MToolBox pipeline written in snakemake to allow a better scalability
This is an work-in-progress update of MToolBox ( PMID:25028726 ). Please find more at the official documentation .
Code Snippets
99 100 101 102 103 | shell: """ mkdir -p {params.outDir} fastqc -t {threads} -o {params.outDir} {input} &> {log} """ |
119 120 121 122 123 | shell: """ #module load gsnap gmap_build -D {params.gmap_db_dir} -d {params.gmap_db} -s none {input.mt_genome_fasta} &> {log} """ |
145 146 147 148 149 150 | shell: """ cat {input.mt_genome_fasta} {input.n_genome_fasta} > {output.mt_n_fasta} gmap_build -D {params.gmap_db_dir} -d {params.gmap_db} -s none {output.mt_n_fasta} &> {log} # rm {input.mt_genome_fasta}_{input.n_genome_fasta}.fasta """ |
172 173 174 175 176 177 178 | shell: """ mkdir -p {params.outDir} fastqc -t {threads} -o {params.outDir} {input} &> {log} """ |
208 209 210 211 | run: #trimmomatic_adapters_path = get_trimmomatic_adapters_path() shell("export tap=$(which trimmomatic | sed 's/bin\/trimmomatic/share\/trimmomatic\/adapters\/TruSeq3-PE.fa/g'); trimmomatic PE {params.options} -threads {threads} {input.R1} {input.R2} {params.out1P} {params.out1U} {params.out2P} {params.out2U} ILLUMINACLIP:$tap:2:30:10 {params.processing_options} &> {log}") shell("zcat {params.out1U} {params.out2U} | gzip > {output.out1U} && rm {params.out1U} {params.out2U}") |
234 235 236 237 238 239 240 241 242 243 | run: if seq_type == "pe": print("PE mode") shell("gsnap -D {params.gmap_db_dir} -d {params.gmap_db} -o {params.uncompressed_output} -A sam --gunzip --nofails --pairmax-dna=500 --query-unk-mismatch=1 {params.RG_tag} -n 1 -Q -O -t {threads} {input[0]} {input[1]} &> {log} && gzip {params.uncompressed_output} &>> {log}") if seq_type == "se": print("SE mode") shell("gsnap -D {params.gmap_db_dir} -d {params.gmap_db} -o {params.uncompressed_output} -A sam --gunzip --nofails --pairmax-dna=500 --query-unk-mismatch=1 {params.RG_tag} -n 1 -Q -O -t {threads} {input[0]} &> {log} && gzip {params.uncompressed_output} &>> {log}") elif seq_type == "both": print("PE + SE mode") shell("gsnap -D {params.gmap_db_dir} -d {params.gmap_db} -o {params.uncompressed_output} -A sam --gunzip --nofails --pairmax-dna=500 --query-unk-mismatch=1 {params.RG_tag} -n 1 -Q -O -t {threads} {input[0]} {input[1]} {input[2]} &> {log} && gzip {params.uncompressed_output} &>> {log}") |
257 258 259 | run: sam_to_fastq(samfile=input.outmt_sam, outmt1=output.outmt1, outmt2=output.outmt2, outmt=output.outmt) |
283 284 285 286 287 | run: if os.path.isfile(input.outmt): shell("gsnap -D {params.gmap_db_dir} -d {params.gmap_db} -o {params.uncompressed_output} --gunzip -A sam --nofails --query-unk-mismatch=1 -O -t {threads} {input.outmt} &> {log.logS} && gzip {params.uncompressed_output} &>> {log.logS}") else: open(output.outS, 'a').close() |
314 315 316 317 318 | run: if os.path.isfile(input.outmt1): shell("gsnap -D {params.gmap_db_dir} -d {params.gmap_db} -o {params.uncompressed_output} --gunzip -A sam --nofails --query-unk-mismatch=1 -O -t {threads} {input.outmt1} {input.outmt2} &> {log.logP} && gzip {params.uncompressed_output} &>> {log.logP}") else: open(output.outP, 'a').close() |
332 333 334 335 336 337 | run: filter_alignments(outmt=input.outmt, outS=input.outS, outP=input.outP, OUT=output.sam, ref_mt_fasta=params.ref_mt_fasta) |
348 349 350 351 | shell: """ zcat {input.sam} | samtools view -b -o {output} - &> {log} """ |
364 365 366 367 368 | shell: """ samtools sort -o {output.sorted_bam} -T {params.TMP} {input.bam} &> {log} # samtools sort -o {output.sorted_bam} -T ${{TMP}} {input.bam} """ |
381 382 383 384 385 386 387 388 389 390 391 392 393 | run: if params.mark_duplicates == True: shell("picard MarkDuplicates \ INPUT={input.sorted_bam} \ OUTPUT={output.sorted_bam_md} \ METRICS_FILE={output.metrics_file} \ ASSUME_SORTED=true \ REMOVE_DUPLICATES=true \ TMP_DIR={params.TMP}") else: shutil.copy2(input.sorted_bam, output.sorted_bam_md) with open(output.metrics_file, "w") as f: f.write("") |
407 408 409 410 411 | shell: """ samtools merge {output.merged_bam} {input} &> {log} samtools index {output.merged_bam} {output.merged_bam_index} """ |
421 422 423 424 | shell: """ samtools faidx {input.mt_n_fasta} &> {log} """ |
434 435 | run: shell("picard CreateSequenceDictionary R={input.mt_n_fasta} O={output.genome_dict}") |
450 451 452 453 454 455 456 457 458 | shell: """ java -Xmx6G -jar {params.source_dir}/modules/GenomeAnalysisTK.jar \ -R {input.mt_n_fasta} \ -T LeftAlignIndels \ -I {input.merged_bam} \ -o {output.merged_bam_left_realigned} \ --filter_reads_with_N_cigar """ |
472 473 474 475 | shell: """ samtools mpileup -B -f {params.genome_fasta} -o {output.pileup} {input.merged_bam} &> {log} """ |
488 489 490 | run: mt_table_data = pileup2mt_table(pileup=input.pileup, ref_fasta=params.ref_mt_fasta) write_mt_table(mt_table_data=mt_table_data, mt_table_file=output.mt_table) |
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 | run: # function (and related ones) from mtVariantCaller # vcf_dict = mtvcf_main_analysis(sam_file = input.sam, mtable_file = input.mt_table, name2 = wildcards.sample) tmp_sam = os.path.split(input.merged_bam)[1].replace(".bam", ".sam") shell("samtools view {merged_bam} > {tmp_dir}/{tmp_sam}".format(merged_bam=input.merged_bam, tmp_dir=params.TMP, tmp_sam=tmp_sam)) vcf_dict = mtvcf_main_analysis(sam_file="{tmp_dir}/{tmp_sam}".format(tmp_dir=params.TMP, tmp_sam=tmp_sam), mtable_file=input.mt_table, name2=wildcards.sample) # ref_genome_mt will be used in the VCF descriptive field # seq_name in the VCF data seq_name = get_seq_name(params.ref_mt_fasta) VCF_RECORDS = VCFoutput(vcf_dict, reference=wildcards.ref_genome_mt, seq_name=seq_name, vcffile=output.single_vcf) bed_output(VCF_RECORDS, seq_name=seq_name, bedfile=output.single_bed) # fasta output #contigs = pileup2mt_table(pileup=input.pileup, fasta=params.ref_mt_fasta, mt_table=in.mt_table) mt_table_data = pileup2mt_table(pileup=input.pileup, ref_fasta=params.ref_mt_fasta) gapped_fasta = mt_table_handle2gapped_fasta(mt_table_data=mt_table_data) contigs = gapped_fasta2contigs(gapped_fasta=gapped_fasta) fasta_output(vcf_dict=vcf_dict, ref_mt=params.ref_mt_fasta, fasta_out=output.single_fasta, contigs=contigs) |
546 547 | run: shell("bcftools index {input.single_vcf}") |
561 562 | run: shell("bcftools merge {input.single_vcf_list} -O v -o {output.merged_vcf}") |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Created: 1yr ago
Updated: 1yr ago
Maitainers:
public
URL:
https://github.com/mitoNGS/MToolBox_snakemake
Name:
mtoolbox_snakemake
Version:
Prototype.2
Downloaded:
0
Copyright:
Public Domain
License:
None
Keywords:
- Future updates
Related Workflows

ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...

Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...

snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...

ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics

RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...

This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...