Low-Pass Whole Genome Sequencing Copy Number Calling Workflow (LPWGS)
Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output, operation
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
This is a snakemake workflow to get copy number calls from low-pass whole genome sequencing. It aligns fastq files, performs some QC and then runs QDNAseq.
Usage
Step 1: Install workflow
If you simply want to use this workflow, download and extract the latest release . If you intend to modify and further extend this workflow or want to work under version control, fork this repository as outlined in Advanced . The latter way is recommended.
Step 2: Configure workflow
Configure the workflow according to your needs via editing the file
config.yaml
.
Step 3: Execute workflow
Make sure you have snakemake installed on your hpc. If running on apocrita (QMUL hpc) you may need to install it in an environment. eg I run the following to activate an environment with snakemake installed.
source /data/home/hfx042/bin/snakemake/bin/activate
Code Snippets
13 14 15 16 17 18 19 20 21 22 23 24 | shell: """ echo "Merging fastq files R1" echo "fastq files: " echo {input.R1} cat {input.R1} > {output.tempfastqR1} echo "Merging fastq files R2" echo "fastq files: " echo {input.R2} cat {input.R2} > {output.tempfastqR2} echo "Finished merging fastqfiles" """ |
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 | shell: """ module load bwa/0.7.15 module load samtools/1.8 bwa mem -M -t {threads} \ {params.genome} \ {input.tempfastqR1} {input.tempfastqR2} | \ samtools view -S -b - > {output}.temp.bam module load java java -jar -Xmx2G {params.picard} AddOrReplaceReadGroups \ I={output}.temp.bam \ O={output} \ RGID={wildcards.sample} \ RGLB={wildcards.sample} \ RGPL=ILLUMINA \ RGSM={wildcards.sample} \ RGPU={wildcards.sample} rm {input.tempfastqR1} rm {input.tempfastqR2} rm {output}.temp.bam """ |
68 69 70 71 72 73 74 75 | shell: """ module load java java -jar -Xmx4G {params.picard} SortSam \ INPUT={input.bam} \ OUTPUT={output.bam} \ SORT_ORDER=coordinate """ |
86 87 88 89 90 91 92 93 94 95 96 97 98 | shell: """ module load java java -jar -Xmx4G {params.picard} MarkDuplicates \ INPUT={input.bam} \ OUTPUT={output.bam} \ METRICS_FILE={output.metrics}.temp \ CREATE_INDEX=true \ REMOVE_DUPLICATES=true grep -A2 "## METRICS" {output.metrics}.temp | tail -n +1 > {output.metrics} rm {output.metrics}.temp """ |
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | shell: """ module load R module load singularity singularity exec {params.singularityimage} \ Rscript {params.pipelinedirectory}/scripts/QDNAseq.R \ --bamfiles {input.bams} \ --binsize {params.binsize} \ --plotdir {output.plotdir} \ --Rdata {output.Rdata} \ --segmentfile {output.segmentfile} \ --pipelinedirectory {params.pipelinedirectory} \ --filter "" """ |
13 14 15 16 17 18 19 | shell: """ echo "Loading fastQC" module load fastqc fastqc {input.R1} -o {output} fastqc {input.R2} -o {output} """ |
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | shell: """ longLine="--------------------" module load java module load R msg="Run picard CollectWGSMetrics"; echo "-- $msg $longLine"; >&2 echo "-- $msg $longLine" java -jar -Xmx4G {params.picard} CollectWgsMetrics \ INPUT={input.bam} \ OUTPUT={output.metricsWGS}.temp \ R={params.genome} grep -A2 "## METRICS" {output.metricsWGS}.temp | tail -n +1 > {output.metricsWGS} rm {output.metricsWGS}.temp msg="Run picard insertsize metrics"; echo "-- $msg $longLine"; >&2 echo "-- $msg $longLine" java -jar -Xmx4G {params.picard} CollectInsertSizeMetrics \ INPUT={input.bam} \ OUTPUT={output.metricsInsert}.temp \ H={output.metricsInsert}.pdf grep -A2 "## METRICS" {output.metricsInsert}.temp | tail -n +1 > {output.metricsInsert} rm {output.metricsInsert}.temp msg="Run picard CollectAlignmentSummaryMetrics"; echo "-- $msg $longLine"; >&2 echo "-- $msg $longLine" java -jar -Xmx4G {params.picard} CollectAlignmentSummaryMetrics \ INPUT={input.bam} \ OUTPUT={output.metricsAlign}.temp \ ADAPTER_SEQUENCE=[CTGTCTCTTATA,TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG,GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG,AGATCGGAAGAGC,ACGCTCTTCCGATCT] \ R={params.genome} grep -A2 "## METRICS" {output.metricsAlign}.temp | tail -n +1 > {output.metricsAlign} rm {output.metricsAlign}.temp msg="Run picard QualityScoreDistribution"; echo "-- $msg $longLine"; >&2 echo "-- $msg $longLine" java -jar -Xmx4G {params.picard} QualityScoreDistribution \ INPUT={input.bam} \ OUTPUT={output.metricsQS} \ CHART={output.metricsQS}.pdf """ |
66 67 68 69 70 71 72 73 74 75 76 | shell: """ module load singularity singularity exec {params.singularityimage} \ Rscript {params.pipelinedirectory}/scripts/combineQC.R \ --WGS {input.metricsWGS} \ --insertsize {input.metricsInsert} \ --align {input.metricsAlign} \ --dedup {input.metricsDedup} \ --output {output} """ |
13 14 15 16 17 18 19 20 21 22 23 24 25 | shell: """ #mkdir {output.plotdir} module load singularity singularity exec {params.singularityimage} \ Rscript {params.pipelinedirectory}/scripts/report.R \ --QC {input.QC} \ --output {output.report} \ --CNA {input.CNA} \ --plotdir {output.plotdir} \ --pipelinedirectory {params.pipelinedirectory} \ --readscutoff {params.readscutoff} """ |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 | library(dplyr) library(readr) library(tidyr) library(stringr) library(argparse) parser <- ArgumentParser(description = "Parse arguments to combine QC metrics") parser$add_argument('--WGS', type = 'character', help="List of WGS file metrics", default = NULL, nargs = "+") parser$add_argument('--insertsize', type = 'character', help="List of WGS file metrics", default = NULL, nargs = "+") parser$add_argument('--align', type = 'character', help="List of WGS file metrics", default = NULL, nargs = "+") parser$add_argument('--dedup', type = 'character', help="List of WGS duplication metrics", default = NULL, nargs = "+") parser$add_argument('--output', type = 'character', help="List of WGS file metrics") args <- parser$parse_args() dfWGS <- data.frame() for (file in args$WGS){ print(file) metrics <- read.table(file, sep="\t" , header=T) samplename = strsplit(basename(file),"[.]")[[1]][1] dfWGS <- rbind(dfWGS, metrics %>% mutate(samplename = samplename)) } print(dfWGS) dfinsertsize <- data.frame() for (file in args$insertsize){ print(file) metrics <- read.table(file, sep="\t" , header=T) samplename = strsplit(basename(file),"[.]")[[1]][1] dfinsertsize <- rbind(dfinsertsize, metrics %>% mutate(samplename = samplename)) } print(dfinsertsize) dfalign <- data.frame() for (file in args$align){ print(file) metrics <- read.table(file, sep="\t" , header=T) samplename = strsplit(basename(file),"[.]")[[1]][1] dfalign <- rbind(dfalign, metrics %>% mutate(samplename = samplename)) } print(dfalign) dfdedup <- data.frame() for (file in args$dedup){ print(file) metrics <- read.table(file, sep="\t" , header=T) samplename = strsplit(basename(file),"[.]")[[1]][1] dfdedup <- rbind(dfdedup, metrics %>% mutate(samplename = samplename)) } print(dfdedup) #df <- bind_cols(dfWGS, dfinsertsize, dfalign, dfdedup) df <- dfWGS %>% left_join(., dfinsertsize) %>% left_join(., dfalign) %>% left_join(., dfdedup %>% select(-LIBRARY)) write_csv(df, args$output) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 | library(QDNAseq) library(methods) library(dplyr) library(argparse) library(stringr) parser <- ArgumentParser(description = "Parse arguments for QDNAseq analysis") parser$add_argument('--binsize', type = 'double', help="Binsize for QDNAseq run", default = 500) parser$add_argument('--bamfiles', type = 'character', help="List of bam files to process", default = NULL, nargs = "+") parser$add_argument('--plotdir', type = 'character', help="Plotting directory", default = NULL) parser$add_argument('--Rdata', type = 'character', help="Rdata file", default = NULL) parser$add_argument('--segmentfile', type = 'character', help="Text file for segments", default = NULL) parser$add_argument('--pipelinedirectory', type = 'character', help="Pipeline directory", default = NULL) parser$add_argument('--filter', type = 'character',nargs = "+", help="Text file for segments", default = NULL) args <- parser$parse_args() source(paste0(args$pipelinedirectory, "/scripts/blacklist.R")) #outdir <- dirname(args$Rdata) #directory to store plots #plotdir <- paste0(args$plotdir, "binsize", as.numeric(binsize)) plotdir <- args$plotdir print(plotdir) print(paste0("Number of bam files: ", length(args$bamfiles))) if (dir.exists(plotdir) == FALSE){ dir.create(plotdir, recursive = T) } args$filter <- paste0(gsub(",", "[0-9]+|", args$filter), "[0-9]+") print(args$filter) print(str_detect(args$bamfiles, args$filter)) args$bamfiles <- args$bamfiles[str_detect(args$bamfiles, args$filter)] print(args$bamfiles) basenames <- basename(args$bamfiles) basenames <- sub(sprintf('[\\.]?%s$', "bam"), '', basenames) bamnames <- c() bamnames <- basenames #for (i in basenames){ # x <-strsplit(i, "-")[[1]] # bamnames <- c(bamnames, x[length(x)]) #} print(bamnames) #download bin annotations bins <- getBinAnnotations(binSize = as.numeric(args$binsize)) binsnew <- bins #remove bins in the following regions regions <- cbind(c(6, 4, 17), c(28500001, 69200001, 43900000), c(33500000, 69300000, 44100001)) binsnew$blacklist <- calculateBlacklistByRegions(binsnew, regions) bins@data <- left_join(bins@data, binsnew@data, by = c("chromosome", "start", "end", "bases", "gc", "mappability", "residual", "use")) %>% mutate(blacklist = blacklist.x, blacklist = ifelse(blacklist.y > 0, blacklist.y, blacklist)) %>% select(-blacklist.x, -blacklist.y) #load sequencing data readCounts <- binReadCounts(bins, bamfiles=args$bamfiles, bamnames = bamnames, pairedEnds = TRUE) #plot raw readcounts pdf(paste(plotdir,"/","raw_profile",".pdf",sep=""),7,4) plot(readCounts, logTransform=FALSE, ylim=c(-10, 50),main=paste("Raw Profile ",sep="")) highlightFilters(readCounts, logTransform=FALSE,residual=TRUE, blacklist=TRUE) dev.off() #apply filters and plot median read counts per bin as a function of GC content and mappability readCountsFiltered <- applyFilters(readCounts, residual=TRUE, blacklist=TRUE) pdf(paste(plotdir,"/","isobar",".pdf",sep=""),7,4) isobarPlot(readCountsFiltered) dev.off() #Estimate the correction for GC content and mappability, and make a plot for the relationship between the #observed standard deviation in the data and its read depth readCountsFiltered <- estimateCorrection(readCountsFiltered) pdf(paste(plotdir,"/","noise",".pdf",sep=""),7,4) noisePlot(readCountsFiltered) dev.off() #apply the correction for GC content and mappability which we then normalize, smooth outliers, calculate segmentation #and plot the copy number profile copyNumbers <- correctBins(readCountsFiltered) copyNumbersNormalized <- normalizeBins(copyNumbers) copyNumbersSmooth <- smoothOutlierBins(copyNumbersNormalized) pdf(paste(plotdir,"/","copy_number_profile",".pdf",sep=""),7,4) plot(copyNumbersSmooth, ylim=c(-2,2)) dev.off() copyNumbersSegmented <- segmentBins(copyNumbersSmooth) print("bins segmented") copyNumbersSegmented <- normalizeSegmentedBins(copyNumbersSegmented) pdf(paste(plotdir,"/","segments",".pdf",sep=""),7,4) plot(copyNumbersSegmented, ylim=c(-2,2), gaincol = "firebrick3", losscol = "dodgerblue3", delcol="dodgerblue4", ampcol = "firebrick4") dev.off() copyNumbersCalled <- callBins(copyNumbersSegmented) pdf(paste(plotdir,"/","copy_numbercalls",".pdf",sep=""),7,4) plot(copyNumbersCalled, ylim=c(-2,2), gaincol = "firebrick3", losscol = "dodgerblue3", delcol="dodgerblue4", ampcol = "firebrick4") dev.off() output <- list(readCounts = readCounts, readCountsFiltered = readCountsFiltered, copyNumbers = copyNumbers, copyNumbersNormalized = copyNumbersNormalized, copyNumbersSmooth = copyNumbersSmooth, copyNumbersSegmented = copyNumbersSegmented, copyNumbersCalled = copyNumbersCalled) saveRDS(output, file = args$Rdata) exportBins(copyNumbersSmooth, file=args$segmentfile) pdf(paste(plotdir,"/","frequencyplot",".pdf",sep=""),7,4) frequencyPlot(copyNumbersCalled, gaincol = "firebrick3", losscol = "dodgerblue3", delcol="dodgerblue4", ampcol = "firebrick4") dev.off() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | library(tidyverse) library(rmarkdown) library(argparse) library(cowplot) parser <- ArgumentParser(description = "Parse arguments for QC metrics") parser$add_argument('--output', type = 'character', help="Output html file") parser$add_argument('--QC', type = 'character', help="QC file") parser$add_argument('--CNA', type = 'character', help="CNA file") parser$add_argument('--plotdir', type = 'character', help="Plotting directory") parser$add_argument('--pipelinedirectory', type = 'character', help="Pipeline directory", default = NULL) parser$add_argument('--readscutoff', type = 'character', help="Cut off to exclude reads from samples") args <- parser$parse_args() print(args) dfQC <- read_csv(args$QC) CNA <- readRDS(args$CNA) print(dfQC) print(typeof(args$readscutoff)) render(paste0(args$pipelinedirectory, "/scripts/report-basic.Rmd"), "html_document", output_dir = dirname(args$output), output_file = basename(args$output), intermediates_dir = dirname(args$output), clean = FALSE, params = list(dfQC = dfQC, CNA = CNA, plotdir = args$plotdir, readscutoff = args$readscutoff)) |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Created: 1yr ago
Updated: 1yr ago
Maitainers:
public
URL:
https://github.com/marcjwilliams1/lpWGS
Name:
lpwgs
Version:
1
Downloaded:
0
Copyright:
Public Domain
License:
MIT License
Keywords:
- Future updates
Related Workflows

ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...

Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...

snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...

ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics

RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...

This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...