Long Read Pipeline with Alignment and Dependency Information
Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
long read pipeline
:speech_balloon: Introduction
The module consists of alignment ....
:heavy_exclamation_mark: Dependencies
In order to use this module, the following dependencies are required:
:school_satchel: Preparations
Sample data
Input data should be added to
samples.tsv
and
units.tsv
. The following information need to be added to these files:
Column Id | Description |
---|---|
samples.tsv
|
|
sample | unique sample/patient id, one per row |
units.tsv
|
|
sample |
same sample/patient id as in
samples.tsv
|
type | data type identifier (one letter), can be one of T umor, N ormal, R NA |
platform |
type of sequencing platform, e.g.
NovaSeq
|
machine |
specific machine id, e.g. NovaSeq instruments have
@Axxxxx
|
flowcell | identifer of flowcell used |
lane | flowcell lane number |
barcode |
sequence library barcode/index, connect forward and reverse indices by
+
, e.g.
ATGC+ATGC
|
fastq1/2 | absolute path to forward and reverse reads |
adapter | adapter sequences to be trimmed, separated by comma |
:white_check_mark: Testing
The workflow repository contains a small test dataset
.tests/integration
which can be run like so:
$ cd .tests/integration
$ snakemake -s ../../Snakefile -j1 --use-singularity
:rocket: Usage
To use this module in your workflow, follow the description in the
snakemake docs
. Add the module to your
Snakefile
like so:
module prealignment:
snakefile:
github(
"long_read",
path="workflow/Snakefile",
tag="1.0.0",
)
config:
config
use rule * from long_read as long_read_*
Output files
The following output files should be targeted via another rule:
File | Description |
---|---|
long_read/PATH/FILE
|
DESCRIPTION |
:judge: Rule Graph
Code Snippets
33 34 | wrapper: "v1.28.0/bio/minimap2/aligner" |
32 33 34 35 36 37 | shell: "(pbsv discover " "{input.bam} " "{output.svsig} " "{params.extra}) " "&> {log}" |
68 69 70 71 72 73 74 | shell: "(pbsv call " "{input.ref} " "-r {input.svsig} " "{output.vcf} " "{params.extra} " "&> {log}" |
31 32 33 34 35 36 37 | script: "sniffles -i {input.bam} " "--reference {input.fasta} " "-t {threads} " "{params.non_germline} " "{params.extra} " "-v {output.vcf} &> {log} " |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | __author__ = "Tom Poorten" __copyright__ = "Copyright 2017, Tom Poorten" __email__ = "tom.poorten@gmail.com" __license__ = "MIT" from os import path from snakemake.shell import shell from snakemake_wrapper_utils.samtools import infer_out_format from snakemake_wrapper_utils.samtools import get_samtools_opts samtools_opts = get_samtools_opts(snakemake, parse_output=False) extra = snakemake.params.get("extra", "") log = snakemake.log_fmt_shell(stdout=False, stderr=True) sort = snakemake.params.get("sorting", "none") sort_extra = snakemake.params.get("sort_extra", "") out_ext = infer_out_format(snakemake.output[0]) pipe_cmd = "" if out_ext != "PAF": # Add option for SAM output extra += " -a" # Determine which pipe command to use for converting to bam or sorting. if sort == "none": if out_ext != "SAM": # Simply convert to output format using samtools view. pipe_cmd = f"| samtools view -h {samtools_opts}" elif sort in ["coordinate", "queryname"]: # Add name flag if needed. if sort == "queryname": sort_extra += " -n" # Sort alignments. pipe_cmd = f"| samtools sort {sort_extra} {samtools_opts}" else: raise ValueError(f"Unexpected value for params.sort: {sort}") shell( "(minimap2" " -t {snakemake.threads}" " {extra} " " {snakemake.input.target}" " {snakemake.input.query}" " {pipe_cmd}" " > {snakemake.output[0]}" ") {log}" ) |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Created: 1yr ago
Updated: 1yr ago
Maitainers:
public
URL:
https://github.com/hydra-genetics/long_read
Name:
long_read
Version:
1
Accessed: 8
Downloaded:
0
Copyright:
Public Domain
License:
GNU General Public License v3.0
- Future updates
Related Workflows

ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...

Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...

snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...

ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics

RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...

This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...