mgi-ncov19 Snakemake COVID-19 Analysis Pipeline with Classification and De Novo Assembly
Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output, operation
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
This snakemake pipeline can conduct cov-19 virus classification, de novo assembly, coverage assessment and variant calling.
The pipeline is built according to https://github.com/BGI-IORI/nCoV_Meta (preprint: https://doi.org/10.1101/2020.03.16.993584)
Differences between mgi-ncov19-snakemake and nCoV_Meta:
-
low complexity reads removal were implemented with fastp (bgi: prinSEQ)
-
kraken2 was employed in this snakemake pipeline (bgi: kraken1)
-
SOAPnuke v2 (bgi: SOAPnuke v1) (better to change to SOAPnuke v1)
-
not yet finished with the alignment and variant calling steps.
updated: 2020-04-14
Usage:
0. Install Conda and Snakemake
1. Clone workflow
git clone git@github.com:huyue87/mgi-ncov19-snakemake
2. Execute workflow
# 2.1 load input files (paired-end raw reads)
cd mgi-ncov19-snakemake/input
ln -s Sample_{1,2}.fq.gz .
# 2.2 run de novo assembly and generating sam files
cd mgi-ncov19-snakemake
snakemake --use-conda -n
snakemake --use-conda
Code Snippets
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 | shell: """ kraken2 \ --db {params.db} \ --threads {threads} \ --output {output.kraken}\ --report {output.kreport}\ --classified-out {params.classified} \ --unclassified-out {params.unclassified}\ --paired \ {input.read1} {input.read2} 2> {log.stderr} pigz \ --processes {threads} \ --verbose \ --force \ {params.fq_to_compress} \ 2> {log.stderr} """ |
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 | shell: """ fastp \ -q 20 -u 20 -n 1 -l 50 \ -i {input.read1} \ -I {input.read2}\ -o {output.read1}\ -O {output.read2}\ -j {output.json}\ -h {output.html}\ --adapter_sequence AAGTCGGAGGCCAAGCGGTCTTAGGAAGACAA \ --adapter_sequence_r2 AAGTCGGATCGTAGCCATGTCGTTCTGTGAGCCAAGGAGTTG \ --detect_adapter_for_pe \ --disable_trim_poly_g \ --thread {threads}\ --low_complexity_filter \ --complexity_threshold 7 \ > {log.stdout} \ 2> {log.stderr} """ |
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 | shell: """ SOAPnuke filter \ -f AAGTCGGAGGCCAAGCGGTCTTAGGAAGACAA \ -r AAGTCGGATCGTAGCCATGTCGTTCTGTGAGCCAAGGAGTTG \ -l 20 -q 0.2 -n 0.02 -5 0 -Q 2 -G 2 \ --fq1 {input.read1} \ --fq2 {input.read2}\ --cleanFq1 {params.clean1} \ --cleanFq2 {params.clean2} \ --outDir {params.outdir} \ -T {threads} \ > {log.stdout} \ 2> {log.stderr} """ |
153 154 155 156 157 158 159 160 161 162 | shell: """ spades.py \ -1 {input.read1} \ -2 {input.read2} \ -o {params.outdir} \ -t {threads} \ > {log.stdout} \ 2> {log.stderr} """ |
180 181 182 183 184 185 186 187 188 189 | shell: """ bwa aln -t 4 \ {params.db} {input.read1} > {output.bwa1}\ 2>{log.stderr1} bwa aln -t 4 \ {params.db} {input.read2} > {output.bwa2}\ 2>{log.stderr2} """ |
207 208 209 210 211 212 213 | shell: """ bwa sampe {params.db} \ {input.bwa1} {input.bwa2} {input.read1} {input.read2}\ >{output.sam} \ 2>{log.stderr} """ |
226 227 228 229 230 231 232 233 234 235 | shell: """ perl scripts/BWA_sam_Filter_identity_cvg.pl \ -i {input} \ -o {output}\ -m 0.95 \ -s 0.90 \ > {log.stdout}\ 2> {log.stderr} """ |
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 | shell: """ samtools view -bt $DB.fai {input} > {output.L178} samtools sort -n {output.L178} | samtools fixmate: - {output.L179} samtools flagstat {output.L179} > {output.L180} samtools sort {output.L179} -o {output.L181} --reference {params.db} samtools index {output.L181} java -jar bin/picard.jar \ MarkDuplicates AS=TRUE \ VALIDATION_STRINGENCY=LENIENT \ MAX_FILE_HANDLES_FOR_READ_ENDS_MAP=1000 \ REMOVE_DUPLICATES=TRUE INPUT={output.L181} \ OUTPUT={output.L183a} \ METRICS_FILE={output.L183b} \ > {log.stdout} \ 2> {log.stderr} """ |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Created: 1yr ago
Updated: 1yr ago
Maitainers:
public
URL:
https://github.com/ctmrbio/mgi-ncov19-snakemake
Name:
mgi-ncov19-snakemake
Version:
1
Downloaded:
0
Copyright:
Public Domain
License:
None
- Future updates
Related Workflows

ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...

Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...

snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...

ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics

RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...

This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...