-s", "--sample"), type="character", default = NULL, help="Sample name", metavar="character"), make_option(c("-m", "--min"), type="numeric", default = 1, help="Minimum RPKM value", metavar="numeric"), make_option(c("-t", "--maf_threshold"), type="numeric", default = 0.75, help="Minimum RPKM value", metavar="numeric"), make_option(c("-o", "--outdir"), type="character", default = NULL, help="Output directory", metavar="character") ) ### ### SET UP THE DATAFRAME ### # load in options opt_parser <- OptionParser(option_list=option_list) opt <- parse_args(opt_parser) df <- read.delim(opt$mbased, header = T, stringsAsFactors = F) rpkm <- read.delim(opt$rpkm, header = T, stringsAsFactors = F) all_genes <- read.delim(opt$gene, header = F, stringsAsFactors = F) out <- opt$outdir sample <- opt$sample min <- opt$min maf_threshold <- opt$maf_threshold mafG_padjG <- paste0("MAF > ", maf_threshold, " & padj > 0.05") mafL_padjG <- paste0("MAF < ", maf_threshold, " & padj > 0.05") mafG_padjL <- paste0("MAF > ", maf_threshold, " & padj < 0.05") mafL_padjL <- paste0("MAF < ", maf_threshold, " & padj < 0.05") # fix sample name sample <- ifelse(length(grep("-", sample)) == 0, sample, gsub("-", ".", sample)) # select sample rpkm_sample <- rpkm[,c("gene", sample)] colnames(rpkm_sample) <- c("gene", "expr") # make a colour filter df$colour_filt <- ifelse(df$padj < 0.05 & df$majorAlleleFrequency > maf_threshold, mafG_padjL, ifelse(df$padj > 0.05 & df$majorAlleleFrequency > maf_threshold, mafG_padjG, ifelse(df$padj > 0.05 & df$majorAlleleFrequency < maf_threshold, mafL_padjG, mafL_padjL))) # add the chromosome df$chr <- all_genes$V1[match(df$gene, all_genes$V4)] # set the factor levels df$colour_filt <- factor(df$colour_filt, levels = c(mafG_padjL, mafL_padjL, mafG_padjG, mafL_padjG)) df$chr <- factor(df$chr, levels = c(paste0("chr", 1:22), "chrX")) #df <- df[!is.na(df$chr),] print("Beginning figures ...") #### #### DOTPLOT #### dotplot <- ggplot(df, aes(x = majorAlleleFrequency, y = padj, colour = colour_filt)) + geom_point(alpha = 0.5, size = 2) + scale_color_manual(values = c("#e74645", "black", "black", "grey")) + theme_bw() + geom_hline(yintercept = 0.05, linetype = 2) + geom_vline(xintercept = maf_threshold, linetype = 2) + geom_text(aes(label = paste0(table(colour_filt)[mafG_padjL], " ASE genes"), x = 0.9, y = 0.75), size = 4.5, colour = "#e74645") + labs(x = "major allele frequency", y = "adjusted pvalue", colour = NULL) + theme(legend.position = "none", axis.title = element_text(size = 12, face = "bold", colour = "black"), axis.text = element_text(size = 10, colour = "black")) ggsave(filename = paste0(out, "/aseGenesDot.pdf"), plot = dotplot, width = 5, height = 4, units = "in") #### #### BARPLOT #### df_chr <- df[!is.na(df$chr),] barplot <- ggplot(df_chr, aes(x = chr, fill = colour_filt)) + geom_bar() + scale_fill_manual(values = rev(c("#e0f0ea","#574f7d", "#95adbe", "#e74645"))) + theme_bw() + labs(x = "chromosome", y = "number of genes", fill = "ASE results")+ theme(axis.title = element_text(size = 12, face = "bold", colour = "black"), axis.text.y = element_text(size = 10, colour = "black"), axis.text.x = element_text(size = 10, colour = "black"), legend.text = element_text(size = 10, colour = "black"), legend.title = element_text(size = 12, face = "bold", colour = "black")) ggsave(filename = paste0(out, "/aseGenesBar.pdf"), plot = barplot, width = 12, height = 5, units = "in") #### #### SANKEY PLOT #### # set filters on the RPKM matrix rpkm_sample$gene_biotype <- all_genes$V7[match(rpkm_sample$gene, all_genes$V4)] rpkm_sample_filt1 <- rpkm_sample[rpkm_sample$gene_biotype %in% c("lincRNA", "miRNA", "protein_coding"),] rpkm_sample_filt2 <- rpkm_sample_filt1[rpkm_sample_filt1$expr > min,] # get the input values for the plot a <- nrow(rpkm_sample_filt1) b <- c(nrow(rpkm_sample_filt2),nrow(rpkm_sample_filt1[rpkm_sample_filt1$expr <= min,] )) c <- c(nrow(df),nrow(rpkm_sample_filt2[!rpkm_sample_filt2$gene %in% df$gene,])) d <- c(nrow(df[df$padj < 0.05 & df$majorAlleleFrequency > maf_threshold,]), sum(nrow(df[df$padj >= 0.05 & df$majorAlleleFrequency <= maf_threshold,]), nrow(df[df$padj >= 0.05 & df$majorAlleleFrequency > maf_threshold,]), nrow(df[df$padj < 0.05 & df$majorAlleleFrequency <= maf_threshold,]))) # create a connection data frame links <- data.frame( source=c(rep(paste0("All Genes (n=", a, ")"), 2), rep(paste0("Expressed (n=", b[1], ")"), 2), rep(paste0("Phased Genes (n=", c[1], ")"), 2)), target=c(paste0("Expressed (n=", b[1], ")"), paste0("Not Expressed (n=", b[2], ")"), paste0("Phased Genes (n=", c[1], ")"), paste0("Unphased Genes (n=", c[2], ")"), paste0("ASE Genes (n=", d[1], ")"), paste0("Biallelic Genes (n=", d[2], ")")), value=c(b, c, d) ) # create a node data frame: it lists every entities involved in the flow nodes <- data.frame( name=c(as.character(links$source), as.character(links$target)) %>% unique() ) # Reformat the links links$IDsource <- match(links$source, nodes$name)-1 links$IDtarget <- match(links$target, nodes$name)-1 # Make the Network sankey <- sankeyNetwork(Links = links, Nodes = nodes, Source = "IDsource", Target = "IDtarget", Value = "value", NodeID = "name", sinksRight=FALSE, fontSize = 18) saveWidget(sankey, file=paste0(out, "/sankeyPlot.html"), selfcontained = F) print("Figures completed") |
7
of
src/figures.R
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | .libPaths("/home/glchang/R/x86_64-pc-linux-gnu-library/4.1") suppressMessages(library("tidyverse")) suppressMessages(library("optparse")) option_list = list( make_option(c("-s", "--sample"), type="character", default=NULL, help="Sample name", metavar="character"), make_option(c("-i", "--input"), type="character", default=NULL, help="Gene expression data from RSEM", metavar="character"), make_option(c("-a", "--annotation"), type="character", default=NULL, help="Annotation file for ensembl id to hgnc name", metavar="character"), make_option(c("-o", "--outdir"), type="character", default =NULL, help="Output directory name", metavar="character") ) # load in options opt_parser <- OptionParser(option_list=option_list) opt <- parse_args(opt_parser) out <- opt$outdir input <- opt$input sample <- opt$sample annotation <- read_delim(opt$annotation, col_names = F, show_col_types = F) %>% dplyr::select(X9, X4) val <- read_delim(input, show_col_types = F) %>% dplyr::select(gene_id, TPM) %>% left_join(annotation, by = c("gene_id" = "X9")) %>% dplyr::select(X4, TPM) %>% `colnames<-`(c("gene", sample)) write.table(val, paste0(out, "/expression_matrix.tsv"), col.names = T, row.names = F, quote = F, sep = "\t") |
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 | library(optparse) ## --------------------------------------------------------------------------- ## OPT PARSE ## --------------------------------------------------------------------------- # options option_list = list( make_option(c("-c", "--chromSize"), type="character", help="chromosome sizes", metavar="character"), make_option(c("-p", "--centPos"), type="character", help="centred centromere positions", metavar="character"), make_option(c("-n", "--cna"), type="character", help="copy number segment file (preferably condensed)", metavar="character"), make_option(c("-d", "--dmr"), type="character", help="DMR positions", metavar="character"), make_option(c("-a", "--ase"), type="character", help="ASE summary table file", metavar="character"), make_option(c("-g", "--genes"), type="character", help="Gene annotation file", metavar="character"), make_option(c("-o", "--out"), type="character", help="output file prefix", metavar="character") ) opt_parser = OptionParser(option_list=option_list) opt = parse_args(opt_parser) #Note: these packages need to be installed. suppressMessages(library(dplyr)) suppressMessages(library(reshape2)) suppressMessages(library(ggplot2)) suppressMessages(library(tidyr)) suppressMessages(library(cowplot)) # chromosome size/position info #chromSize <- read.delim("/projects/hpv_nanopore_prj/refs/hg38_no_alt_TCGA_HTMCP_HPVs_chromSizes.txt", header = F) #centPos <- read.delim("/projects/hpv_nanopore_prj/refs/hg38_centromere_positions_merged.bed", header = F) #genes <- read.delim("/projects/hpv_nanopore_prj/htmcp/ase/pull_trial/vporter-allelespecificexpression/output/HTMCP.03.06.02058/3_cancer/raw/gene_annotation.bed", header = F) chromSize <- read.delim(opt$chromSize, header = F) centPos <- read.delim(opt$centPos, header = F) genes <- read.delim(opt$genes, header = F) ## --------------------------------------------------------------------------- ## POSITION CHROMOSOME INFO ## --------------------------------------------------------------------------- # subset to the main chromosomes chromSize <- chromSize[chromSize$V1 %in% c(paste0("chr", 1:22), "chrX"),] # Rename columns to chromosome and size colnames(chromSize) <- c("chr","size") # Reorder levels for plotting chromSize$chr <- factor(chromSize$chr,levels=c(paste0("chr", 1:22), "chrX")) chromSize <- chromSize[chromSize$chr %in% c(paste0("chr", 1:22), "chrX"),] # Divide by 1Mb to clean up axis chromSize$size <- chromSize$size/1000000 # centromere mapping colnames(centPos) <- c("chr", "start", "end") centPos$chr <- factor(centPos$chr,levels=c(paste0("chr", 1:22), "chrX")) centPos$centre <- centPos$start + ((centPos$end - centPos$start)/2) centPos$centre <- centPos$centre/1000000 ## --------------------------------------------------------------------------- ## COPY NUMBER ## --------------------------------------------------------------------------- if (!is.null(opt$cna) & opt$cna != ""){ #cna <- read.delim("/projects/hpv_nanopore_prj/htmcp/ploidetect/illumina/Ploidetect-pipeline/ploidetect_out/HTMCP-03-06-02058/A37261_A37189/cna_condensed.txt", header = T) cna <- read.delim(opt$cna, header = T) cna$chr <- paste0("chr", cna$chr) # rearrange to make a bed file cna_bed <- cna[,c("chr", "pos", "end", "CN", "zygosity", "A", "B")] # categorize copy number cna_bed <- cna_bed %>% mutate(CN.Status = case_when( zygosity == "HOM" ~ "LOH", A > B ~ "imbalance", TRUE ~ "balance" )) # Divide by 1Mb for axis cna_bed$end <- cna_bed$end/1000000 cna_bed$pos <- cna_bed$pos/1000000 # Change to factor and reorder levels cna_bed$chr <- factor(cna_bed$chr,levels=c(paste0("chr", 1:22), "chrX")) cnaLOH <- cna_bed %>% filter(CN.Status == "LOH") cnaGAIN <- cna_bed %>% filter(CN.Status == "imbalance") } ## --------------------------------------------------------------------------- ## DIFFERENTIAL METHYLATION ## --------------------------------------------------------------------------- if (!is.null(opt$dmr) & opt$dmr != ""){ #dmr <- read.delim("/projects/hpv_nanopore_prj/htmcp/call_integration/output/HTMCP-03-06-02058/methylation/diff_meth.csv", header = T) dmr <- read.delim(opt$dmr, header = T) # Divide by 1Mb for axis dmr$start <- dmr$start/1000000 dmr$end <- dmr$end/1000000 dmr$middle <- (dmr$start + dmr$end) / 2 # Change to factor and reorder levels dmr$chr <- factor(dmr$chr, levels=c(paste0("chr", 1:22), "chrX")) # count in 1Mb bins dmrCount <- data.frame(table(as.factor(paste0(dmr$chr, ":", as.integer(dmr$middle))))) # split the chromosome name and bin position dmrPlot <- separate(dmrCount, col = Var1, into = c("chr", "pos"), sep = ":", remove = T) # scale to fit the plot - i.e. make the maximum width 0.65 maxDMR <- max(dmrPlot$Freq) dmrPlot$percMax <- dmrPlot$Freq/maxDMR dmrPlot$percMax <- dmrPlot$percMax * 0.65 # Change to factor and reorder levels dmrPlot$chr <- factor(dmrPlot$chr, levels=c(paste0("chr", 1:22), "chrX")) dmrPlot$pos <- as.numeric(dmrPlot$pos) } ## --------------------------------------------------------------------------- ## ASE GENE HISTOGRAM ## --------------------------------------------------------------------------- #ase <- read.delim("/projects/hpv_nanopore_prj/htmcp/ase/pull_trial/vporter-allelespecificexpression/output/HTMCP.03.06.02058/summaryTable.tsv", header = T) ase <- read.delim(opt$ase, header = T) # filter for ASE genes ase <- ase[ase$aseResults == "ASE",] # get gene positions ase$chr <- genes$V1[match(ase$gene, genes$V4)] ase$start <- genes$V2[match(ase$gene, genes$V4)] ase$end <- genes$V3[match(ase$gene, genes$V4)] # get the middle of the gene for plotting ase$middle <- (ase$start + ase$end)/2 # get the data frame ready for plotting ase <- ase[,c("chr", "start", "end","middle")] ase <- ase[complete.cases(ase),] # Divide by 1Mb for axis ase$middle <- ase$middle/1000000 # count in 1Mb bins aseCount <- data.frame(table(as.factor(paste0(ase$chr, ":", as.integer(ase$middle))))) # split the chromosome name and bin position asePlot <- separate(aseCount[aseCount$Var1 != "NA:NA",], col = Var1, into = c("chr", "pos"), sep = ":", remove = T) # scale to fit the plot - i.e. make the maximum width 0.65 maxASE <- max(asePlot$Freq) asePlot$percMax <- asePlot$Freq/maxASE asePlot$percMax <- asePlot$percMax * 0.65 # Change to factor and reorder levels asePlot$chr <- factor(asePlot$chr, levels=c(paste0("chr", 1:22), "chrX")) asePlot$pos <- as.numeric(asePlot$pos) ## --------------------------------------------------------------------------- ## PLOT OPTIONS ## --------------------------------------------------------------------------- ##### CNV AND DMRs AVAILABLE if (!is.null(opt$dmr) & opt$dmr != "" & !is.null(opt$cna) & opt$cna != ""){ # legend adL <- data.frame(xmin = c(9.7, 9.7, 9.7, 10.3,9.7,10.3,7.1,7.1), xmax = c(10.35, 10.35,9.75,10.35,9.75,10.35,7.26,7.26), ymin = c(240,210,238,238,208,208,235,205), ymax = c(243,213,243,243,213,213,245,215), fill = c("ase","dmr","ase","ase","dmr","dmr", "gain", "loh")) adW <- data.frame(x = c(11.5, 11.2,8.25,7.6,10,10), y = c(240,210,240,210,250,220), label = c("ASE Gene Density","DMR Density", "Imbalanced CNV", "LOH", as.character(c(maxASE,maxDMR)))) # plot # chromosomes 1 - 12 p1 <- ggplot() + # chromosome bars geom_segment(data = chromSize %>% filter(chr %in% paste0("chr", 1:12)), aes(x = chr, xend = chr, y = 0, yend = size), lineend = "round", color = "lightgrey", size = 5) + # LOH geom_rect(data = cnaLOH %>% filter(chr %in% paste0("chr", 1:12)), aes(xmin = as.integer(chr) - 0.08, xmax = as.integer(chr) + 0.08, ymin = pos, ymax = end), fill="#94d2bd",size = 0.2) + # Imbalanced CNV geom_rect(data = cnaGAIN %>% filter(chr %in% paste0("chr", 1:12)), aes(xmin = as.integer(chr) - 0.08, xmax = as.integer(chr) + 0.08, ymin = pos, ymax = end), fill="#ee9b00",size = 0.2) + # ASE genes geom_rect(data = asePlot %>% filter(chr %in% paste0("chr", 1:12)), aes(xmin = as.integer(chr) + 0.1, xmax = (as.integer(chr) + 0.1 + percMax), ymin = pos, ymax = pos+1), fill = "#005f73", size = 0.25) + # DMRs geom_rect(data = dmrPlot %>% filter(chr %in% paste0("chr", 1:12)), aes(xmin = (as.integer(chr) - 0.1 - percMax), xmax = as.integer(chr) - 0.1, ymin = pos, ymax = pos+1), fill = "#ae2012", size = 0.25) + # centromeres geom_point(data = centPos %>% filter(chr %in% paste0("chr", 1:12)), aes(x = chr, y = centre), size = 5, colour = "gray") + # legend bars geom_rect(data = adL, aes(xmin = xmin, xmax = xmax, ymin = ymin, ymax = ymax, fill = fill), size = 0.25) + # legend text geom_text(data = adW, aes(x = x, y = y, label = label))+ scale_fill_manual(values = c("#005f73","#ae2012","#ee9b00","#94d2bd")) + ylim(0, 250) + theme_classic() + theme(text = element_text(size=15),axis.line=element_blank(), axis.ticks.x=element_blank(), legend.position = "none")+ labs(x=NULL,y="Chromosome Size (Mb)") # chromosomes 13 - 22 + X # very annoying but you have to filter all the dataframes or else the factor levels won't match the integer value chromSizeFilt <- chromSize %>% filter(chr %in% c(paste0("chr", 13:22), "chrX")) chromSizeFilt$chr <- factor(chromSizeFilt$chr,levels=c(paste0("chr", 13:22), "chrX")) centPosFilt <- centPos %>% filter(chr %in% c(paste0("chr", 13:22), "chrX")) centPosFilt$chr <- factor(centPosFilt$chr,levels=c(paste0("chr", 13:22), "chrX")) cnaLOHFilt <- cnaLOH %>% filter(chr %in% c(paste0("chr", 13:22), "chrX")) cnaLOHFilt$chr <- factor(cnaLOHFilt$chr,levels=c(paste0("chr", 13:22), "chrX")) cnaGAINFilt <- cnaGAIN %>% filter(chr %in% c(paste0("chr", 13:22), "chrX")) cnaGAINFilt$chr <- factor(cnaGAINFilt$chr,levels=c(paste0("chr", 13:22), "chrX")) asePlotFilt <- asePlot %>% filter(chr %in% c(paste0("chr", 13:22), "chrX")) asePlotFilt$chr <- factor(asePlotFilt$chr,levels=c(paste0("chr", 13:22), "chrX")) dmrPlotFilt <- dmrPlot %>% filter(chr %in% c(paste0("chr", 13:22), "chrX")) dmrPlotFilt$chr <- factor(dmrPlotFilt$chr,levels=c(paste0("chr", 13:22), "chrX")) # chromosomes 13-22+X p2 <- ggplot() + # chromosome bars geom_segment(data = chromSizeFilt, aes(x = chr, xend = chr, y = 0, yend = size), lineend = "round", color = "lightgrey", size = 5) + # LOH geom_rect(data = cnaLOHFilt, aes(xmin = as.integer(chr) - 0.08, xmax = as.integer(chr) + 0.08, ymin = pos, ymax = end), fill="#94d2bd",size = 0.2) + # Imbalanced CNV geom_rect(data = cnaGAINFilt, aes(xmin = as.integer(chr) - 0.08, xmax = as.integer(chr) + 0.08, ymin = pos, ymax = end), fill="#ee9b00",size = 0.2) + # ASE genes geom_rect(data = asePlotFilt, aes(xmin = as.integer(chr) + 0.1, xmax = (as.integer(chr) + 0.1 + percMax), ymin = pos, ymax = pos+1), fill = "#005f73", size = 0.25) + # DMRs geom_rect(data = dmrPlotFilt, aes(xmin = (as.integer(chr) - 0.1 - percMax), xmax = as.integer(chr) - 0.1, ymin = pos, ymax = pos+1), fill = "#ae2012", size = 0.25) + # centromeres geom_point(data = centPosFilt, aes(x = chr, y = centre), size = 5, colour = "black") + ylim(0, 250) + theme_classic() + theme(text = element_text(size=15),axis.line=element_blank(), axis.ticks.x=element_blank(), legend.position = "none")+ labs(x=NULL,y=NULL) } else if (!is.null(opt$cna) & opt$cna != ""){ ### CNVs BUT NO DMRs # legend adL <- data.frame(xmin = c(9.7, 9.7, 10.3,7.1,7.1), xmax = c(10.35, 9.75,10.35,7.26,7.26), ymin = c(240,238,238,235,205), ymax = c(243,243,243,245,215), fill = c("ase","ase","ase","gain", "loh")) adW <- data.frame(x = c(11.5,8.25,7.6,10), y = c(240,240,210,250), label = c("ASE Gene Density", "Imbalanced CNV", "LOH", as.character(c(maxASE)))) # plot # chromosomes 1 - 12 p1 <- ggplot() + # chromosome bars geom_segment(data = chromSize %>% filter(chr %in% paste0("chr", 1:12)), aes(x = chr, xend = chr, y = 0, yend = size), lineend = "round", color = "lightgrey", size = 5) + # LOH geom_rect(data = cnaLOH %>% filter(chr %in% paste0("chr", 1:12)), aes(xmin = as.integer(chr) - 0.08, xmax = as.integer(chr) + 0.08, ymin = pos, ymax = end), fill="#94d2bd",size = 0.2) + # Imbalanced CNV geom_rect(data = cnaGAIN %>% filter(chr %in% paste0("chr", 1:12)), aes(xmin = as.integer(chr) - 0.08, xmax = as.integer(chr) + 0.08, ymin = pos, ymax = end), fill="#ee9b00",size = 0.2) + # ASE genes geom_rect(data = asePlot %>% filter(chr %in% paste0("chr", 1:12)), aes(xmin = as.integer(chr) + 0.1, xmax = (as.integer(chr) + 0.1 + percMax), ymin = pos, ymax = pos+1), fill = "#005f73", size = 0.25) + # centromeres geom_point(data = centPos %>% filter(chr %in% paste0("chr", 1:12)), aes(x = chr, y = centre), size = 5, colour = "gray") + # legend bars geom_rect(data = adL, aes(xmin = xmin, xmax = xmax, ymin = ymin, ymax = ymax, fill = fill), size = 0.25) + # legend text geom_text(data = adW, aes(x = x, y = y, label = label))+ scale_fill_manual(values = c("#005f73","#ee9b00","#94d2bd")) + ylim(0, 250) + theme_classic() + theme(text = element_text(size=15),axis.line=element_blank(), axis.ticks.x=element_blank(), legend.position = "none")+ labs(x=NULL,y="Chromosome Size (Mb)") # chromosomes 13 - 22 + X # very annoying but you have to filter all the dataframes or else the factor levels won't match the integer value chromSizeFilt <- chromSize %>% filter(chr %in% c(paste0("chr", 13:22), "chrX")) chromSizeFilt$chr <- factor(chromSizeFilt$chr,levels=c(paste0("chr", 13:22), "chrX")) centPosFilt <- centPos %>% filter(chr %in% c(paste0("chr", 13:22), "chrX")) centPosFilt$chr <- factor(centPosFilt$chr,levels=c(paste0("chr", 13:22), "chrX")) cnaLOHFilt <- cnaLOH %>% filter(chr %in% c(paste0("chr", 13:22), "chrX")) cnaLOHFilt$chr <- factor(cnaLOHFilt$chr,levels=c(paste0("chr", 13:22), "chrX")) cnaGAINFilt <- cnaGAIN %>% filter(chr %in% c(paste0("chr", 13:22), "chrX")) cnaGAINFilt$chr <- factor(cnaGAINFilt$chr,levels=c(paste0("chr", 13:22), "chrX")) asePlotFilt <- asePlot %>% filter(chr %in% c(paste0("chr", 13:22), "chrX")) asePlotFilt$chr <- factor(asePlotFilt$chr,levels=c(paste0("chr", 13:22), "chrX")) # chromosomes 13-22+X p2 <- ggplot() + # chromosome bars geom_segment(data = chromSizeFilt, aes(x = chr, xend = chr, y = 0, yend = size), lineend = "round", color = "lightgrey", size = 5) + # LOH geom_rect(data = cnaLOHFilt, aes(xmin = as.integer(chr) - 0.08, xmax = as.integer(chr) + 0.08, ymin = pos, ymax = end), fill="#94d2bd",size = 0.2) + # Imbalanced CNV geom_rect(data = cnaGAINFilt, aes(xmin = as.integer(chr) - 0.08, xmax = as.integer(chr) + 0.08, ymin = pos, ymax = end), fill="#ee9b00",size = 0.2) + # ASE genes geom_rect(data = asePlotFilt, aes(xmin = as.integer(chr) + 0.1, xmax = (as.integer(chr) + 0.1 + percMax), ymin = pos, ymax = pos+1), fill = "#005f73", size = 0.25) + # centromeres geom_point(data = centPosFilt, aes(x = chr, y = centre), size = 5, colour = "black") + ylim(0, 250) + theme_classic() + theme(text = element_text(size=15),axis.line=element_blank(), axis.ticks.x=element_blank(), legend.position = "none")+ labs(x=NULL,y=NULL) } else if (!is.null(opt$dmr) & opt$dmr != ""){ ## DMRs BUT NO CNV # legend adL <- data.frame(xmin = c(9.7, 9.7, 9.7, 10.3,9.7,10.3), xmax = c(10.35, 10.35,9.75,10.35,9.75,10.35), ymin = c(240,210,238,238,208,208), ymax = c(243,213,243,243,213,213), fill = c("ase","dmr","ase","ase","dmr","dmr")) adW <- data.frame(x = c(11.5, 11.2,10,10), y = c(240,210,250,220), label = c("ASE Gene Density","DMR Density", as.character(c(maxASE,maxDMR)))) # plot # chromosomes 1 - 12 p1 <- ggplot() + # chromosome bars geom_segment(data = chromSize %>% filter(chr %in% paste0("chr", 1:12)), aes(x = chr, xend = chr, y = 0, yend = size), lineend = "round", color = "lightgrey", size = 5) + # ASE genes geom_rect(data = asePlot %>% filter(chr %in% paste0("chr", 1:12)), aes(xmin = as.integer(chr) + 0.1, xmax = (as.integer(chr) + 0.1 + percMax), ymin = pos, ymax = pos+1), fill = "#005f73", size = 0.25) + # DMRs geom_rect(data = dmrPlot %>% filter(chr %in% paste0("chr", 1:12)), aes(xmin = (as.integer(chr) - 0.1 - percMax), xmax = as.integer(chr) - 0.1, ymin = pos, ymax = pos+1), fill = "#ae2012", size = 0.25) + # centromeres geom_point(data = centPos %>% filter(chr %in% paste0("chr", 1:12)), aes(x = chr, y = centre), size = 5, colour = "black") + # legend bars geom_rect(data = adL, aes(xmin = xmin, xmax = xmax, ymin = ymin, ymax = ymax, fill = fill), size = 0.25) + # legend text geom_text(data = adW, aes(x = x, y = y, label = label))+ scale_fill_manual(values = c("#005f73","#ae2012")) + ylim(0, 250) + theme_classic() + theme(text = element_text(size=15),axis.line=element_blank(), axis.ticks.x=element_blank(), legend.position = "none")+ labs(x=NULL,y="Chromosome Size (Mb)") # chromosomes 13 - 22 + X # very annoying but you have to filter all the dataframes or else the factor levels won't match the integer value chromSizeFilt <- chromSize %>% filter(chr %in% c(paste0("chr", 13:22), "chrX")) chromSizeFilt$chr <- factor(chromSizeFilt$chr,levels=c(paste0("chr", 13:22), "chrX")) centPosFilt <- centPos %>% filter(chr %in% c(paste0("chr", 13:22), "chrX")) centPosFilt$chr <- factor(centPosFilt$chr,levels=c(paste0("chr", 13:22), "chrX")) asePlotFilt <- asePlot %>% filter(chr %in% c(paste0("chr", 13:22), "chrX")) asePlotFilt$chr <- factor(asePlotFilt$chr,levels=c(paste0("chr", 13:22), "chrX")) dmrPlotFilt <- dmrPlot %>% filter(chr %in% c(paste0("chr", 13:22), "chrX")) dmrPlotFilt$chr <- factor(dmrPlotFilt$chr,levels=c(paste0("chr", 13:22), "chrX")) # chromosomes 13-22+X p2 <- ggplot() + # chromosome bars geom_segment(data = chromSizeFilt, aes(x = chr, xend = chr, y = 0, yend = size), lineend = "round", color = "lightgrey", size = 5) + # ASE genes geom_rect(data = asePlotFilt, aes(xmin = as.integer(chr) + 0.1, xmax = (as.integer(chr) + 0.1 + percMax), ymin = pos, ymax = pos+1), fill = "#005f73", size = 0.25) + # DMRs geom_rect(data = dmrPlotFilt, aes(xmin = (as.integer(chr) - 0.1 - percMax), xmax = as.integer(chr) - 0.1, ymin = pos, ymax = pos+1), fill = "#ae2012", size = 0.25) + # centromeres geom_point(data = centPosFilt, aes(x = chr, y = centre), size = 5, colour = "black") + ylim(0, 250) + theme_classic() + theme(text = element_text(size=15),axis.line=element_blank(), axis.ticks.x=element_blank(), legend.position = "none")+ labs(x=NULL,y=NULL) } else{ ## NO DMRs OR CNVs # legend adL <- data.frame(xmin = c(9.7, 9.7, 10.3), xmax = c(10.35,9.75,10.35), ymin = c(240,238,238), ymax = c(243,243,243), fill = c("ase","ase","ase")) adW <- data.frame(x = c(11.5,10), y = c(240,250), label = c("ASE Gene Density", as.character(c(maxASE)))) # plot # chromosomes 1 - 12 p1 <- ggplot() + # chromosome bars geom_segment(data = chromSize %>% filter(chr %in% paste0("chr", 1:12)), aes(x = chr, xend = chr, y = 0, yend = size), lineend = "round", color = "lightgrey", size = 5) + # ASE genes geom_rect(data = asePlot %>% filter(chr %in% paste0("chr", 1:12)), aes(xmin = as.integer(chr) + 0.1, xmax = (as.integer(chr) + 0.1 + percMax), ymin = pos, ymax = pos+1), fill = "#005f73", size = 0.25) + # centromeres geom_point(data = centPos %>% filter(chr %in% paste0("chr", 1:12)), aes(x = chr, y = centre), size = 5, colour = "black") + # legend bars geom_rect(data = adL, aes(xmin = xmin, xmax = xmax, ymin = ymin, ymax = ymax, fill = fill), size = 0.25) + # legend text geom_text(data = adW, aes(x = x, y = y, label = label))+ scale_fill_manual(values = c("#005f73")) + ylim(0, 250) + theme_classic() + theme(text = element_text(size=15),axis.line=element_blank(), axis.ticks.x=element_blank(), legend.position = "none")+ labs(x=NULL,y="Chromosome Size (Mb)") # chromosomes 13 - 22 + X # very annoying but you have to filter all the dataframes or else the factor levels won't match the integer value chromSizeFilt <- chromSize %>% filter(chr %in% c(paste0("chr", 13:22), "chrX")) chromSizeFilt$chr <- factor(chromSizeFilt$chr,levels=c(paste0("chr", 13:22), "chrX")) centPosFilt <- centPos %>% filter(chr %in% c(paste0("chr", 13:22), "chrX")) centPosFilt$chr <- factor(centPosFilt$chr,levels=c(paste0("chr", 13:22), "chrX")) asePlotFilt <- asePlot %>% filter(chr %in% c(paste0("chr", 13:22), "chrX")) asePlotFilt$chr <- factor(asePlotFilt$chr,levels=c(paste0("chr", 13:22), "chrX")) # chromosomes 13-22+X p2 <- ggplot() + # chromosome bars geom_segment(data = chromSizeFilt, aes(x = chr, xend = chr, y = 0, yend = size), lineend = "round", color = "lightgrey", size = 5) + # ASE genes geom_rect(data = asePlotFilt, aes(xmin = as.integer(chr) + 0.1, xmax = (as.integer(chr) + 0.1 + percMax), ymin = pos, ymax = pos+1), fill = "#005f73", size = 0.25) + # centromeres geom_point(data = centPosFilt, aes(x = chr, y = centre), size = 5, colour = "black") + ylim(0, 250) + theme_classic() + theme(text = element_text(size=15),axis.line=element_blank(), axis.ticks.x=element_blank(), legend.position = "none")+ labs(x=NULL,y=NULL) } ## --------------------------------------------------------------------------- ## PLOT ## --------------------------------------------------------------------------- # put them together plot <- plot_grid(p1, p2, align = "v", axis = "l", nrow = 2) # save plot ggsave(plot, filename = paste0(opt$out,".pdf"), width = 10, height = 7, units = "in") |
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 | suppressMessages(library(optparse)) suppressMessages(library(dplyr)) suppressMessages(library(reshape2)) suppressMessages(library(prob)) suppressMessages(library(tidyr)) suppressMessages(library(MBASED)) suppressMessages(library(SummarizedExperiment)) suppressMessages(library(stats)) suppressMessages(library(tibble)) ## --------------------------------------------------------------------------- ## LOAD INPUT ## --------------------------------------------------------------------------- # Make help options option_list = list( make_option(c("-p", "--phase"), type="character", default=NULL, help="Phased VCF file (from WhatsHap)", metavar="character"), make_option(c("-r", "--rna"), type="character", default=NULL, help="Tumour RNA vcf file (from Strelka2)", metavar="character"), make_option(c("-o", "--outdir"), type="character", default = "mBASED", help="Output directory name", metavar="character"), make_option(c("-t", "--threads"), type="integer", default = "mBASED", help="Threads used for mbased", metavar="integer") ) # load in options opt_parser <- OptionParser(option_list=option_list) opt <- parse_args(opt_parser) out <- opt$outdir threads <- opt$threads ## --------------------------------------------------------------------------- ## USER FUNCTIONS ## --------------------------------------------------------------------------- # extract info from a list list_n_item <- function(list, n){ sapply(list, `[`, n) } # define function to print out the summary of ASE results summarizeASEResults_1s <- function(MBASEDOutput) { geneOutputDF <- data.frame( majorAlleleFrequency = assays(MBASEDOutput)$majorAlleleFrequency[,1], pValueASE = assays(MBASEDOutput)$pValueASE[,1], pValueHeterogeneity = assays(MBASEDOutput)$pValueHeterogeneity[,1]) geneAllele <- as.data.frame(assays(metadata(MBASEDOutput)$locusSpecificResults)$allele1IsMajor) %>% rownames_to_column(var = "rowname") %>% dplyr::mutate(gene = unlist(lapply(strsplit(rowname, split = ":"),function(x){x = x[1]}))) %>% dplyr::group_by(gene) %>% summarise(allele1IsMajor = unique(mySample)) geneOutputDF$allele1IsMajor <- geneAllele$allele1IsMajor[match(rownames(geneOutputDF), geneAllele$gene)] lociOutputGR <- rowRanges(metadata(MBASEDOutput)$locusSpecificResults) lociOutputGR$allele1IsMajor <- assays(metadata(MBASEDOutput)$locusSpecificResults)$allele1IsMajor[,1] lociOutputGR$MAF <- assays(metadata(MBASEDOutput)$locusSpecificResults)$MAF[,1] lociOutputList <- split(lociOutputGR, factor(lociOutputGR$aseID, levels=unique(lociOutputGR$aseID))) return( list( geneOutput=geneOutputDF, locusOutput=lociOutputList ) ) } ## --------------------------------------------------------------------------- ## READ IN THE RNA SNV CALLS ## --------------------------------------------------------------------------- # read in the RNA calls rna_filt <- read.delim(opt$rna, header = T, comment.char = "#", stringsAsFactors = F) colnames(rna_filt) <- c("CHROM", "POS", "AD","REF","ALT","gene", "gene_biotype") rna_filt$variant <- paste0(rna_filt$CHROM, ":", rna_filt$POS) ## --------------------------------------------------------------------------- ## EXTRACT REF/ALT READ COUNTS ## --------------------------------------------------------------------------- # Extract and add the read counts expr <- strsplit(rna_filt$AD, ",") rna_filt$REF.COUNTS <- as.numeric(list_n_item(expr, 1)) rna_filt$ALT.COUNTS <- as.numeric(list_n_item(expr, 2)) ## --------------------------------------------------------------------------- ## MBASED WITH OR WITHOUT PHASING ## --------------------------------------------------------------------------- ### WITH PHASING if (!is.null(opt$phase)){ ### ### PHASING ### # WhatsHap phased VCF from ONT sequencing pipeline wh <- read.delim(opt$phase, header = F, comment.char = "#", stringsAsFactors = F) colnames(wh) <- c("CHROM", "POS", "ID", "REF", "ALT", "QUAL", "FILTER", "INFO", "FORMAT", "SAMPLE") wh$variant <- paste0(wh$CHROM, ":", wh$POS) # remove unphased variants - phased variants have the pipe "|" symbol in column 10 - and remove indels wh <- wh[grep("|", wh$SAMPLE, fixed=TRUE),] wh <- wh %>% dplyr::filter(nchar(REF) == 1 & nchar(ALT) == 1) # add genotype from the SAMPLE column as a new column info2 <- strsplit(wh$SAMPLE, ":") wh$GT <- list_n_item(info2, 1) # Add the genotype from WhatsHap rna_filt$GT <- wh$GT[match(rna_filt$variant, wh$variant)] # Find unphased genes with one variant (test) singleUnphased <- rna_filt %>% mutate(phase = variant %in% wh$variant) %>% left_join(rna_filt %>% group_by(gene) %>% summarize(n=n())) %>% dplyr::filter(!phase & n == 1) # Add genotype to unphased gene with one variant (test) rna_filt$GT[which(rna_filt$variant %in% singleUnphased$variant)] <- "1|0" # annotate the phased variants as alleleA and alleleB rna_filt$alleleA <- ifelse(rna_filt$GT == "1|0", rna_filt$ALT, rna_filt$REF) rna_filt$alleleB <- ifelse(rna_filt$GT == "1|0", rna_filt$REF, rna_filt$ALT) # add the phased COUNTS variants as alleleA and alleleB rna_filt$alleleA.counts <- ifelse(rna_filt$GT == "1|0", rna_filt$ALT.COUNTS, rna_filt$REF.COUNTS) rna_filt$alleleB.counts <- ifelse(rna_filt$GT == "1|0", rna_filt$REF.COUNTS, rna_filt$ALT.COUNTS) # phased only variants rna_phased <- rna_filt[complete.cases(rna_filt),] # make SNV IDs rna_phased <- rna_phased %>% arrange(CHROM, POS) %>% group_by(gene) %>% mutate(label = paste0("SNV",1:n())) rna_phased$SNV.ID <- paste0(rna_phased$gene, ":", rna_phased$label) ### ### MBASED ### print("Beginning MBASED ...") # make the GRanges object of the loci mySNVs <- GRanges(seqnames=rna_phased$CHROM, ranges=IRanges(start=rna_phased$POS, width=1), aseID=rna_phased$gene, allele1=rna_phased$REF, allele2=rna_phased$ALT) names(mySNVs) <- rna_phased$SNV.ID # create input RangedSummarizedExperiment object mySample <- SummarizedExperiment( assays=list(lociAllele1Counts=matrix(rna_phased$alleleA.counts, ncol=1, dimnames=list(names(mySNVs),'mySample')), lociAllele2Counts=matrix(rna_phased$alleleB.counts, ncol=1, dimnames=list(names(mySNVs),'mySample'))), rowRanges=mySNVs ) # run MBASED ASEresults_1s_haplotypesKnown <- runMBASED(ASESummarizedExperiment=mySample, isPhased=TRUE, numSim=10^6, BPPARAM = MulticoreParam(workers = threads)) saveRDS(ASEresults_1s_haplotypesKnown, file=paste0(out, "/ASEresults_1s_haplotypesKnown.rds")) # extract results results <- summarizeASEResults_1s(ASEresults_1s_haplotypesKnown) # adjust the pvalue with BH correction results$geneOutput$padj <- p.adjust(p = results$geneOutput$pValueASE, method = "BH") results$geneOutput$significance <- as.factor(ifelse(results$geneOutput$padj < 0.05, "padj < 0.05", "padj > 0.05")) results$geneOutput$gene <- rownames(results$geneOutput) results$geneOutput$allele1IsMajor[results$geneOutput$gene %in% singleUnphased$gene] = NA # add the locus results$geneOutput$geneBiotype <- rna_filt$gene_biotype[match(results$geneOutput$gene, rna_filt$gene)] ### WITHOUT PHASING } else { # make SNV labels rna_filt <- rna_filt %>% arrange(CHROM, POS) %>% group_by(gene) %>% mutate(label = paste0("SNV",1:n())) rna_filt$SNV.ID <- paste0(rna_filt$gene, ":", rna_filt$label) ### ### MBASED ### print("Beginning MBASED ...") # make the GRanges object of the loci mySNVs <- GRanges(seqnames=rna_filt$CHROM, ranges=IRanges(start=rna_filt$POS, width=1), aseID=rna_filt$gene, allele1=rna_filt$REF, allele2=rna_filt$ALT) names(mySNVs) <- rna_filt$SNV.ID ## create input RangedSummarizedExperiment object mySample <- SummarizedExperiment( assays=list(lociAllele1Counts=matrix(rna_filt$REF.COUNTS, ncol=1, dimnames=list(names(mySNVs),'mySample')), lociAllele2Counts=matrix(rna_filt$ALT.COUNTS, ncol=1, dimnames=list(names(mySNVs),'mySample'))), rowRanges=mySNVs ) # run MBASED ASEresults_1s_haplotypesUnknown <- runMBASED(ASESummarizedExperiment=mySample, isPhased=FALSE, numSim=10^6, BPPARAM = MulticoreParam(workers = threads)) saveRDS(ASEresults_1s_haplotypesUnknown, file=paste0(out, "/ASEresults_1s_haplotypesUnknown.rds")) # extract results results <- summarizeASEResults_1s(ASEresults_1s_haplotypesUnknown) # adjust the pvalue with BH correction results$geneOutput$padj <- p.adjust(p = results$geneOutput$pValueASE, method = "BH") results$geneOutput$significance <- as.factor(ifelse(results$geneOutput$padj < 0.05, "padj < 0.05", "padj > 0.05")) results$geneOutput$gene <- rownames(results$geneOutput) # add the locus results$geneOutput$geneBiotype <- rna_filt$gene_biotype[match(results$geneOutput$gene, rna_filt$gene)] } # save the results saveRDS(results, file=paste0(out, "/MBASEDresults.rds")) print("Finished MBASED") |
7
of
src/mbased.snpEff.R
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | suppressMessages(library(tidyverse)) suppressMessages(library(optparse)) # Make help options option_list = list( make_option(c("-m", "--methyl"), type="character", default=NULL, help="Allelic methylation (from Nanomethphase)", metavar="character"), make_option(c("-o", "--outdir"), type="character", default = "mBASED", help="Output directory name", metavar="character") ) # load in options opt_parser <- OptionParser(option_list=option_list) opt <- parse_args(opt_parser) out <- opt$outdir dmr <- read.delim(opt$methyl, header = T, comment.char = "#", stringsAsFactors = F) dmr %>% dplyr::mutate(chr = case_when( grepl("^chr", chr) ~ chr, TRUE ~ paste0("chr", chr) )) %>% dplyr::select(chr, start, end, meanMethy1, meanMethy2, diff.Methy) %>% dplyr::mutate(start = gsub(" ", "", format(start, scientific=F), fixed = TRUE)) %>% dplyr::mutate(end = gsub(" ", "", format(end, scientific=F), fixed = TRUE)) %>% dplyr::mutate(meanMethy1 = format(meanMethy1, scientific = FALSE)) %>% dplyr::mutate(meanMethy2 = format(meanMethy2, scientific = FALSE)) %>% dplyr::mutate(diff.Methy = format(diff.Methy, scientific = FALSE)) %>% write.table(paste0(out, "/methyl.bed"), quote = F, sep = "\t", row.names = F, col.names = F) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | suppressMessages(library(optparse)) suppressMessages(library(tidyverse)) option_list = list( make_option(c("-a", "--annotation"), type="character", default=NULL, help="Annotation file", metavar="character"), make_option(c("-o", "--outdir"), type="character", default = NULL, help="output directory", metavar="character") ) # load in options opt_parser <- OptionParser(option_list=option_list) opt <- parse_args(opt_parser) annotation_path <- opt$annotation out <- opt$out read.delim(annotation_path, sep = "\t", header = T) %>% `colnames<-`(c("gene", "effect", "genotype", "filter" )) %>% dplyr::filter(filter == "PASS") %>% dplyr::filter(genotype == c("1|0", "0|1")) %>% dplyr::filter(effect != "stop_retained_variant") %>% dplyr::filter(grepl("stop", effect)) %>% distinct(gene, genotype, .keep_all = TRUE) %>% dplyr::mutate(stop_variant_allele = case_when( genotype == "0|1" ~ 2, TRUE ~ 1 )) %>% dplyr::select(gene, effect, stop_variant_allele) %>% write.table(paste0(out, "/stop_variant.tsv"), sep = "\t", quote = F, row.names = F, col.names = T) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 | suppressMessages(library(tidyverse)) suppressMessages(library(optparse)) # Make help options option_list = list( make_option(c("-c", "--cnv"), type="character", default=NULL, help="CNV bed file", metavar="character"), make_option(c("-m", "--methyl"), type="character", default=NULL, help="allelic methylation bed file", metavar="character"), make_option(c("-a", "--ase"), type="character", default=NULL, help="mbased ASE result", metavar="character"), make_option(c("-g", "--cancer"), type="character", default=NULL, help="cancer gene", metavar="character"), make_option(c("-s", "--sample"), type="character", default=NULL, help="Sample name", metavar="character"), make_option(c("-o", "--outdir"), type="character", default = NULL, help="Output directory name", metavar="character"), make_option(c("-t", "--tfbs"), type="character", default = NULL, help="Transcription Factor binding site", metavar="character"), make_option(c("-p", "--stop"), type="character", default = NULL, help="Stop Variants", metavar="character"), make_option(c("-n", "--snv"), type="character", default = NULL, help="Somatic SNV", metavar="character"), make_option(c("-i", "--indel"), type="character", default = NULL, help="Somatic Indel", metavar="character"), make_option(c("r-", "--tissue"), type="character", default = "allTissue", help="tissue name", metavar="character"), make_option(c("-N", "--normal"), type="character", default = NULL, help="Normal ASE", metavar="character"), make_option(c("-T", "--tumorContent"), type="double", default = 1.0, help="Tumor Content", metavar="character") ) # load in options opt_parser <- OptionParser(option_list=option_list) opt <- parse_args(opt_parser) out <- opt$outdir sample <- opt$sample cnv_path <- opt$cnv methyl_path <- opt$methyl tfbs_path <- opt$tfbs stop_path <- opt$stop snv_path <- opt$snv indel_path <- opt$indel cancer_path <- opt$cancer normal_path <- opt$normal tissue <- opt$tissue tumorContent <- opt$tumorContent ase <- read.delim(opt$ase, header = T, comment.char = "#", stringsAsFactors = F) ########## # CNV ########## if (is.null(cnv_path) | cnv_path == "") { cnv <- data.frame(gene = ase$gene) } else { normal <- read.delim(normal_path, sep = "\t", header = F, comment.char = "#") %>% `colnames<-`(.[1, ]) %>% .[-1, ] %>% dplyr::select(gene, tissue) %>% `colnames<-`(c("gene", "normalMAF")) cnv <- read.delim(cnv_path, header = F, comment.char = "#") %>% dplyr::select(V4, V8, V9, V11) %>% dplyr::mutate(V8 = as.numeric(V8)) %>% dplyr::mutate(V9 = as.numeric(V9)) %>% dplyr::mutate(V11 = as.numeric(V11)) %>% `colnames<-`(c("gene", "cnv.A", "cnv.B", "expectedMAF")) %>% group_by(gene) %>% summarize(cnv.A = mean(cnv.A), cnv.B = mean(cnv.B), expectedMAF = mean(expectedMAF)) %>% dplyr::mutate(cnv_state = case_when( cnv.A == 0 | cnv.B == 0 ~ "LOH", abs(cnv.A - cnv.B) <= 1 ~ "balance", TRUE ~ "imbalance" )) %>% left_join(normal, by = "gene") %>% dplyr::mutate(normalMAF = as.numeric(normalMAF)) %>% dplyr::mutate(expectedMAF = ((pmax(cnv.A,cnv.B)/(cnv.A + cnv.B))*tumorContent) + ((1-tumorContent) * normalMAF)) %>% dplyr::select("gene", "cnv.A", "cnv.B", "cnv_state", "expectedMAF") } ########## # DMR ########## if ( is.null(methyl_path) | methyl_path == "") { dmr <- data.frame(gene = ase$gene) } else { dmr <- read.delim(methyl_path, header = F, comment.char = "#", stringsAsFactors = F) %>% dplyr::filter(V5 != ".") %>% dplyr::select(V4, V8, V9, V10) %>% `colnames<-`(c("gene", "methyl.A", "methyl.B", "diff.Methyl")) %>% dplyr::mutate(diff.Methyl = as.numeric(diff.Methyl)) %>% group_by(gene) %>% summarize(minimum = min(diff.Methyl), maximum = max(diff.Methyl)) %>% dplyr::mutate(methyl_state = case_when( (minimum < 0) & (maximum < 0) ~ minimum, (minimum > 0) & (maximum > 0) ~ maximum, TRUE ~ ifelse((abs(minimum) > maximum), minimum, maximum) )) %>% dplyr::select(gene, methyl_state) } ######################################## # Transcription Factor Binding Site ######################################## if (is.null(tfbs_path) | tfbs_path == "") { tfbs <- data.frame(gene = ase$gene) } else { tfbs <- read.delim(tfbs_path, header = T, comment.char = "#") %>% `colnames<-`(c("transcriptionFactor", "gene", "tf_allele")) %>% dplyr::select(gene, transcriptionFactor, tf_allele) %>% group_by(gene) %>% mutate(transcriptionFactor = paste(transcriptionFactor, collapse=",")) %>% mutate(tf_allele = paste(tf_allele, collapse=",")) %>% distinct() } ########################## # Stop Variants ########################## if (is.null(stop_path) | stop_path == "") { stopVar <- data.frame(gene = ase$gene) } else { stopVar <- read.delim(stop_path, header = T, comment.char = "#") %>% dplyr::select(gene, stop_variant_allele) } ########################## # Somatic SNV ########################## if (is.null(snv_path) | snv_path == "") { snv <- data.frame(gene = ase$gene) } else { snv_gene <- read.delim(snv_path, header = F, comment.char = "#") %>% pull(V4) %>% unique() snv <- data.frame(gene = ase$gene) %>% dplyr::mutate(somaticSNV = gene %in% snv_gene) } ########################## # Somatic Indel ########################## if (is.null(indel_path) | indel_path == "") { indel <- data.frame(gene = ase$gene) } else { indel_gene <- read.delim(indel_path, header = F, comment.char = "#") %>% pull(V4) %>% unique() indel <- data.frame(gene = ase$gene) %>% dplyr::mutate(somaticIndel = gene %in% indel_gene) } ########################## # Cancer ########################## if (is.null(cancer_path) | cancer_path == "") { cancer <- data.frame(gene = ase$gene) } else { Can_genes <- read.delim(cancer_path, sep = "\t", header = F, comment.char = "#") %>% pull() cancer <- data.frame(gene = ase$gene) %>% dplyr::mutate(cancer_gene = gene %in% Can_genes) } ########################## # Normal ASE ########################## if (is.null(tissue) | tissue == "") { normal <- data.frame(gene = ase$gene) } else { normal <- read.delim(normal_path, sep = "\t", header = F, comment.char = "#") %>% `colnames<-`(.[1, ]) %>% .[-1, ] %>% dplyr::select(gene, tissue) %>% `colnames<-`(c("gene", "normalMAF")) } ########################## # Summary Table ########################## summary_table <- ase %>% dplyr::select(gene, RPKM, allele1IsMajor, majorAlleleFrequency, padj, aseResults) %>% dplyr::rename("expression" = RPKM) %>% left_join(cnv, by = "gene") %>% left_join(dmr, by = "gene") %>% left_join(tfbs, by = "gene") %>% left_join(stopVar, by = "gene") %>% left_join(snv, by = "gene") %>% left_join(indel, by = "gene") %>% left_join(cancer, by = "gene") %>% left_join(normal, by = "gene") %>% dplyr::mutate(sample = sample) %>% dplyr::mutate(tumorContent = tumorContent) %>% write.table(paste0(out, "/summaryTable.tsv"), sep = "\t", quote = F, row.names = F, col.names = T) |
Support
- Future updates
Related Workflows





