A snakemake workflow for metagenomic projects
Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output, operation, topic
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
A workflow for metagenomic projects
Overview
A snakemake workflow for paired- and/or single-end whole-genome shotgun metagenomic data.
You can use this workflow for e.g. :
-
read-trimming and QC
-
taxonomic classification
-
assembly
-
functional and taxonomic annotation
-
metagenomic binning
See the Wiki-pages for instructions on how to run the workflow.
Installation
From GitHub
- Checkout the latest version:
git clone https://github.com/NBISweden/nbis-meta.git
or download a tarball of the latest release from the release page .
- Install and activate the workflow environment:
conda env create -f environment.yml
conda activate nbis-meta
From DockerHub
To pull the latest Docker image with all dependencies and source code from DockerHub, run:
docker pull nbisweden/nbis-meta
See the Wiki for instructions on how to run the Workflow with Docker.
Code Snippets
42 43 44 45 46 | shell: """ prodigal -i {input} -d {output.genes} -a {output.faa} -o {output.gff} \ -f gff -p meta 2>{log} """ |
60 61 62 63 64 | shell: """ tRNAscan-SE -G -b {output.bed} -o {output.file} -a {output.fasta} \ --thread {threads} {input} >{log} 2>&1 """ |
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 | shell: """ # Get the Rfam tarball curl -o {output.tar} {params.url}/Rfam.tar.gz > {log} 2>&1 # Extract only rfams of interest tar -C {params.dir} -zxf {output.tar} {params.rfams} cat {params.dir}/*.cm > {output.cm} # Get release curl -o {output.readme} {params.url}/README 2>/dev/null grep -m 1 Release {output.readme} > {output.version} # Get clans curl {params.url}/Rfam.clanin 2>/dev/null | egrep -w \ "CL0011[123]" > {output.clanin} """ |
109 110 111 112 | shell: """ cmpress {input} > {log} 2>&1 """ |
131 132 133 134 135 136 | shell: """ cmscan --cpu {threads} --oskip --rfam --cut_ga --nohmmonly \ --tblout {output} --fmt 2 --clanin {input.cl} {params.db} \ {input.fastafile} > /dev/null 2>{log} """ |
149 150 151 152 153 154 155 156 157 158 | shell: """ curl -s -L -o {output.hmmfile}.gz {params.ftp}/Pfam-A.hmm.gz curl -s -L -o {output.datfile}.gz {params.ftp}/Pfam-A.hmm.dat.gz curl -s -L -o {output.versionfile}.gz {params.ftp}/Pfam.version.gz gunzip {output.hmmfile}.gz gunzip {output.datfile}.gz gunzip {output.versionfile}.gz """ |
168 169 170 171 172 173 174 175 | shell: """ curl -s -L -o {output.clanfile}.gz {params.ftp}/database_files/clan.txt.gz curl -s -L -o {output.info}.gz {params.ftp}/Pfam-A.clans.tsv.gz gunzip {output.clanfile}.gz gunzip {output.info}.gz """ |
187 188 189 190 | shell: """ hmmpress {input.hmmfile} > {log} 2>&1 """ |
209 210 211 212 213 214 | shell: """ pfam_scan.pl -fasta {input[0]} -dir {params.dir} -cpu {threads} \ -outfile {params.tmp_out} >{log} 2>&1 mv {params.tmp_out} {output[0]} """ |
223 224 | script: "../scripts/annotation_utils.py" |
239 240 241 242 243 | shell: """ download_eggnog_data.py --data_dir {params.data_dir} -y > {log} 2>&1 egrep -o "emapperdb-[0-9].[0-9].[0-9]" {log} > {output.version} """ |
257 258 259 260 | shell: """ python {params.src} download {params.outdir} > {log} 2>&1 """ |
282 283 284 285 286 287 288 289 290 | shell: """ mkdir -p {params.tmpdir} emapper.py {params.flags} --cpu {threads} --temp_dir {params.tmpdir} \ -i {input[0]} -o {params.out} --output_dir {params.tmpdir} \ --data_dir {params.resource_dir} >{log} 2>&1 mv {params.tmp_out}.emapper.seed_orthologs {output[0]} rm -rf {params.tmpdir} """ |
314 315 316 317 318 319 320 321 322 323 324 325 | shell: """ if [ -z ${{SLURM_JOB_ID+x}} ]; then SLURM_JOB_ID="emapper_annotate_hits_uppmax"; fi #Copy eggnog.db mkdir -p /dev/shm/$SLURM_JOB_ID cp {params.resource_dir}/eggnog.db {params.resource_dir}/eggnog_proteins.dmnd /dev/shm/$SLURM_JOB_ID emapper.py {params.flags} --cpu {threads} -o {params.out} \ --annotate_hits_table {input[0]} --usemem \ --data_dir /dev/shm/$SLURM_JOB_ID >{log} 2>&1 rm -rf /dev/shm/$SLURM_JOB_ID """ |
344 345 346 347 348 349 | shell: """ emapper.py {params.flags} --cpu {threads} -o {params.out} \ --annotate_hits_table {input[0]} --usemem \ --data_dir {params.resource_dir} >{log} 2>&1 """ |
359 360 | script: "../scripts/annotation_utils.py" |
373 374 375 376 377 378 379 380 381 | shell: """ curl -L -o {params.tar} \ https://card.mcmaster.ca/latest/data >{log} 2>&1 tar -C {params.dir} -xf {params.tar} ./card.json # Store download date in versionfile date > {output.version} rm {params.tar} """ |
403 404 405 406 407 408 409 410 411 | shell: """ mkdir -p {params.tmpdir} rgi load -i {input.db} --local > {log} 2>&1 sed 's/*//g' {input.faa} > {params.faa} rgi main -i {params.faa} -o {params.out} \ -n {threads} {params.settings} >>{log} 2>>{log} rm -r {params.tmpdir} """ |
418 419 | script: "../scripts/annotation_utils.py" |
31 32 | script: "../scripts/assembly_utils.py" |
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 | shell: """ # Create directories mkdir -p {params.tmp} # Clean output dir #rm -rf {params.output_dir}/* # Clean temp dir rm -rf {params.tmp}/* # Only use single-end if present if [ -s {input.se} ]; then single="-s {input.se}" else single="" fi metaspades.py \ -t {threads} -1 {input.R1} -2 {input.R2} $single \ -o {params.tmp} > {log} 2>&1 # If set to keep intermediate contigs, move to intermediate folder before deleting if [ "{config[metaspades][keep_intermediate]}" == "True" ]; then mkdir -p {params.intermediate_contigs} cp -r {params.tmp}/K* {params.intermediate_contigs} fi if [ "{config[metaspades][keep_corrected]}" == "True" ]; then mkdir -p {params.corrected} cp -r {params.tmp}/corrected {params.corrected} fi # Clear intermediate contigs rm -rf {params.tmp}/K* # Clear corrected reads dir rm -rf {params.tmp}/corrected # Sync tmp output to outdir before removing cp -r {params.tmp}/* {params.output_dir} rm -rf {params.tmp} mv {params.output_dir}/scaffolds.fasta {params.output_dir}/final_contigs.fa """ |
107 108 | script: "../scripts/assembly_utils.py" |
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 | shell: """ mkdir -p {config[paths][temp]} rm -rf {params.tmp} # Only use paired-end if present if [ -s {input.R1} ]; then R1=$(cat {input.R1}) R2=$(cat {input.R2}) paired="-1 $R1 -2 $R2" else paired="" fi # Only use single-end if present se=$(cat {input.se}) if [ -s {input.se} ]; then single="-r $se" else single="" fi # Run Megahit megahit -t {threads} $paired $single -o {params.tmp} \ {params.additional_settings} >{log} 2>&1 # Sync intermediate contigs if asked for if [ "{config[megahit][keep_intermediate]}" == "True" ]; then mkdir -p {params.intermediate_contigs} cp -r {params.tmp}/intermediate_contigs/* {params.intermediate_contigs} fi # Cleanup intermediate rm -rf {params.tmp}/intermediate_contigs # Sync tmp output to outdir before removing cp -r {params.tmp}/* {params.output_dir} rm -rf {params.tmp} mv {params.output_dir}/final.contigs.fa {params.output_dir}/final_contigs.fa """ |
174 175 | script: "../scripts/assembly_utils.py" |
192 193 194 195 196 197 198 199 | shell: """ bowtie2-build \ --large-index \ --threads {threads} \ {params.prefix} \ {params.prefix} > /dev/null 2>&1 """ |
221 222 223 224 225 226 227 228 | shell: """ bowtie2 {params.setting} -p {threads} -x {params.prefix} -1 {input.R1} -2 {input.R2} 2> {log} \ | samtools view -bh - | samtools sort - -o {params.temp_bam} samtools index {params.temp_bam} mv {params.temp_bam} {output.bam} mv {params.temp_bam}.bai {output.bai} """ |
249 250 251 252 253 254 255 256 | shell: """ bowtie2 {params.setting} -p {threads} -x {params.prefix} \ -U {input.se} 2>{log} | samtools view -bh - | samtools sort - -o {params.temp_bam} samtools index {params.temp_bam} mv {params.temp_bam} {output.bam} mv {params.temp_bam}.bai {output.bai} """ |
276 277 278 279 280 281 282 283 284 285 286 | shell: """ for f in {input} ; do al=$(samtools \ flagstat \ $f | grep " mapped (" | cut -f2 -d '('| cut -f1 -d ' ') n=$(basename $f | sed 's/_[ps]e{params.post}.bam//g') echo -e "$n\t$al" >> {output} done """ |
296 297 | script: "../scripts/assembly_utils.py" |
54 55 56 57 58 | shell: """ jgi_summarize_bam_contig_depths \ --outputDepth {output.depth} {input.bam} >{log} 2>&1 """ |
75 76 77 78 79 | shell: """ metabat2 -i {input.fa} -a {input.depth} -m {wildcards.l} -t {threads} \ -o {params.n} > {log} 2>&1 """ |
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 | shell: """ set +e mkdir -p {params.dir} mkdir -p {params.tmp_dir} run_MaxBin.pl -markerset {params.markerset} -contig {input} \ {params.reads} -min_contig_length {wildcards.l} -thread {threads} \ -out {params.tmp_dir}/maxbin >{log} 2>{log} exitcode=$? if [ $exitcode -eq 255 ]; then exit 0 else # Rename fasta files ls {params.tmp_dir} | grep ".fasta" | while read f; do mv {params.tmp_dir}/$f {params.dir}/${{f%.fasta}}.fa done # Move output from temporary dir ls {params.tmp_dir} | while read f; do mv {params.tmp_dir}/$f {params.dir}/ done fi # Clean up rm -r {params.tmp_dir} """ |
143 144 145 146 147 148 149 150 151 152 153 154 155 | shell: """ for f in {input.bam} ; do n=$(basename $f); s=$(echo -e $n | sed 's/_[ps]e{params.p}.bam//g'); echo $s; done > {params.samplenames} concoct_coverage_table.py \ --samplenames {params.samplenames} \ {input.bed} {input.bam} > {output.cov} rm {params.samplenames} """ |
167 168 169 170 171 | shell: """ cut_up_fasta.py -b {output.bed} -c 10000 -o 0 -m {input.fa} \ > {output.fa} 2>{log} """ |
189 190 191 192 193 | shell: """ concoct -t {threads} --coverage_file {input.cov} -l {params.length} \ --composition_file {input.fa} -b {params.basename}/ >/dev/null 2>&1 """ |
204 205 206 207 | shell: """ merge_cutup_clustering.py {input[0]} > {output[0]} 2> {log} """ |
222 223 224 225 226 227 228 229 230 231 | shell: """ mkdir -p {params.tmp_dir} extract_fasta_bins.py {input[0]} {input[1]} \ --output_path {params.tmp_dir} 2> {log} ls {params.tmp_dir} | egrep "[0-9].fa" | while read f; do mv {params.tmp_dir}/$f {params.dir}/concoct.$f done """ |
242 243 | script: "../scripts/binning_utils.py" |
254 255 | script: "../scripts/binning_utils.py" |
268 269 270 | run: df=concatenate(input, index=-2) df.to_csv(output[0], sep="\t", index=True) |
284 285 286 287 288 289 290 291 292 | shell: """ # Download curl -L https://data.ace.uq.edu.au/public/CheckM_databases/checkm_data_2015_01_16.tar.gz -o {params.tar} -s # Extract tar -C {params.dir} -xf {params.tar} # Set root checkm data setRoot {params.dir} > {log} 2>&1 """ |
315 316 317 318 319 320 321 322 323 324 325 326 327 328 | shell: """ lines=$(wc -l {input.tsv} | cut -f1 -d ' ') if [ $lines == 1 ] ; then echo "NO BINS FOUND" > {output.tsv} touch {output.ms} else checkm taxonomy_wf -t {threads} -x {params.suff} -q \ --tab_table -f {output.tsv} \ {params.rank} {params.taxon} {params.indir} {params.outdir} \ > {log} 2>&1 ln -s {params.taxon}.ms {output.ms} fi """ |
349 350 351 352 353 354 355 356 357 358 359 360 361 362 | shell: """ lines=$(wc -l {input.tsv} | cut -f1 -d ' ') if [ $lines == 0 ] ; then echo "NO BINS FOUND" > {output.tsv} touch {output.ms} else checkm lineage_wf -t {threads} --pplacer_threads {threads} \ -x {params.suff} {params.tree} -q \ --tab_table -f {output.tsv} \ {params.indir} {params.outdir} \ > {log} 2>&1 fi """ |
379 380 381 382 383 384 385 386 387 388 | shell: """ lines=$(wc -l {input.tsv} | cut -f1 -d ' ') if [ $lines == 1 ] ; then echo "NO BINS FOUND" > {output.tsv} else checkm qa -o 2 --tab_table -f {output.tsv} \ {input.ms} {params.dir} > {log} 2>&1 fi """ |
406 407 408 409 410 411 412 413 414 415 | shell: """ lines=$(wc -l {input.tsv} | cut -f1 -d ' ') if [ $lines == 1 ] ; then echo "NO BINS FOUND" > {output} else checkm coverage -x fa -t {threads} {params.dir} \ {output} {input.bam} > {log} 2>&1 fi """ |
426 427 | script: "../scripts/binning_utils.py" |
439 440 441 442 443 444 445 446 447 448 449 450 | shell: """ lines=$(wc -l {input.stats} | cut -f1 -d ' ') cov_lines=$(wc -l {input.cov} | cut -f1 -d ' ') if [ $lines == 1 ] ; then echo "NO BINS FOUND" > {output} elif [ $cov_lines == 0 ] ; then echo "NO READS MAPPED" > {output} else checkm profile -f {output} --tab_table {input.cov} > {log} 2>&1 fi """ |
460 461 462 | run: df=concatenate(input, index=-3) df.to_csv(output.tsv, sep="\t", index=True) |
472 473 474 | run: df=concatenate(input, index=-3) df.to_csv(output.tsv, sep="\t", index=True) |
487 488 489 490 491 | shell: """ curl -L -o {params.tar} {params.url} > {log} 2>&1 tar xzf {params.tar} -C {params.dir} --strip 1 > {log} 2>&1 """ |
511 512 513 514 515 516 517 518 519 520 521 522 523 | shell: """ bins=$(wc -l {input.tsv} | cut -f1 -d ' ') if [ $bins == 0 ] ; then echo "NO BINS FOUND" > {output} else export PYTHONPATH=$(which python) export GTDBTK_DATA_PATH={params.dbdir} gtdbtk classify_wf -x {params.suff} --out_dir {params.outdir} \ --cpus {threads} --pplacer_cpus {threads} \ --genome_dir {params.indir} > {log} 2>&1 fi """ |
537 538 539 540 541 542 543 544 545 546 | run: summaries=[] for f in input: gtdb_dir=os.path.dirname(f) for m in ["bac120/ar122"]: summary=gtdb_dir+"/gtdbtk.{}.summary.tsv".format(m) if os.path.exists(summary): summaries.append(summary) df=concatenate(summaries, index=-3) df.to_csv(output.summary, sep="\t") |
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 | shell: """ bins=$(wc -l {input.tsv} | cut -f1 -d ' ') if [ $bins == 0 ] ; then touch {output} else cat {params.gtdbtk_dir}/gtdbtk.*.summary.tsv | cut -f1 -d ';' | grep -v "user_genome" | \ while read line; do d=$(echo -e "$line" | cut -f2) g=$(echo -e "$line" | cut -f1) if [ "$d" == "d__Bacteria" ]; then k="bac" else k="arc" fi barrnap --kingdom $k {params.indir}/$g.fa > {params.outdir}/out 2>>{log} lines=$(wc -l {params.outdir}/out | cut -f1 -d ' ') if [ $lines -gt 1 ]; then egrep -v "^#" {params.outdir}/out | sed "s/$/;genome=$g/g" >> {output} else touch {output} fi done rm {params.outdir}/out fi """ |
603 604 | script: "../scripts/binning_utils.py" |
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 | shell: """ bins=$(wc -l {input.tsv} | cut -f1 -d ' ') if [ $bins == 0 ] ; then touch {output} else echo -e "Name\ttRNA#\ttRNA_Begin\ttRNA_End\ttRNA_type\tAnti_Codon\tIntron_Begin\tIntron_End\tInf_Score\tNote\tBin_Id" > {output} cat {params.gtdbtk_dir}/gtdbtk.*.summary.tsv | cut -f1 -d ';' | grep -v "user_genome" | \ while read line; do d=$(echo -e "$line" | cut -f2) g=$(echo -e "$line" | cut -f1) if [ "$d" == "d__Bacteria" ]; then model="-B" else model="-A" fi tRNAscan-SE $model --quiet --thread {threads} \ {params.indir}/$g.fa | tail -n +4 | sed "s/$/\t$g/g" >> {output} done fi """ |
655 656 | script: "../scripts/binning_utils.py" |
671 672 673 674 675 | run: df=concatenate(input.trna, index=-3) df.to_csv(output.trna, sep="\t", index=True) df=concatenate(input.rrna, index=-3) df.to_csv(output.rrna, sep="\t", index=True) |
684 685 | script: "../scripts/binning_utils.py" |
703 704 | script: "../scripts/binning_utils.py" |
725 726 727 728 729 730 | shell: """ fastANI --rl {input[0]} --ql {input[1]} -k {params.k} -t {threads} \ --fragLen {params.frag_len} --minFraction {params.fraction} \ --matrix -o {output[0]} > {log} 2>&1 """ |
743 744 | script: "../scripts/binning_utils.py" |
37 38 39 40 41 42 43 44 45 46 | shell: """ mkdir -p {params.tmpdir} curl -L -o {params.tar} {params.url} > {log} 2>&1 tar -C {params.tmpdir} -xf {params.tar} hashfile=$(find {params.tmpdir}/ -name "hash.k2d") hashdir=$(dirname $hashfile) mv $hashdir/* {params.dir} rm -r {params.tar} {params.tmpdir} """ |
61 62 63 64 65 | shell: """ kraken2-build --standard --db {params.dir} --threads {threads} > {log.build} 2>&1 kraken2-build --clean {params.dir} > {log.clean} 2>&1 """ |
92 93 94 95 96 97 | shell: """ kraken2 {params.mem} --db {params.db} --output {output[0]} \ --report {output[1]} --gzip-compressed \ --threads {threads} --paired {input.R1} {input.R2} > {log} 2>&1 """ |
122 123 124 125 126 127 | shell: """ kraken2 {params.mem} --db {params.db} --output {output[0]} \ --report {output[1]} --gzip-compressed \ --threads {threads} {input.se} > {log} 2>&1 """ |
145 146 147 148 149 150 | shell: """ curl -o {params.tar} {params.url} > {log} 2>&1 tar -C {params.dir} -xf {params.tar} >>{log} 2>&1 rm {params.tar} """ |
183 184 185 186 187 188 189 190 191 | shell: """ mkdir -p {params.tmpdir} centrifuge -k {params.k} -x {params.prefix} -1 {input.R1} -2 {input.R2} \ -S {params.tmp_out} -p {threads} --report-file {params.tmp_report} \ > {log} 2>&1 mv {params.tmp_out} {output[0]} mv {params.tmp_report} {output[1]} """ |
222 223 224 225 226 227 228 229 230 | shell: """ mkdir -p {params.tmpdir} centrifuge -k {params.k} -U {input.se} -x {params.prefix} \ -S {params.tmp_out} -p {threads} --report-file {params.tmp_report} \ > {log} 2>&1 mv {params.tmp_out} {output[0]} mv {params.tmp_report} {output[1]} """ |
248 249 250 251 252 | shell: """ centrifuge-kreport --min-score {params.min_score} -x {params.prefix} \ {input.f} > {output[0]} """ |
274 275 276 277 278 | shell: """ metaphlan --install --bowtie2db {params.dir} \ --nproc {threads} -x {params.index} >{log} 2>&1 """ |
304 305 306 307 308 309 | shell: """ metaphlan {input.R1},{input.R2} --bowtie2db {params.dir} --add_viruses \ --force --nproc {threads} --input_type fastq -o {output.tsv} \ --bowtie2out {output.bt2} > {log} 2>&1 """ |
333 334 335 336 337 338 | shell: """ metaphlan {input.se} --bowtie2db {params.dir} --add_viruses --force \ --nproc {threads} --input_type fastq -o {output.tsv} \ --bowtie2out {output.bt2} > {log} 2>&1 """ |
347 348 349 350 | shell: """ merge_metaphlan_tables.py {input} > {output} """ |
359 360 | script: "../scripts/classification_utils.py" |
375 376 377 378 379 | shell: """ ktImportTaxonomy -t 1 -m 2 -o {output} -tax {params.dbdir} \ {params.input_string} > {log} 2>&1 """ |
406 407 408 409 | shell: """ ktUpdateTaxonomy.sh {params.taxdir} >{log} 2>&1 """ |
428 429 430 431 432 | shell: """ ktImportTaxonomy -t 5 -m 3 -tax {params.tax} -o {output[0]} \ {input[0]},{wildcards.sample}_{wildcards.unit} > {log} 2>&1 """ |
456 457 458 459 460 461 | shell: """ ktImportTaxonomy \ -t 5 -m 3 -tax {params.tax} -o {output[0]} \ {params.input_string} > {log} 2>&1 """ |
16 17 18 19 20 21 | shell: """ curl -L -s -o {params.tar} {params.url} tar -C {params.outdir} -xf {params.tar} rm {params.tar} """ |
37 38 39 40 41 | shell: """ seqtk sample -s {wildcards.s} {input} \ {params.example_dataset_size} | gzip -c > {output} """ |
30 31 | run: link(input[0], output[0]) |
42 43 44 45 | shell: """ curl -L -o {output} {params.url} > {log} 2>&1 """ |
59 60 61 62 | shell: """ indexdb_rna --ref {input.fasta},{input.fasta} > {log} 2>&1 """ |
82 83 84 85 86 87 88 89 90 91 92 93 94 95 | shell: """ mkdir -p {params.scratch} # Unzip to scratch dir gunzip -c {input.R1} > {params.R1_unzipped} gunzip -c {input.R2} > {params.R2_unzipped} # Merge merge-paired-reads.sh {params.R1_unzipped} {params.R2_unzipped} \ {params.merged} >{log} 2>&1 # Move output mv {params.merged} {output} # Clean up rm {params.R1_unzipped} {params.R2_unzipped} """ |
121 122 123 124 125 126 127 128 129 130 131 132 133 | shell: """ mkdir -p {params.scratch} # Run SortMeRNA sortmerna --blast 1 --log -v --fastx --ref {params.ref_string} \ --reads {input.fastq} -a {threads} --{params.paired_strategy} \ --aligned {params.aligned_prefix} --other {params.other_prefix} \ {params.score_params} >{log} 2>&1 mv {params.aligned_prefix}.fastq {output.aligned} mv {params.aligned_prefix}.log {log} mv {params.other_prefix}.fastq {output.other} """ |
151 152 153 154 155 156 157 158 159 | shell: """ mkdir -p {params.tmpdir} unmerge-paired-reads.sh {input.aligned} {params.R1} {params.R2} >{log} 2>&1 gzip {params.R1} gzip {params.R2} mv {params.R1}.gz {output.R1} mv {params.R2}.gz {output.R2} """ |
177 178 179 180 181 182 183 184 185 | shell: """ mkdir -p {params.tmpdir} unmerge-paired-reads.sh {input.other} {params.R1} {params.R2} >{log} 2>&1 gzip {params.R1} gzip {params.R2} mv {params.R1}.gz {output.R1} mv {params.R2}.gz {output.R2} """ |
194 195 196 197 | shell: """ gunzip -c {input} > {output} 2>{log} """ |
221 222 223 224 225 226 227 228 229 230 231 232 233 | shell: """ mkdir -p {params.scratch} # Run SortMeRNA sortmerna --blast 1 --log -v --fastx --ref {params.ref_string} \ --reads {input.fastq} -a {threads} --other {params.other_prefix} \ --aligned {params.aligned_prefix} {params.score_params} \ >{log} 2>&1 mv {params.aligned_prefix}.fastq {output.aligned} mv {params.aligned_prefix}.log {log} mv {params.other_prefix}.fastq {output.other} """ |
242 243 244 245 | shell: """ gzip {input.fastq} 2>{log} """ |
254 255 256 257 | shell: """ gzip {input.fastq} 2>{log} """ |
266 267 268 | run: link(input.R1, output.R1) link(input.R2, output.R2) |
275 276 | run: link(input.se, output.se) |
301 302 303 304 305 306 307 308 309 310 311 312 313 | shell: """ trimmomatic PE \ -threads {threads} \ {input.R1} {input.R2} \ {output.R1P} {output.R1U} \ {output.R2P} {output.R2U} \ {params.trim_string} \ 2>{log.R1log} sed \ 's/{wildcards.sample}_{wildcards.unit}_R1/{wildcards.sample}_{wildcards.unit}_R2/g' \ {log.R1log} > {log.R2log} """ |
330 331 332 333 334 335 336 337 338 | shell: """ trimmomatic SE \ -threads {threads} \ {input} \ {output} \ {params.trim_string} \ 2>{log} """ |
361 362 363 364 365 366 367 368 369 370 371 372 373 | shell: """ cutadapt \ {params.extra_params} \ -e {params.error_rate} \ -a {params.adapter} \ -A {params.rev_adapter} \ -o {output.fastq1} \ -p {output.fastq2} \ -j {threads} \ {input.R1} {input.R2} > {log.R1log} 2>{log.err} cp {log.R1log} {log.R2log} """ |
391 392 393 394 395 396 397 398 399 | shell: """ cutadapt \ {params.extra_params} \ -e {params.error_rate} \ -a {params.adapter} \ -j {threads} \ -o {output} {input} > {log} """ |
409 410 411 412 413 414 415 416 417 418 | shell: """ curl \ -L \ -o {output}.gz \ -s \ {params.url_base}/GCF_000819615.1_ViralProj14015_genomic.fna.gz \ > {log} 2>&1 gunzip {output}.gz """ |
433 434 435 436 437 438 | shell: """ bowtie2-build \ --threads {threads} \ {input.fasta} {params.prefix} >{log} 2>&1 """ |
460 461 462 463 464 465 466 467 468 469 470 471 472 473 | shell: """ mkdir -p {params.tmp_out} bowtie2 \ {params.setting} \ -p {threads} \ -x {params.prefix} \ -1 {input.R1} \ -2 {input.R2} \ --un-conc-gz \ {params.tmp_out}/{wildcards.sample}_{wildcards.unit}_R%.filtered.fastq.gz > /dev/null 2>{log} mv {params.tmp_out}/{wildcards.sample}_{wildcards.unit}_R1.filtered.fastq.gz {output.R1} mv {params.tmp_out}/{wildcards.sample}_{wildcards.unit}_R2.filtered.fastq.gz {output.R2} """ |
493 494 495 496 497 498 499 500 501 502 503 | shell: """ mkdir -p {params.tmp_out} bowtie2 \ {params.setting} \ -p {threads} \ -x {params.prefix} \ --un-gz \ {params.tmp_out}/{wildcards.sample}_{wildcards.unit}_se.filtered.fastq.gz {input.se} > /dev/null 2>{log} mv {params.tmp_out}/{wildcards.sample}_{wildcards.unit}_se.filtered.fastq.gz {output.se} """ |
525 526 527 528 529 530 531 532 533 534 535 536 537 | shell: """ gunzip -c {input.R1} > {params.R1_intmp} gunzip -c {input.R2} > {params.R2_intmp} echo {params.R1_intmp} > {params.file_list} echo {params.R2_intmp} >> {params.file_list} fastuniq -i {params.file_list} -t q -o {params.R1_outtmp} \ -p {params.R2_outtmp} >{log} 2>&1 gzip -c {params.R1_outtmp} > {output.R1} gzip -c {params.R2_outtmp} > {output.R2} rm {params.R1_intmp} {params.R1_outtmp} {params.R2_intmp} {params.R2_outtmp} rm {params.file_list} """ |
547 548 | run: link(input.se, output.se) |
565 566 567 568 | shell: """ fastqc -q --noextract -o {params.dir} {input} >{log} 2>&1 """ |
587 588 589 590 591 | shell: """ multiqc -f -c {params.config} -n samples_report.html \ -o {params.output_dir} {input} >{log} 2>{log} """ |
26 27 | script: "../scripts/quantification_utils.py" |
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 | shell: """ mkdir -p {params.temp_dir} # Fix bam header samtools view -H {input} | egrep -v "^@PG" > {params.header} samtools reheader -P {params.header} {input} > {params.rehead_bam} # Set memory max mem="-Xmx$((6 * {threads}))g" java -Xms2g $mem -XX:ParallelGCThreads={threads} \ -jar $CONDA_PREFIX/share/picard-*/picard.jar MarkDuplicates \ I={params.rehead_bam} M={output[2]} O={params.temp_bam} REMOVE_DUPLICATES=TRUE \ USE_JDK_DEFLATER=TRUE USE_JDK_INFLATER=TRUE ASSUME_SORT_ORDER=coordinate \ PROGRAM_RECORD_ID=null ADD_PG_TAG_TO_READS=FALSE 2> {log} # Re sort the bam file using samtools samtools_threads="$(({threads} - 1))" samtools sort -@ $samtools_threads -o {params.temp_sort_bam} {params.temp_bam} > /dev/null 2>&1 # Index the bam file samtools index {params.temp_sort_bam} mv {params.temp_sort_bam} {output[0]} mv {params.temp_sort_bam}.bai {output[1]} rm {params.temp_bam} {params.rehead_bam} {params.header} """ |
93 94 95 96 97 98 | shell: """ mkdir -p {params.tmpdir} featureCounts -a {input.gff} -o {output[0]} -t CDS -g gene_id -M \ {params.setting} -T {threads} --tmpDir {params.tmpdir} {input.bam} > {log} 2>&1 """ |
105 106 | script: "../scripts/quantification_utils.py" |
116 117 | script: "../scripts/quantification_utils.py" |
133 134 | script: "../scripts/edger.R" |
145 146 | script: "../scripts/quantification_utils.py" |
162 163 | script: "../scripts/edger.R" |
177 178 | script: "../scripts/metagenomeseq.R" |
190 191 | script: "../scripts/quantification_utils.py" |
35 36 37 38 | shell: """ contigtax download taxonomy -t {params.taxdir} >{log} 2>&1 """ |
50 51 52 53 54 | shell: """ contigtax download {wildcards.db} --tmpdir {params.tmpdir} \ -d {params.dldir} --skip_idmap >{log} 2>{log} """ |
65 66 67 68 | shell: """ contigtax download idmap -d {params.dldir} > {log} 2>&1 """ |
82 83 84 85 86 | shell: """ contigtax format -m {output.idmap} --tmpdir {params.tmpdir} \ {input.fasta} {output.fasta} > {log} 2>&1 """ |
99 100 101 102 103 | shell: """ contigtax format --tmpdir {params.tmpdir} {input.fasta} \ {output.fasta} > {log} 2>&1 """ |
116 117 118 119 120 121 122 123 124 125 126 127 | shell: """ # If an idmap file is available, use it to create an updated idmap file if [ -e {params.dir}/idmap.tsv.gz ] ; then contigtax update {input.idmap} {params.dir}/idmap.tsg.gz \ {output.idmap} > {log} 2>&1 # Otherwise, just create a symlink else cd {params.dir} ln -s $(basename {input.idmap}) $(basename {output.idmap}) fi """ |
143 144 145 146 147 | shell: """ contigtax build -d {output} -p {threads} {input.fasta} \ {input.idmap} {input.nodes} >{log} 2>&1 """ |
167 168 169 170 171 172 | shell: """ contigtax search {params.settings} -p {threads} \ --tmpdir {params.tmpdir} -l {params.min_len} \ {input.fasta} {input.db} {output} >{log} 2>&1 """ |
193 194 195 196 197 198 | shell: """ contigtax assign {params.settings} -p {threads} -m rank_lca \ --reportranks {params.taxonomy_ranks} -t {params.taxdir} \ {input.tsv} {output} > {log} 2>&1 """ |
210 211 212 213 214 215 | shell: """ curl -L -v -o {output.lca}.gz {params.url} > {log} 2>&1 grep filename {log} | cut -f2 -d ';' > {output.version} gunzip {output.lca}.gz """ |
229 230 231 232 233 | shell: """ sourmash compute --singleton --scaled {params.frac} \ -k {params.k} -o {output} {input} > {log} 2>&1 """ |
250 251 252 253 254 | shell: """ sourmash lca classify --db {input.db} --scaled {params.frac} \ --query {input.sig} -o {output.csv} > {log} 2>&1 """ |
267 268 | script: "../scripts/taxonomy_utils.py" |
277 278 | script: "../scripts/taxonomy_utils.py" |
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 | import pandas as pd def orf2feat(d, val_name="vals", regex=""): import re keys = [] vals = [] for key, val in d.items(): for item in val.split(","): if regex != "": m = re.search(regex, item) if m == None: continue item = m.group() keys.append(key) vals.append(item) df = pd.DataFrame(data={"orf": keys, val_name: vals}) df.set_index("orf", inplace=True) return df def parse_emapper(sm): from pandas.errors import EmptyDataError db = sm.wildcards.db db_att = {'kos': {'val_name': 'ko', 'regex': "K\d{5}"}, 'pathways': {'val_name': 'pathway', 'regex': "map\d{5}"}, 'modules': {'val_name': 'module', 'regex': ""}, 'enzymes': {'val_name': 'enzyme', 'regex': ""}} df = pd.read_csv(sm.input.annotations, sep="\t", index_col=0) df.rename(columns={'KEGG_ko': 'kos', 'KEGG_Pathway': 'pathways', 'KEGG_Module': 'modules', 'EC': 'enzymes'}, inplace=True) df.fillna("-", inplace=True) d = df.loc[df[db] != "-", db].to_dict() how = "inner" try: info_df = pd.read_csv(sm.input.info, sep="\t", index_col=0) except EmptyDataError: info_df = pd.DataFrame() how = "right" annot = orf2feat(d, val_name=db_att[db]["val_name"], regex=db_att[db]["regex"]) annot = pd.merge(info_df, annot, left_index=True, right_on=db_att[db]["val_name"], how=how) annot.to_csv(sm.output[0], sep="\t", index=True, header=True) def parse_rgi(sm): annot = pd.read_csv(sm.input.txt, sep="\t", index_col=0) annot = annot.loc[:, ["Model_ID", "AMR Gene Family", "Resistance Mechanism"]] annot.loc[:, "Model_ID"] = ["RGI_{}".format(x) for x in annot.Model_ID] annot.rename(index=lambda x: x.split(" ")[0], inplace=True) annot.to_csv(sm.output.tsv, sep="\t", index=True) def parse_pfam(sm): annot = pd.read_csv(sm.input[0], comment="#", header=None, sep=" +", usecols=[0, 5, 7, 14], engine="python", names=["orf", "pfam", "pfam_type", "pfam_clan"]) clans = pd.read_csv(sm.input[1], header=None, names=["clan", "clan_name"], usecols=[0, 3], sep="\t") info = pd.read_csv(sm.input[2], header=None, names=["pfam", "clan", "pfam_name"], usecols=[0, 1, 4], sep="\t") # Strip suffix for pfams annot.loc[:, "pfam"] = [x.split(".")[0] for x in annot.pfam] # Select unique orf->pfam mappings # TODO: This masks multiple occurrences of domains on the same orf. Figure out if this is wanted or not. # Merge with pfam info and clan info annot = annot.groupby(["orf", "pfam"]).first().reset_index() annot = pd.merge(annot, info, left_on="pfam", right_on="pfam") annot = pd.merge(annot, clans, left_on="clan", right_on="clan", how="left") annot.fillna("No_clan", inplace=True) annot = annot.loc[:, ["orf", "pfam", "pfam_name", "clan", "clan_name"]] annot.sort_values("orf", inplace=True) # Write to file annot.to_csv(sm.output[0], sep="\t", index=False) def main(sm): toolbox = {"parse_pfam": parse_pfam, "parse_emapper": parse_emapper, "parse_rgi": parse_rgi} toolbox[sm.rule](sm) if __name__ == "__main__": main(snakemake) |
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 | import pandas as pd from Bio.SeqIO import parse from pathlib import Path # file io def fasta2bed(sm): with open(sm.input[0], 'r') as fhin, open(sm.output[0], 'w') as fhout: for record in parse(fhin, "fasta"): fhout.write("{}\t{}\t{}\n".format(record.id, 0, len(record))) # statistics def store_lengths(f, minlen=False): """ Reads lengths of contigs from fasta :param f: fasta file :param minlen: minimum length to store :return: pandas DataFrame of lengths """ r = {} for record in parse(f, "fasta"): if minlen: if len(record.seq) < minlen: continue r[record.id] = len(record.seq) df = pd.DataFrame(r, index=["length"]).T return df def size_distribute(df, lengths=None): """ Calculates the distribution of an assembly in length bins For each <l> in <lengths> calculate for contigs >= <l>: n = the number of contigs s = the total length in bp p = the fraction of lengths / total assembly size :param df: pandas DataFrame of lengths :param lengths: intervals at which to calculate stats :return: pandas DataFrame """ if lengths is None: lengths = [0, 100, 250, 500, 1000, 2500, 5000, 10000, 15000, 20000, 25000, 30000, 35000, 40000, 45000, 50000, 75000, 100000, 125000, 150000, 200000, 250000, 500000] size_dist = {} for i, l in enumerate(lengths): if len(df.loc[df.length >= l]) == 0: break n = len(df.loc[df.length >= l]) s = int(df.loc[df.length >= l].sum()) p = int(df.loc[df.length >= l].sum()) / float(df.sum()) * 100 size_dist[i] = {"min_length": l, "num_contigs": n, "total_length": s, "%": p} size_dist_df = pd.DataFrame(size_dist).T size_dist_df = size_dist_df[ ["min_length", "num_contigs", "total_length", "%"]] return size_dist_df def calculate_n_stats(df): """ Calculates n50 and n90 statistics from a list of lengths :param df: pandas DataFrame of contig lengths :return: """ df.sort_values("length", inplace=True, ascending=True) size = int(df.sum()) N50_length = N90_length = 0 cumulative = 0 for contig in df.index: l = df.loc[contig, "length"] cumulative += l if float(cumulative) >= 0.5 * size and not N50_length: N50_length = l elif float(cumulative) >= 0.1 * size and not N90_length: N90_length = l return N50_length, N90_length def calculate_length_stats(df): """ Calculates length statistics from a dataframe :param df: pandas DataFrame with contig lengths :return: """ contigs = len(df) total_size = int(df.sum()) min_length = int(df["length"].min()) max_length = int(df["length"].max()) avg_length = float(df["length"].mean()) median_length = float(df["length"].median()) return contigs, total_size, min_length, max_length, avg_length, median_length def generate_stat_df(contig_lengths): """ Generates statistics from a dataframe of contig lengths :param contig_lengths: pandas DataFrame :return: """ index = ["contigs", "total_size_bp", "min_length", "max_length", "avg_length", "median_length", "N50_length", "N90_length"] stat_items = calculate_length_stats(contig_lengths) n50_length, n90_length = calculate_n_stats(contig_lengths) stat_df = pd.DataFrame([stat_items[0], stat_items[1], stat_items[2], stat_items[3], stat_items[4], stat_items[5], n50_length, n90_length], index=index).T return stat_df def stats(sm): """ Reads a list of assembly fasta files and generates statistics :param sm: snakemake object :return: """ stat_result = pd.DataFrame() sizedist_result = pd.DataFrame() for f in sm.input.fa: p = Path(f) name = p.parent.name contig_lengths = store_lengths(f) stat_df = generate_stat_df(contig_lengths) size_dist = size_distribute(contig_lengths) stat_df["assembly"] = [name]*len(stat_df) size_dist["assembly"] = [name]*len(size_dist) stat_result = pd.concat([stat_result, stat_df]) sizedist_result = pd.concat([sizedist_result,size_dist]) stat_result = stat_result[["assembly", "contigs", "total_size_bp", "min_length", "max_length", "avg_length", "median_length", "N50_length", "N90_length"]] stat_result.to_csv(sm.output[0], sep="\t", index=False) sizedist_result = sizedist_result[["assembly", "min_length", "num_contigs", "total_length", "%"]] sizedist_result.to_csv(sm.output[1], sep="\t", index=False) # assembly input def metaspades_input(sm): """ Generates fastq files to use as input for metaspades assembler :param sm: snakemake object :return: """ from common import rename_records files = {"R1": [], "R2": [], "se": []} assembly_dict = sm.params.assembly # Collect all files belonging to the assembly group for sample in assembly_dict.keys(): for unit in assembly_dict[sample]: for pair in assembly_dict[sample][unit].keys(): files[pair].append( assembly_dict[sample][unit][pair][0]) # Rename and concatenate reads (required for Metaspades) with open(sm.output.R1, 'w') as fh1, open(sm.output.R2, 'w') as fh2, open( sm.output.se, 'w') as fhse: i = 0 for f in files["R1"]: f2 = files["R2"][i] fh1 = rename_records(f, fh1, i) fh2 = rename_records(f2, fh2, i) i += 1 for i, f in enumerate(files["se"], start=i): fhse = rename_records(f, fhse, i) def megahit_input(sm): """ Genereate input lists for megahit assembler :param sm: snakemake object :return: """ files = {"R1": [], "R2": [], "se": []} assembly_dict = sm.params.assembly for sample in assembly_dict.keys(): for unit in assembly_dict[sample]: for pair in assembly_dict[sample][unit].keys(): files[pair].append(assembly_dict[sample][unit][pair][0]) with open(sm.output.R1, 'w') as fh1, \ open(sm.output.R2, 'w') as fh2, \ open(sm.output.se, 'w') as fhse: fh1.write(",".join(files["R1"])) fh2.write(",".join(files["R2"])) fhse.write(",".join(files["se"])) def main(sm): toolbox = {"assembly_stats": stats, "generate_megahit_input": megahit_input, "generate_metaspades_input": metaspades_input, "fasta2bed": fasta2bed} toolbox[sm.rule](sm) if __name__ == "__main__": main(snakemake) |
Python
Snakemake
Pandas
Biopython
common
MEGAHIT
metaspades
From
line
3
of
scripts/assembly_utils.py
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 | import pandas as pd from glob import glob import os from os.path import join as opj, basename, splitext import numpy as np # bin info def contig_map(sm): """ Generates a map of bin->contig id :param sm: snakemake object :return: """ from Bio.SeqIO import parse files = glob(opj(sm.params.dir, "*.fa")) if len(files) == 0: with open(sm.output[0], 'w') as fhout: pass return for f in files: with open(f, 'r') as fhin, open(sm.output[0], 'w') as fhout: genome, _ = splitext(basename(f)) for record in parse(fhin, "fasta"): fhout.write("{}\t{}\n".format(genome, record.id)) # bin stats def n50(lengths): """ Calculate N50 stats :param lengths: :return: """ cumulative = 0 size = sum(lengths) for l in sorted(lengths): cumulative += l if float(cumulative) / size >= 0.5: return l def bin_stats(f): """ Generate bin statistics :param f: :return: """ from Bio.SeqIO import parse size = 0 gc = 0 contig_lengths = [] for record in parse(f, "fasta"): l = len(record) seq = record.seq.upper() g = seq.count("G") c = seq.count("C") gc += g + c size += l contig_lengths.append(l) gc_f = round(float(gc) / size * 100, 2) size_mb = size / 1000000 mean_l = round(np.mean(contig_lengths), 2) median_l = round(np.median(contig_lengths), 2) min_l = np.min(contig_lengths) max_l = np.max(contig_lengths) n50_l = n50(contig_lengths) return {'bp': size, 'GC': gc_f, 'Mbp': round(size_mb, 2), 'mean_contig': mean_l, 'median_contig': median_l, 'min_contig': min_l, 'max_contig': max_l, 'n50': n50_l, 'contigs': len(contig_lengths)} def calculate_bin_stats(files): """ Calls bin statistics for each file :param files: :return: """ stats = {} for f in files: name = basename(f) name, _ = splitext(name) stats[name] = bin_stats(f) return stats def binning_stats(sm): """ Main function for calculating bin statistics :param sm: :return: """ files = glob(opj(sm.params.dir, "*.fa")) if len(files) == 0: with open(sm.output[0], 'w') as fh: fh.write("No bins found\n") return else: stats = calculate_bin_stats(files) cols = ["bp", "Mbp", "GC", "contigs", "n50", "mean_contig", "median_contig", "min_contig", "max_contig"] df = pd.DataFrame(stats).T[cols] df.index.name = "bin" df.sort_values("bp", ascending=False, inplace=True) df.to_csv(sm.output[0], sep="\t", index=True, header=True) # checkm utils def remove_checkm_zerocols(sm): """ Reads checkm coverage and removes samples with no reads mapped to contigs :param sm: :return: """ df = pd.read_csv(sm.input[0], header=0, sep="\t") if df.shape[0] == 0: with open(sm.output[0], 'w') as fh: fh.write("NO BINS FOUND\n") return # base columns are independent of samples base_columns = ["Sequence Id", "Bin Id", "Sequence length (bp)"] # get all columns with mapped read counts cols = [x for x in df.columns if "Mapped reads" in x] # sum counts df_sum = df.loc[:, cols].sum() # get columns with zero reads mapped zero_cols = df_sum.loc[df_sum == 0].index cols_to_drop = [] # find suffix of zero cols for c in list(zero_cols): suffix = ".{}".format(c.split(".")[-1]) if suffix == ".Mapped reads": suffix = "" cols_to_drop += ( "Mapped reads{s},Bam Id{s},Coverage{s}".format(s=suffix)).split(",") df_checked = df.drop(cols_to_drop, axis=1) # check that there are remaining columns diff_cols = set(df_checked.columns).difference(base_columns) if len(diff_cols) > 0: df_checked.to_csv(sm.output[0], sep="\t", index=False, header=True) else: with open(sm.output[0], 'w') as fhout: pass # bin annotation def count_rrna(sm): """ Counts rRNA genes in bins :param sm: :return: """ df = pd.read_csv(sm.input[0], sep="\t", usecols=[0, 2, 8], header=None, names=["contig", "type", "fields"]) # If empty dataframe, just write an empty file if df.shape[0] == 0: table = pd.DataFrame(columns=["5S_rRNA", "16S_rRNA", "23S_rRNA"]) table.index.name = "Bin Id" table.to_csv(sm.output[0], sep="\t", header=True) return types = [x.split(";")[0].split("=")[-1] for x in df.fields] bins = [x.split(";")[-1].split("=")[-1] for x in df.fields] _df = pd.DataFrame(data={'rRNA_type': types, 'Bin_Id': bins}) dfc = _df.reset_index().groupby(["Bin_Id", "rRNA_type"]).count() table = dfc.pivot_table(columns="rRNA_type", index="Bin_Id", fill_value=0)[ "index"] table.index.name = table.columns.name = "" missing = set(["16S_rRNA", "23S_rRNA", "5S_rRNA"]).difference(table.columns) if len(missing) > 0: table = pd.merge(table, pd.DataFrame(columns=missing, index=table.index, data=0), left_index=True, right_index=True) table = table.loc[:, ["5S_rRNA", "16S_rRNA", "23S_rRNA"]] table.index.name = "Bin_Id" table.to_csv(sm.output[0], sep="\t", index=True) def count_trna(sm): """ Counts tRNA genes in bins :param sm: :return: """ df = pd.read_csv(sm.input[0], sep="\t") dfc = df.groupby(["tRNA_type", "Bin_Id"]).count().reset_index().loc[:, ["tRNA_type", "tRNA#", "Bin_Id"]] table = dfc.pivot_table(columns="tRNA_type", index="Bin_Id")[ "tRNA#"].fillna(0) table.index.name = table.columns.name = "" table.to_csv(sm.output[0], sep="\t", index=True) total = {} for m in table.index: c = len(table.loc[m, table.loc[m] > 0]) total[m] = c table = pd.DataFrame(total, index=["tRNAs"]).T table.index.name = "Bin_Id" table.to_csv(sm.output[1], sep="\t", index=True) # genome clustering def fetch_genome(ftp_base, outfile): """ Performs the ftp fetching :param ftp_base: Base url to RefSeq/GenBank ftp for the genome :param outfile: Output filename :return: """ from urllib import request ftp_base = ftp_base.rstrip("/") n = os.path.basename(ftp_base) fna = opj(ftp_base, "{}_genomic.fna.gz".format(n)) r = request.urlretrieve(fna, outfile) return r def unzip(z, o): """ Unzips a zipped fasta file and removes the zipped file :param z: input gzip file :param o: output plain text file :return: """ import gzip as gz with gz.open(z, 'rt') as fhin, open(o, 'w') as fhout: fhout.write(fhin.read()) os.remove(z) def download_ref_genome(sm): """ Fetches reference genomes for clustering with fastANI :param sm: snakemake object :return: """ fetch_genome(sm.params.ftp_base, "{}.gz".format(sm.output[0])) unzip("{}.gz".format(sm.output[0]), sm.output[0]) def generate_bin_list(input, outdir, min_completeness, max_contamination): """ Generates a list of bins to use for fastANI Also symlinks each bin file into the fastANI folder :param input: List of checkm genome statistics files :param outdir: Output directory to store symlinks :param min_completeness: Minimum completeness level (%) :param max_contamination: Maximum contamination level (%) :return: """ genomes = [] for f in input: with open(f, 'r') as fh: if fh.readline().rstrip() == "NO BINS FOUND": continue items = f.split("/") # extract wildcards from file path binner, assembly, l = items[-5], items[-4], items[-3] bindir = os.path.dirname(os.path.dirname(f)) # get absolute path for bin directory abs_in = os.path.abspath(bindir) # read the checkm summary file df = pd.read_csv(f, sep="\t", index_col=0) # filter to at least <min_completeness> and at most <max_contamination> df = df.loc[(df.Completeness >= min_completeness) & (df.Contamination <= max_contamination)] if df.shape[0] == 0: continue # generate a unique suffix for each bin uniq_suffix = "{assembly}.{l}".format(assembly=assembly, l=l) # make a map of the bin id and the unique suffix idmap = dict(zip(df.index, ["{x}.{s}".format(x=x, s=uniq_suffix) for x in df.index])) # create symlink in the output path for each bin id that points # to the original fasta file for bin_id, uniq_id in idmap.items(): src = opj(abs_in, "{}.fa".format(bin_id)) dst = opj(outdir, "{}.fa".format(uniq_id)) if os.path.exists(dst): os.remove(dst) os.symlink(src, dst) genomes.append(dst) return genomes def generate_ref_list(input, outdir): """ Generates a list of reference genomes Also symlinks each reference file into the fastANI folder :param input: :param outdir: :return: """ genomes = [] for f in input: basename = os.path.basename(f) src = os.path.abspath(f) dst = opj(outdir, basename) if os.path.exists(dst): os.remove(dst) os.symlink(src, dst) genomes.append(dst) return genomes def write_list(genomes, output): """ Writes the fastANI lists to file :param genomes: list of genomes to use for fastANI :param output: :return: """ with open(output, 'w') as fh: for g in genomes: fh.write("{}\n".format(g)) return genomes def generate_fastANI_lists(sm): """ Main function for generating fastANI lists :param sm: :return: """ bins = generate_bin_list(sm.input.bins, sm.params.outdir, sm.params.completeness, sm.params.contamination) refs = generate_ref_list(sm.input.refs, sm.params.outdir) genomes = bins + refs write_list(genomes, sm.output[0]) genomes.reverse() write_list(genomes, sm.output[1]) def check_pairs(pairs, min_frags): allowed_pairs = {} for i in pairs.index: q = pairs.loc[i, "query"] r = pairs.loc[i, "ref"] for key in [q, r]: if not key in allowed_pairs.keys(): allowed_pairs[key] = [] if pairs.loc[i, "aligned"] >= min_frags: allowed_pairs[q].append(r) allowed_pairs[r].append(q) return allowed_pairs def fastani2dist(mat, txt, min_frags): """ Converts the fastANI out.txt.matrix file to a pandas DataFrame :param mat: Distance matrix file :param txt: Pairwise output table with ANI and aligned + total fragments :param min_frags: Minimum aligned fragments to compare two genomes :return: """ # read the pairwise table pairs = pd.read_csv(txt, header=None, sep="\t", names=["query", "ref", "ANI", "aligned", "total"]) for key in ["query", "ref"]: pairs[key] = [x.split("/")[-1].replace(".fna", "").replace(".fa", "") for x in pairs[key]] allowed_pairs = check_pairs(pairs, min_frags) genomes = list(pd.read_table(mat, index_col=0, skiprows=1, sep="\t", header=None, usecols=[0]).index) genomes = [os.path.splitext(os.path.basename(g))[0] for g in genomes] r = {} with open(mat, 'r') as fh: for i, line in enumerate(fh): if i == 0: continue line = line.rstrip() items = line.rsplit("\t") genome = os.path.splitext(os.path.basename(items[0]))[0] r[genome] = {} for j, item in enumerate(items[1:]): genome2 = genomes[j] # check that the pairing is allowed if item == "NA" or genome not in allowed_pairs[genome2] or genome2 not in allowed_pairs[genome]: item = np.nan else: item = float(item) r[genome][genome2] = item df = pd.DataFrame(r) df.fillna(0, inplace=True) return 1-df.div(100) def cluster(linkage): """ Cluster all genomes based on established linkages using networkx :param linkage: Dictionary of dictionaries :return: A dictionary with cluster index and list of genomes """ import networkx as nx g = nx.from_dict_of_dicts(linkage) clustered = [] clusters = {} clust_num = 1 for n in g.nodes(): c = [n] if n in clustered: continue edges = list(nx.dfs_edges(g, n)) for e in edges: n1, n2 = e clustered += [n1, n2] c += [n1, n2] c = list(set(c)) clusters[clust_num] = c[:] clust_num += 1 return clusters def generate_linkage(dist_mat, max_dist): """ Create a nested dictionary linking genomes if their distance is within a certain threshold. :param dist_mat: pandas DataFrame with distances :param max_dist: maximum allowed distance to link genomes :return: a nested dictionary """ linkage = {} for i in range(len(dist_mat.index)): g1 = dist_mat.index[i] if not g1 in linkage.keys(): linkage[g1] = {} for j in range(i + 1, len(dist_mat.columns)): g2 = dist_mat.columns[j] if not g2 in linkage.keys(): linkage[g2] = {} distance = dist_mat.iloc[i, j] if distance <= max_dist: linkage[g1][g2] = "" linkage[g2][g1] = "" return linkage def cluster_genomes(sm): """ Main function to run clustering of genomes :param sm: snakemake object :return: """ dist = fastani2dist(sm.input.mat, sm.input.txt, sm.params.minfrags) linkage = generate_linkage(dist, sm.params.thresh) clusters = cluster(linkage) write_clusters(clusters, sm.output[0]) def write_clusters(clusters, outfile): """ Sorts clusters by size and writes to file :param clusters: Dictionary of clusters with genomes as a list :param outfile: Output file path :return: """ import operator # Calculate cluster sizes cluster_sizes = {} for clust_num, l in clusters.items(): cluster_sizes[clust_num] = len(l) # Sort clusters by sizes sorted_clusters = sorted(cluster_sizes.items(), key=operator.itemgetter(1), reverse=True) # Write table with open(outfile, 'w') as fh: for i, item in enumerate(sorted_clusters, start=1): old_num = item[0] for g in clusters[old_num]: fh.write("Cluster{}\t{}\n".format(i, g)) def main(sm): toolbox = {"contig_map": contig_map, "count_tRNA": count_trna, "remove_checkm_zerocols": remove_checkm_zerocols, "count_rRNA": count_rrna, "binning_stats": binning_stats, "download_ref_genome": download_ref_genome, "generate_fastANI_lists": generate_fastANI_lists, "cluster_genomes": cluster_genomes} toolbox[sm.rule](sm) if __name__ == "__main__": main(snakemake) |
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | import pandas as pd def metaphlan2krona(sm): """ Creates a krona-input table from metaphlan (standard format) results :param sm: snakemake object :return: """ df = pd.read_csv(sm.input[0], sep="\t", header=None, comment="#", index_col=0, usecols=[0, 1, 2], names=["lineage", "taxids", "%"]) # Extract species level df_sp = df.loc[df.index.str.contains("s__")] # Create new dataframe with taxids \t % data = dict(zip([x.split("|")[-1] for x in df_sp.taxids], df_sp["%"])) df_out = pd.DataFrame(data, index=["%"]).T df_out.to_csv(sm.output[0], sep="\t", index=True, header=False) def main(sm): toolbox = {"metaphlan2krona_table": metaphlan2krona} toolbox[sm.rule](sm) if __name__ == "__main__": main(snakemake) |
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 | log <- file(snakemake@log[[1]], open="wt") sink(log) sink(log, type="message") source("workflow/scripts/common.R") library(edgeR) method <- snakemake@params$method input <- snakemake@input[[1]] output <- snakemake@output[[1]] # Read the counts x <- read.delim(input, row.names = 1, sep = "\t", header = TRUE) # Get sample names sample_names <- colnames(x)[unlist(lapply(x, is.numeric))] # Extract row names xrownames <- row.names(x)[row.names(x)!="Unclassified"] # Get info names info_names <- colnames(x)[unlist(lapply(x, is.character))] # Remove unclassified if ("Unclassified" %in% row.names(x)){ x <- x[row.names(x)!="Unclassified", ] } x <- as.data.frame(x, row.names=xrownames) colnames(x) <- append(info_names, sample_names) x_num <- process_data(x, output) if (method %in% c("TMM", "RLE")) { # Create DGE obj <- DGEList(x_num) # Calculate norm factors obj <- calcNormFactors(obj, method = method) # Calculate cpms norm <- cpm(obj, normalized.lib.sizes = TRUE) } else if (method == "RPKM") { # Extract gene length column gene_length <- x_num$Length x_num <- x_num[, colnames(x_num) != "Length"] obj <- DGEList(x_num) # Calculate norm factors obj <- calcNormFactors(obj, method = "TMM") # Calculate RPKM norm <- rpkm(obj, normalized.lib.sizes = TRUE, gene.length = gene_length) } # Add info columns back norm <- cbind(str_cols(x), norm) if (length(info_names)>0) { colnames(norm) <- append(info_names, sample_names) } # Convert to numeric norm <- as.data.frame(norm) row.names(norm) <- xrownames write.table(x = norm, file = output, quote = FALSE, sep="\t") |
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | log <- file(snakemake@log[[1]], open="wt") sink(log) sink(log, type="message") library(metagenomeSeq) source("workflow/scripts/common.R") method <- snakemake@params$method input <- snakemake@input[[1]] output <- snakemake@output[[1]] normalize <- TRUE # Read the counts x <- read.delim(input, row.names = 1, sep = "\t", header = TRUE) # Get sample names sample_names <- colnames(x)[unlist(lapply(x, is.numeric))] # Extract row names xrownames <- row.names(x)[row.names(x)!="Unclassified"] # Get info names info_names <- colnames(x)[unlist(lapply(x, is.character))] # Remove unclassified if ("Unclassified" %in% row.names(x)){ x <- x[row.names(x)!="Unclassified", ] } x <- as.data.frame(x, row.names=xrownames) colnames(x) <- append(info_names, sample_names) # Returns a vector in the case of 1 sample only x_num <- process_data(x, output) # If only one sample, set normalize=FALSE if (length(sample_names) == 1) { print("ONLY ONE SAMPLE! WILL NOT RUN CSS") normalize <- FALSE x_num <- as.data.frame(x_num, row.names = rownames(x)) colnames(x_num) <- sample_names } # Turn data into new experimentobject obj <- newMRexperiment(x_num) too_few_features <- FALSE # In cases with only one sample, check whether there are enough features to run # CSS if (is.null(ncol(x_num))) { if (length(x_num) <= 1) { too_few_features <- TRUE } } else { # Do the same type of check for many samples smat <- lapply(1:ncol(x_num), function(i) { sort(x_num[which(x_num[, i]>0),i], decreasing = TRUE) }) if (any(sapply(smat,length)==1)) { too_few_features <- TRUE } } if (too_few_features == TRUE) { fh <-file(snakemake@output[[1]]) writeLines(c("WARNING: Sample with one or zero features", "Cumulative Sum Scaling failed for sample"), fh) close(fh) quit() } # Normalize norm <- MRcounts(obj, norm = normalize) # Add info columns back norm <- cbind(str_cols(x), norm) colnames(norm) <- append(info_names, sample_names) # Convert to numeric norm <- as.data.frame(norm) # Set sample names colnames(norm)[unlist(lapply(norm, is.numeric))] <- sample_names # Write output write.table(x = norm, file = output, quote = FALSE, sep="\t") |
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 | import pandas as pd def write_featurefile(sm, score=".", group="gene_id", phase="."): """ Takes a prodigal GFF file and turns it into a file for use with featureCounts :param sm: snakemake object :param score: dummy score column :param group: identifier for featurecounts :param phase: dummy phase column :return: """ with open(sm.input[0], 'r') as fhin, open(sm.output[0], 'w') as fhout: for line in fhin: line = line.rstrip() if line.startswith("#"): continue items = line.split("\t") contig = items[0] source = items[1] method = items[2] start = items[3] stop = items[4] _strand = items[6] geneid = items[8] if _strand in ['+1', '1', '+']: strand = '+' else: strand = '-' gene_id = "{} {}\n".format(group, geneid.split(";")[0].split("=")[-1]) fhout.write("\t".join([contig, source, method, start, stop, score, strand, phase, gene_id])) return def clean_featurecount(sm): """ This cleans the featureCounts output table from format: # Program:featureCounts v2.0.0; Command:"featureCounts" "-a" "etc." Geneid Chr Start End Strand Length path/to/bam/sample.bam 1_1 k141_7581 1 459 - 459 1 2_1 k141_0 469 714 + 246 2 To format: gene_id Length sample k141_7581_1 459 1 k141_0_1 246 1 """ df = pd.read_csv(sm.input[0], comment="#", sep="\t") # Extract gene number and combine with contig id df["gene_num"] = [x[1] for x in df.Geneid.str.split("_")] df.set_index(df.Chr.map(str) + "_" + df.gene_num, inplace=True) df.drop("gene_num", axis=1, inplace=True) df.index.name = 'gene_id' # Set sample and unit name from wildcards sample_unit = "{sample}_{unit}".format(sample=sm.wildcards.sample, unit=sm.wildcards.unit) df.columns = list(df.columns)[0:-1] + [sample_unit] # Extract length and counts df = df.loc[:, ["Length", sample_unit]] df.to_csv(sm.output[0], sep="\t") def aggregate_featurecount(sm): """ Aggregates cleaned featureCounts tables into one table per assembly :param sm: snakemake object :return: """ df = pd.DataFrame() lmap = {} for f in sm.input: _df = pd.read_csv(f, sep="\t", index_col=0) lmap.update(_df.to_dict()["Length"]) _df.drop("Length", axis=1, inplace=True) df = pd.merge(df, _df, right_index=True, left_index=True, how="outer") counts = pd.merge(df, pd.DataFrame(lmap, index=["Length"]).T, left_index=True, right_index=True) counts.to_csv(sm.output[0], sep="\t") def process_and_sum(q_df, annot_df): # Merge annotations and abundance # keep ORFs without annotation as "Unclassified" annot_q_df = pd.merge(annot_df, q_df, left_index=True, right_index=True, how="right") annot_q_df.fillna("Unclassified", inplace=True) feature_cols = annot_df.columns annot_q_sum = annot_q_df.groupby(list(feature_cols)).sum().reset_index() annot_q_sum.set_index(feature_cols[0], inplace=True) return annot_q_sum def sum_to_features(abundance, parsed): parsed_df = pd.read_csv(parsed, index_col=0, sep="\t") abundance_df = pd.read_csv(abundance, index_col=0, sep="\t") abundance_df.drop("Length", axis=1, inplace=True, errors="ignore") feature_sum = process_and_sum(abundance_df, parsed_df) return feature_sum def count_features(sm): """ Counts reads mapped to features such as KOs, PFAMs etc. :param sm: :return: """ feature_sum = sum_to_features(sm.input.abund, sm.input.annot) feature_sum.to_csv(sm.output[0], sep="\t") def sum_to_taxa(sm): """ Takes taxonomic assignments per orf and abundance values (tpm or raw) and returns abundance values summed to unique combinations of ranks :param sm: snakemake object :return: """ header = ["protein", "superkingdom", "phylum", "class", "order", "family", "genus", "species"] df = pd.read_csv(sm.input.tax[0], sep="\t", index_col=0, header=None, names=header) abund_df = pd.read_csv(sm.input.abund, header=0, index_col=0, sep="\t") # Remove length column abund_df.drop("Length", axis=1, inplace=True, errors="ignore") taxa_abund = pd.merge(df, abund_df, right_index=True, left_index=True) taxa_abund_sum = taxa_abund.groupby(header[1:]).sum().reset_index() taxa_abund_sum.to_csv(sm.output[0], sep="\t", index=False) def main(sm): toolbox = {"write_featurefile": write_featurefile, "clean_featurecount": clean_featurecount, "aggregate_featurecount": aggregate_featurecount, "count_features": count_features, "sum_to_taxa": sum_to_taxa} toolbox[sm.rule](sm) if __name__ == "__main__": main(snakemake) |
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 | import sys import pandas as pd def add_lower(df, ranks): """ Propagates assignments from higher to lower taxonomic ranks, and adds a 'Unclassified.' prefix. :param df: pandas DataFrame :param ranks: ranks for which to propagate :return: """ for i in df.index: last_known = df.loc[i, ranks[0]] for rank in ranks[1:]: if df.loc[i, rank] != "Unclassified": last_known = df.loc[i, rank] else: if last_known == "Unclassified": df.loc[i, rank] = last_known else: df.loc[i, rank] = "Unclassified.{}".format(last_known) return df def contigtax_mash(sm): # Keep stats on assignments # resolved = cases where sourmash helped resolve assignments # transferred = cases where blast-based assignments were overwritten # added = cases where assignments from sourmash were added # total = total number of contigs stats = {'resolved': 0, 'transferred': 0, 'added': 0, 'total': 0} df1 = pd.read_csv(sm.input.smash, sep=",", header=0, index_col=0) stats['total'] = df1.shape[0] df2 = pd.read_csv(sm.input.contigtax[0], sep="\t", header=0, index_col=0) ranks = list(df2.columns) ranks.reverse() # Only use subset of contigs with matches df1 = df1.loc[df1["status"] == "found", df2.columns] df1.fillna("Unclassified", inplace=True) # Get common set of contigs common = set(df1.index).intersection(set(df2.index)) for contig in common: s = df1.loc[contig] b = df2.loc[contig] for rank in ranks: # If sourmash has an assignment at this rank if s[rank] != "Unclassified": # If blast-based contains 'Unclassified', # mark contig as resolved if "Unclassified" in b[rank]: stats['resolved'] += 1 # Otherwise, mark contig as transferred else: stats['transferred'] += 1 # As soon as a contig has been transferred or resolved # we can stop the merge df2.loc[contig] = df1.loc[contig] break # If sourmash does not have an assignment at this rank else: # but blast-based does have an assignment, # then the blast-based is more resolved and we can stop # trying to merge if "Unclassified" not in b[rank]: break # Get contigs in sourmash missing from blast missing1 = set(df1.index).difference(set(df2.index)) if len(missing1) > 0: stats['added'] += len(missing1) df2 = pd.concat([df2, df1.loc[missing1]]) df2 = add_lower(df2, df2.columns) df2.to_csv(sm.output[0], sep="\t") # Write to log with open(sm.log[0], 'w') as fhout: fhout.write("Total: {}\n".format(stats['total'])) fhout.write("Resolved: {}\n".format(stats['resolved'])) fhout.write("Transferred: {}\n".format(stats["transferred"])) fhout.write("Added: {}\n".format(stats['added'])) def contigtax_assign_orfs(sm): """ Transfers taxonomic assignments from contigs down to ORFs called on contigs :param sm: snakemake object :return: """ gff_df=pd.read_csv(sm.input.gff, header=None, sep="\t", comment="#", usecols=[0, 8], names=["contig", "id"]) # Extract ids ids=["{}_{}".format(gff_df.loc[i, "contig"], gff_df.loc[i, "id"].split(";")[0].split("_")[-1]) for i in gff_df.index] gff_df.loc[:, "id"]=ids # Read taxonomy for contigs tax_df=pd.read_csv(sm.input.tax, header=0, sep="\t", index_col=0) # Merge dataframes orf_tax_df=pd.merge(gff_df, tax_df, left_on="contig", right_index=True, how="outer") # When using 'outer' merging there may be contigs with no called ORF # but with a tax assignment. Drop these contigs. orf_tax_df=orf_tax_df.loc[orf_tax_df["id"]==orf_tax_df["id"]] # Set Unclassified for NA values orf_tax_df.fillna("Unclassified", inplace=True) # Set index to ORF ids orf_tax_df.set_index("id", inplace=True) orf_tax_df.drop("contig", axis=1, inplace=True) orf_tax_df.to_csv(sm.output.tax[0], sep="\t", index=True, header=True) def main(sm): toolbox = {"merge_contigtax_sourmash": contigtax_mash, "contigtax_assign_orfs": contigtax_assign_orfs} toolbox[sm.rule](sm) if __name__ == "__main__": main(snakemake) |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Created: 1yr ago
Updated: 1yr ago
Maitainers:
public
URL:
https://nbis-metagenomic-workflow.readthedocs.io/
Name:
nbis-meta
Version:
v2.3.2
Downloaded:
0
Copyright:
Public Domain
License:
MIT License
Keywords:
Barrnap
prodigal
MEGAHIT
Biopython
BLAST
Bowtie 2
Centrifuge
CheckM
contigtax
Cutadapt
edgeR
eggNOG-mapper v2
FastANI
FastQC
FeatureCounts
Infernal cmscan (EBI)
kraken2
Krona
MaxBin
MetaBAT 2
metagenomeSeq
MetaPhlAn
metaspades
MultiQC
Pandas
Picard
SAMtools
seqtk
Snakemake
SortMeRNA
SqueezeMeta
Trimmomatic
Trnascan-SE
CONCOCT
common
gtdbtk
networkx
numpy
RGI
- Future updates
Related Workflows

ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...

Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...

snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...

ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics

RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...

This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...