Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output, operation
- Lack of a description for a new keyword tool/pypi/xlsx2csv .
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
Installation
-
Install conda ( https://docs.conda.io/en/latest/miniconda.html )
-
clone the repo and create conda env
git clone github.com/hmartiniano/ngest.git
cd ngest
conda env create -n ngest -f env.yml
conda activate ngest
Usage
To build a KG with all the databases you need 64 GB of RAM and around 10 GB disk space.
I the root dir of the repo run:
make
This will run the snakemake workflow.
Setup neo4j
- Install docker with docker-compose plugin:
https://docs.docker.com/compose/install/
- Copy example env file to neo4j/env:
cd neo4j
cp env.example env
-
Replace username and password in env file.
-
Start neo4j:
docker compose up -d
- Run conversion script:
python ../scripts/tsv_to_neo4j ../data/finals/merged_nodes.tsv ../data/finals/merged_edges.tsv
cp nodes.csv.gz edges.csv.gz import
- Enter container
docker compose exec neo4j bash
- Import data Inside the container run:
./bin/neo4j-admin database import full --nodes /import nodes.csv.gz --edges /import/edges.csv.gz --overwrite-destination
Code Snippets
5 | shell: "curl -L {BGEE} -o {output}" |
10 | shell: "python scripts/bgee_to_kgx.py -i {input} -o {output}" |
7 | shell: "curl -L {CL} -o {output}" |
13 | shell: "kgx transform -i obojson -o ../data/processed/intermediary/cl -f tsv {input} " |
17 | shell: "curl -L {PRMAPPING} -o {output}" |
22 | shell: "python scripts/cl_kgx_process.py -i {input.nodes} {input.edges} -m {input.mapping} -o {output}" |
7 | shell: "curl -L {DISGENET} -o {output}" |
11 | shell: "curl -L {MAPPING} -o {output}" |
15 | shell: "curl -L {DISGENET_VERSION} -o {output}" |
20 | shell: "python scripts/disgenet_to_kgx.py -i {input} -v {input.version} -o {output}" |
7 | shell: "curl -L {ENSEMBLPROTEINS} -o {output}" |
11 | shell: "curl -L {ENSEMBLGENES} -o {output}" |
15 | shell: "curl -L {ENSEMBLENTREZ} -o {output}" |
21 | shell: "python scripts/ensembl_to_entrez.py -i {input} -o {output}" |
27 | shell: "zcat {input}| awk -F \"\t\" '$3 == \"gene\" {{ print $9 }}' | awk -F \"; \" 'BEGIN {{OFS=\"\t\"}} {{ print > \"{output}\" }}'" |
33 | shell: "python scripts/ensembl_to_kgx.py -i {input.ensembl} -u {input.uniprot} -g {input.genes} -o {output}" |
9 | shell: "curl -L {GOAP} -o {output}" |
13 | shell: "curl -L {GOAC} -o {output}" |
17 | shell: "curl -L {GOAR} -o {output}" |
21 | shell: "curl -L {GOAI} -o {output}" |
25 | shell: "curl -L {GOAVERSION} -o {output}" |
30 | shell: "python scripts/goa_to_kgx.py -i {input.rna} {input.protein} {input.complex} {input.isoform} -r {input.ro} -g {input.go} -c {input.cfg} -v {input.version} -o {output}" |
6 | shell: "curl {GO} -o {output}" |
10 | shell: "curl -L {GOVERSION} -o {output}" |
15 | shell: "kgx transform -i obojson -o ../data/processed/intermediary/go -f tsv {input} " |
20 | shell: "python scripts/go_kgx_process.py -i {input} -v {input.version} -o {output}" |
5 | shell: "curl -L {HPOA} -o {output}" |
10 | shell: "python scripts/hpoa_to_kgx.py -i {input.hpoa} -m {input.mondo_map} -n {input.hpo} -o {output}" |
5 | shell: "curl -L {HPO} -o {output}" |
10 | shell: "kgx transform -i obojson -o ../data/processed/intermediary/hpo -f tsv {input} " |
15 | shell: "python scripts/hpo_kgx_process.py -i {input} -o {output}" |
5 | shell: "curl -L {MIRTARBASE} -o {output}" |
11 | shell: "python scripts/mirtarbase_to_csv.py -i {input} -o {output}" |
17 | shell: "python scripts/mirtarbase_to_kgx.py -i {input.mirtarbase} -r {input.rnamapping} -g {input.genemapping} -o {output}" |
5 | shell: "curl -L {MONDO} -o {output}" |
10 | shell: "python scripts/mondo_mapping.py -i {input} -o {output}" |
15 | shell: "kgx transform -i obojson -o ../data/processed/intermediary/mondo -f tsv {input} " |
20 | shell: "python scripts/mondo_kgx_process.py -i {input} -o {output}" |
5 | shell: "curl -L {NPINTER} -o {output}" |
10 | shell: "zcat {input} | awk -F \"\t\" 'BEGIN {{OFS=\"\t\"}} {{ if ($1 == \"interID\" || $11 == \"Homo sapiens\") print $0}}' > {output}" |
15 | shell: "python scripts/npinter_to_kgx.py -i {input.npinter} -r {input.noncoddingmapping} {input.tarbasemapping} {input.ensemblmapping} -p {input.proteinmapping} -g {input.genemapping} -o {output}" |
15 | shell: "curl -L {RNACENTRALENSEMBLMAPPING} -o {output}" |
20 | shell: "curl -L {RNACENTRALTARBASEMAPPING} -o {output}" |
24 | shell: "curl -L {RNANONCODINGMAPPING} -o {output}" |
28 | shell: "curl -L {RNACENTRAL} -o {output}" |
32 | shell: "curl -L {RNAVERSION} -o {output}" |
37 | shell: "awk 'BEGIN {{OFS=\"\t\"}} {{ if ($4 == 9606) print $0}}' {input} > {output}" |
42 | shell: "awk 'BEGIN {{OFS=\"\t\"}} {{ if ($4 == 9606) print $0}}' {input} > {output}" |
47 | shell: "awk 'BEGIN {{OFS=\"\t\"}} {{ if ($4 == 9606) print $0}}' {input} > {output}" |
52 | shell: "zcat {input} | awk -F \"\t\" 'BEGIN {{OFS=\"\t\"}} {{ if ($1!~/^!/ && $7 == \"taxon:9606\") print $1,$2,$4,$6}}' > {output}" |
58 | shell: "python scripts/rnacentral_to_kgx.py -i {input.rnacentral} -m {input.mapping} -g {input.genes} -v {input.version} -o {output}" |
5 | shell: "curl -L {RO} -o {output}" |
4 | shell: "curl -L {STRING} -o {output}" |
9 | shell: "python scripts/stringdb_to_kgx.py -i {input.string} -p {input.proteinmapping} -o {output}" |
5 | shell: "curl -L {UBERON} -o {output}" |
11 | shell: "kgx transform -i obojson -o ../data/processed/intermediary/uberon -f tsv {input}" |
16 | shell: "python scripts/uberon_kgx_process.py -i {input} -o {output}" |
5 | shell: "curl -L {UNIPROT} -o {output}" |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 | import argparse import pandas as pd import uuid def read_files(fname): df = pd.read_csv(fname, sep="\t", low_memory=False) return df def get_parser(): parser = argparse.ArgumentParser( prog="bgee_to_kgx.py", description="bgee_to_csv: convert an bgee file to CSVs with nodes and edges.", ) parser.add_argument("-i", "--input", help="Input files") parser.add_argument( "-o", "--output", nargs="+", default="bgee", help="Output prefix. Default: out" ) return parser def main(): parser = get_parser() args = parser.parse_args() bgee = read_files(args.input) # bgee = bgee[bgee["Expression"].isin(["present", "absent"])] bgee = bgee[bgee["Expression"].isin(["present"])] bgee["object"] = bgee["Anatomical entity ID"] bgee["subject"] = "ENSEMBL:" + bgee["Gene ID"] bgee["provided_by"] = "BGEE" bgee = bgee[~bgee["object"].str.contains("∩", na=False)] bgee["source"] = "BGEE" url = args.input.split("/")[-1] bgee["source version"] = url.split("_")[1] + "_" + url.split("_")[2] gene_to_ae = bgee gene_to_ae["category"] = "biolink:GeneToExpressionSiteAssociation" gene_to_ae["predicate"] = "biolink:expressed_in" gene_to_ae["relation"] = "RO:0002206" gene_to_ae["knowledge_source"] = "BGEE" # to include negated field for absent relations # gene_to_ae["negated"] = gene_to_ae.Expression.str.startswith("absent") gene_to_ae = gene_to_ae[ ["subject", "predicate", "object", "category", "relation", "knowledge_source", "source", "source version"] ].drop_duplicates() gene_to_ae["id"] = gene_to_ae["subject"].apply(lambda x: uuid.uuid4()) gene_to_ae.to_csv(f"{args.output[1]}", sep="\t", index=False) ae = bgee[["object", "Anatomical entity name", "provided_by", "source", "source version"]] ae["id"] = ae["object"] ae["name"] = ae["Anatomical entity name"] ae.loc[ae["id"].str.contains("UBERON"), "category"] = "biolink:AnatomicalEntity" ae.loc[ae["id"].str.contains("CL"), "category"] = "biolink:Cell" genes = bgee[["subject", "provided_by", "Gene name", "source", "source version"]] genes["id"] = genes["subject"] genes["category"] = "biolink:Gene" genes["name"] = genes["Gene name"] nodes = pd.concat( [ genes[["id", "category", "name", "provided_by", "source", "source version"]], ae[["id", "category", "name", "provided_by", "source", "source version"]], ] ).drop_duplicates() nodes[["id", "name", "category", "provided_by","source", "source version"]].to_csv( f"{args.output[0]}", sep="\t", index=False ) if __name__ == "__main__": main() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 | import argparse import pandas as pd import requests release = "https://api.github.com/repos/obophenotype/cell-ontology/releases/latest" def get_parser(): parser = argparse.ArgumentParser( prog="cl_kgx_process.py", description="cl_kgx_process: convert protein ids from cl kgx files.", ) parser.add_argument("-i", "--input", nargs="+", help="Input files") parser.add_argument("-m", "--mapping", help="Input files") parser.add_argument( "-o", "--output", nargs="+", default="cl", help="Output prefix. Default: out" ) return parser def main(): parser = get_parser() args = parser.parse_args() clnodes = pd.read_csv(args.input[0], sep="\t", low_memory=False) cledges = pd.read_csv(args.input[1], sep="\t", low_memory=False) clmapping = pd.read_csv(args.mapping, sep="\t", header=None, low_memory=False) response = requests.get( release ) version = response.json()["name"] clnodes["source"] = "CL" clnodes["source version"] = version cledges["source"] = "CL" cledges["source version"] = version clmapping.columns = ["ID", "xref", "Relation"] clmapping = ( clmapping[clmapping["xref"].str.contains("UniProt")][["ID", "xref"]] .drop_duplicates() .set_index("ID") ) clmapping = clmapping[~clmapping.index.duplicated(keep="first")].iloc[:, 0] # Transform nodes clnodes["Uniprot ID"] = ( "UNIPROTKB:" + clnodes["id"].map(clmapping).str.split(":").str[-1] ) cledges["Object Uniprot ID"] = ( "UNIPROTKB:" + cledges["object"].map(clmapping).str.split(":").str[-1] ) cledges["Subject Uniprot ID"] = ( "UNIPROTKB:" + cledges["subject"].map(clmapping).str.split(":").str[-1] ) clnodes["id"] = clnodes[["Uniprot ID", "id"]].bfill(axis=1).iloc[:, 0] cledges["object"] = ( cledges[["Object Uniprot ID", "object"]].bfill(axis=1).iloc[:, 0] ) cledges["subject"] = ( cledges[["Subject Uniprot ID", "subject"]].bfill(axis=1).iloc[:, 0] ) clnodes = clnodes[~clnodes.id.str.startswith("PR")] clnodes[["id", "category", "name", "provided_by", "source", "source version"]].drop_duplicates().to_csv( f"{args.output[0]}", sep="\t", index=False ) cledges = cledges[~cledges.subject.str.startswith("PR")] cledges = cledges[~cledges.object.str.startswith("PR")] cledges[ ["id", "subject", "predicate", "object", "relation", "knowledge_source", "source", "source version"] ].to_csv(f"{args.output[1]}", sep="\t", index=False) if __name__ == "__main__": main() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 | import argparse import pandas as pd import uuid def read_files(fname): df = pd.read_csv(fname, sep="\t", low_memory=False) return df def get_version(fname): with open(fname) as f: for line in f: if "version" in line: version = line.split("version ")[1].split(").")[0] return version def get_parser(): parser = argparse.ArgumentParser( prog="disgenet_to_kgx.py", description=( "disgenet_to_csv: convert an disgenet file to CSVs with nodes and edges." ), ) parser.add_argument("-i", "--input", nargs="+", help="Input files") parser.add_argument("-v", "--version", help="Input version file") parser.add_argument( "-o", "--output", nargs="+", default="disgenet", help="Output prefix. Default: out", ) return parser def main(): parser = get_parser() args = parser.parse_args() disgenet = read_files(args.input[0]) disgenet_mapping = read_files(args.input[1]) entrez_to_ensembl = ( read_files(args.input[2]).drop_duplicates().set_index("Entrez Gene ID") ) entrez_to_ensembl = entrez_to_ensembl[ ~entrez_to_ensembl.index.duplicated(keep="first") ].iloc[:, 0] # Transform nodes disgenet_mapping = disgenet_mapping[ disgenet_mapping["vocabulary"].isin(["HPO", "MONDO"]) ] disgenet_mapping["code"] = ( disgenet_mapping["vocabulary"] + ":" + disgenet_mapping["code"] ).str.replace("HPO:", "") disgenet_mapping = ( disgenet_mapping[["diseaseId", "code"]].drop_duplicates().set_index("diseaseId") ) disgenet_mapping = disgenet_mapping[ ~disgenet_mapping.index.duplicated(keep="first") ].iloc[:, 0] disgenet["geneId"] = disgenet["geneId"].map(str) disgenet["object"] = disgenet["diseaseId"].map(disgenet_mapping) disgenet["subject"] = "ENSEMBL:" + disgenet["geneId"].map(entrez_to_ensembl) disgenet["provided_by"] = "Disgenet" disgenet["source"] = "Disgenet" disgenet["source version"] = get_version(args.version) disgenet = disgenet.dropna(subset=["object", "subject"]) gene_to_phenotype = disgenet[disgenet.object.str.startswith("HP")] gene_to_phenotype["category"] = "biolink:GeneToPhenotypicFeatureAssociation" gene_to_phenotype["predicate"] = "biolink:associated_with" gene_to_phenotype["relation"] = "RO:0016001" gene_to_phenotype["knowledge_source"] = "Disgenet" gene_to_phenotype = gene_to_phenotype[ [ "subject", "predicate", "object", "category", "relation", "knowledge_source", "provided_by", "diseaseName", "source", "source version" ] ].drop_duplicates() gene_to_phenotype["id"] = gene_to_phenotype["subject"].apply(lambda x: uuid.uuid4()) gene_to_disease = disgenet[disgenet.object.str.startswith("MONDO")] gene_to_disease["category"] = "biolink:GeneToDiseaseAssociation" gene_to_disease["predicate"] = "biolink:associated_with" gene_to_disease["relation"] = "RO:0016001" gene_to_disease["knowledge_source"] = "Disgenet" gene_to_disease = gene_to_disease[ [ "subject", "predicate", "object", "category", "relation", "knowledge_source", "provided_by", "diseaseName", "source", "source version" ] ].drop_duplicates() gene_to_disease["id"] = gene_to_disease["subject"].apply(lambda x: uuid.uuid4()) edges = pd.concat([gene_to_phenotype, gene_to_disease]) edges[ [ "id", "subject", "predicate", "object", "category", "relation", "knowledge_source", "source", "source version" ] ].drop_duplicates().to_csv(f"{args.output[1]}", sep="\t", index=False) phenotypes = gene_to_phenotype phenotypes["id"] = gene_to_phenotype["object"] phenotypes["category"] = "biolink:PhenotypicFeature" phenotypes["name"] = gene_to_phenotype["diseaseName"] phenotypes = phenotypes[["id", "category", "name", "provided_by", "source", "source version"]] diseases = gene_to_disease diseases["id"] = diseases["object"] diseases["category"] = "biolink:Disease" diseases["name"] = gene_to_disease["diseaseName"] diseases = diseases[["id", "category", "name", "provided_by", "source", "source version"]] nodes = disgenet nodes["id"] = disgenet["subject"] nodes["category"] = "biolink:Gene" nodes["name"] = disgenet["geneSymbol"] nodes = nodes[["id", "category", "name", "provided_by", "source", "source version"]] nodes = pd.concat([nodes, phenotypes, diseases]).drop_duplicates() nodes[["id", "name", "category", "provided_by", "source", "source version"]].to_csv( f"{args.output[0]}", sep="\t", index=False ) if __name__ == "__main__": main() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | import argparse import pandas as pd ENSEMBL_COLUMNS = ["Ensembl ID", "Entrez Gene ID"] def read_file(fname): df = pd.read_csv(fname, sep="\t", low_memory=False) df = df[["gene_stable_id", "xref"]].drop_duplicates() df.columns = ENSEMBL_COLUMNS return df def get_parser(): parser = argparse.ArgumentParser( prog="ensembl_to_entrez.py", description="ensembl_to_entrez: download ensembl and entrez ids to csv file", ) parser.add_argument("-i", "--input", help="Input files") parser.add_argument( "-o", "--output", default="ensembl to entrez", help="Output ensembl data." ) return parser def main(): parser = get_parser() args = parser.parse_args() ensemblf = read_file(args.input) ensemblf[["Entrez Gene ID", "Ensembl ID"]].to_csv( f"{args.output}", sep="\t", index=False ) if __name__ == "__main__": main() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 | import uuid import argparse import pandas as pd GENES = ["Gene Id", "Gene Version", "Gene Name"] def read_id_mapping_uniprot(fname): df = pd.read_csv(fname, sep="\t", header=None, low_memory=False) df.columns = ["ID", "Database", "Database ID"] df = df[df["Database"] == "UniProtKB-ID"] df["Database ID"] = df["Database ID"].str.split("_").str[0] df = df[["ID", "Database ID"]].drop_duplicates().set_index("ID") df = df[~df.index.duplicated(keep="first")].iloc[:, 0] return df def read_genes(fname): df = pd.read_csv(fname, sep=";", low_memory=False, header=None) df = df.iloc[:, :3] df.columns = GENES df = df[df["Gene Name"].str.contains("gene_name")] df["Gene Id"] = "ENSEMBL:" + df["Gene Id"].str.split(" ").str[-1].str.replace( '"', "" ) df["Gene Name"] = df["Gene Name"].str.split(" ").str[-1].str.replace('"', "") df = df[["Gene Id", "Gene Name"]].drop_duplicates().set_index("Gene Id") df = df[~df.index.duplicated(keep="first")].iloc[:, 0] return df def get_parser(): parser = argparse.ArgumentParser( prog="ensembl_to_kgx.py", description=( "ensembl_to_csv: convert an ensembl file to CSVs with nodes and edges." ), ) parser.add_argument("-i", "--input", help="Input files") parser.add_argument("-u", "--uniprot", help="Input files") parser.add_argument("-g", "--genes", help="Input files") parser.add_argument( "-o", "--output", nargs="+", default="ensembl", help="Output prefix. Default: out", ) return parser def main(): parser = get_parser() args = parser.parse_args() uniprotf = read_id_mapping_uniprot(args.uniprot) ensemblf = pd.read_csv(args.input, sep="\t", comment="!", low_memory=False) genesf = read_genes(args.genes) ensemblf["protein name"] = ensemblf["xref"].map(uniprotf) ensemblf["provided_by"] = "ENSEMBL" ensemblf["knowledge_source"] = "ENSEMBL" ensemblf["xref"] = ensemblf["xref"].str.split("-").str[0] ensemblf["protein name"] = ensemblf["xref"].map(uniprotf) ensemblf["source"] = "ENSEMBL" version = args.input.split(".") ensemblf["source version"] = version[3] + " " + version[4] gene_to_protein = ensemblf.dropna(subset=["xref"]) gene_to_protein["subject"] = "ENSEMBL:" + gene_to_protein["gene_stable_id"] gene_to_protein["object"] = "UNIPROTKB:" + gene_to_protein["xref"] gene_to_protein["predicate"] = "biolink:has_gene_product" gene_to_protein["relation"] = "RO:0002205" gene_to_protein = gene_to_protein[ ["subject", "predicate", "object", "relation", "knowledge_source", "source", "source version"] ].drop_duplicates() gene_to_protein["id"] = gene_to_protein["subject"].apply(lambda x: uuid.uuid4()) protein = ensemblf.dropna(subset=["xref"]) protein["id"] = "UNIPROTKB:" + protein["xref"] protein["category"] = "biolink:Protein" protein["name"] = protein["protein name"] protein["xref"] = "ENSEMBL:" + ensemblf["protein_stable_id"] protein = protein[["id", "category", "name", "xref", "provided_by", "source", "source version"]] edges = gene_to_protein genes = ensemblf genes["id"] = "ENSEMBL:" + ensemblf["gene_stable_id"] genes["category"] = "biolink:Gene" genes["name"] = genes["id"].map(genesf) genes = genes[["id", "category", "name", "provided_by", "source", "source version"]] nodes = pd.concat([genes, protein]).drop_duplicates() nodes[["id", "name", "category", "provided_by", "xref", "source", "source version"]].to_csv( f"{args.output [0]}", sep="\t", index=False ) edges[ ["object", "subject", "id", "predicate", "knowledge_source", "relation", "source", "source version"] ].to_csv(f"{args.output[1]}", sep="\t", index=False) if __name__ == "__main__": main() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 | import uuid import json import argparse import pandas as pd import yaml GAF_COLUMNS = [ "DB", "DB Object ID", "DB Object Symbol", "Qualifier", "GO ID", "DB:Reference", "Evidence Code", "With (or) From", "Aspect", "DB Object Name", "DB Object Synonym", "DB Object Type", "Taxon(|taxon)", "Date", "Assigned By", "Annotation Extension", "Gene Product Form ID", ] def yaml_loader(fname): with open(fname) as f: classes = pd.DataFrame(yaml.full_load(f)["classes"]) classes = classes.drop_duplicates().set_index("database") classes = classes[~classes.index.duplicated(keep="first")].iloc[:, 0] return classes def read_gaf(fnames, biolinkclasses): gaf = pd.DataFrame(columns=GAF_COLUMNS) for f in fnames: df = pd.read_csv(f, sep="\t", comment="!", header=None, low_memory=False) df.columns = GAF_COLUMNS df["Qualifier"] = df["Qualifier"].replace("is_active_in", "active_in") df["Qualifier"] = df["Qualifier"].replace("NOT|is_active_in", "NOT|active_in") df["DB"] = df["DB"].str.upper() df["Biolink Category"] = df["DB"].map(biolinkclasses) gaf = pd.concat([gaf, df]) return gaf def get_predicate_map(fname): ro = json.load(open(fname)) predicate_to_relation = {} for node in ro["graphs"][0]["nodes"]: relation = node["id"] if node.get("lbl", None) == "is active in": predicate = "active in" else: predicate = node.get("lbl", None) if predicate is not None: relation = relation.split("/")[-1].replace("_", ":") predicate_to_relation[predicate.replace(" ", "_")] = relation return predicate_to_relation def get_parser(): parser = argparse.ArgumentParser( prog="goa_to_kgx.py", description="goa_to_kgx: convert an goa file to CSVs with nodes and edges.", ) parser.add_argument("-i", "--input", nargs="+", help="Input GAF files") parser.add_argument("-r", "--ro", help="Input RO json file") parser.add_argument("-g", "--go", help="Input GO nodes file") parser.add_argument("-c", "--cfg", help="Input config.yaml file") parser.add_argument("-v", "--version", help="Input version file") parser.add_argument( "-o", "--output", nargs="+", default="goa", help="Output prefix. Default: out" ) return parser def main(): parser = get_parser() args = parser.parse_args() with open(args.version, "r") as f: version = json.load(f)["date"] biolinkclasses = yaml_loader(args.cfg) predicate_to_relation = get_predicate_map(args.ro) gof = pd.read_csv(args.go, sep="\t")[["id", "category", "name", "provided_by", "xref", "source", "source version"]] gaf = read_gaf(args.input, biolinkclasses) gaf["provided_by"] = "GOA" gaf["id"] = gaf.DB + ":" + gaf["DB Object ID"].str.split("_").str[0] gaf["category"] = gaf["Biolink Category"] gaf["name"] = gaf["DB Object Symbol"] gaf["source"] = "GOA" gaf["source version"] = version nodes=pd.concat([gaf[["id", "name", "category", "provided_by", "source", "source version"]], gof]) nodes.drop_duplicates().to_csv( f"{args.output[0]}", sep="\t", index=False ) # Now edges gaf["object"] = gaf["GO ID"] gaf["subject"] = gaf.DB + ":" + gaf["DB Object ID"] gaf["category"] = "biolink:FunctionalAssociation" gaf["negated"] = gaf.Qualifier.str.startswith("NOT|") gaf["predicate"] = "biolink:" + gaf.Qualifier.str.replace("NOT|", "", regex=False) gaf["relation"] = gaf.Qualifier.map(predicate_to_relation) gaf["knowledge_source"] = "GOA" gaf = gaf[ [ "subject", "predicate", "object", "category", "negated", "relation", "knowledge_source", "source", "source version" ] ].drop_duplicates() gaf["id"] = gaf.subject.apply(lambda x: uuid.uuid4()) gaf.to_csv(f"{args.output[1]}", sep="\t", index=False) if __name__ == "__main__": main() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | import pandas as pd import argparse import json def get_parser(): parser = argparse.ArgumentParser( prog="go_kgx_process.py", description=( "go_kgx_process: get go version." ), ) parser.add_argument("-i", "--input", nargs="+", help="Input files") parser.add_argument("-v", "--version", help="Input version file") parser.add_argument( "-o", "--output", nargs="+", default="go", help="Output prefix. Default: out", ) return parser def main(): parser = get_parser() args = parser.parse_args() gonodes = pd.read_csv(args.input[0], sep="\t", low_memory=False) goedges = pd.read_csv(args.input[1], sep="\t", low_memory=False) with open(args.version, "r") as f: version = json.load(f)["date"] gonodes["source"] = "GO" gonodes["source version"] = version goedges["source"] = "GO" goedges["source version"] = version gonodes[["id", "category", "name", "provided_by", "description", "xref", "source", "source version"]].drop_duplicates().to_csv( f"{args.output[0]}", sep="\t", index=False ) goedges[ ["id", "subject", "predicate", "object", "relation", "knowledge_source", "source", "source version"] ].to_csv(f"{args.output[1]}", sep="\t", index=False) if __name__ == "__main__": main() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 | import uuid import argparse import pandas as pd HPOA_COLUMNS = [ "DatabaseId", "DB Name", "Qualifier", "HPO ID", "DB Reference", "Evidence", "Onset", "Frequency", "Sex", "Modifier", "Aspect", "Biocuration", ] def get_version (fname): with open(fname) as f: for line in f: if "#version:" in line: version = line.split(":")[1].split("\n")[0].replace(" ", "") return version def read_hpoa(fname): hpoa = pd.read_csv(fname, sep="\t", header=None, low_memory=False, comment="#") hpoa.columns = HPOA_COLUMNS return hpoa def read_mondo(fname): mondo = pd.read_csv(fname, sep="\t", low_memory=False) mondo = mondo.drop_duplicates().set_index("disease") mondo = mondo[~mondo.index.duplicated(keep="first")].iloc[:, 0] return mondo def get_parser(): parser = argparse.ArgumentParser( prog="hpoa_to_kgx.py", description="hpoa_to_kgx: convert an hpoa file to CSVs with nodes and edges.", ) parser.add_argument("-i", "--input", help="Input hpoa files") parser.add_argument("-m", "--mapping", help="Input mondo mapping files") parser.add_argument("-n", "--hpo", help="Input hpo nodes") parser.add_argument( "-o", "--output", nargs="+", default="goa", help="Output prefix. Default: out" ) return parser def main(): parser = get_parser() args = parser.parse_args() hpoa = read_hpoa(args.input) mondo_mapping = read_mondo(args.mapping) version = get_version(args.input) hpoa["provided_by"] = "HPOA" hpoa["knowledge_source"] = "HPOA" hpoa["id"] = hpoa["DatabaseId"].map(mondo_mapping) hpoa["category"] = "biolink:Disease" hpoa["name"] = hpoa["DB Name"] hpoa["source"] = "HPOA" hpoa["source version"] = version hpf = pd.read_csv(args.hpo, sep="\t")[ [ "id", "name", "category", "provided_by", "xref", "source", "source version" ] ] hpf = hpf[hpf.id.str.startswith("HP")] nodes = pd.concat([ hpoa[ [ "id", "name", "category", "provided_by", "source", "source version" ] ].dropna(subset=["id"]), hpf]).drop_duplicates().to_csv( f"{args.output[0]}", sep="\t", index=False ) # Now edges hpoa["subject"] = hpoa["DatabaseId"].map(mondo_mapping) hpoa["object"] = hpoa["HPO ID"] hpoa["id"] = hpoa.id.apply(lambda x: uuid.uuid4()) hpoa["category"] = "biolink:DiseaseToPhenotypicFeatureAssociation" hpoa["negated"] = hpoa.Qualifier.str.startswith("NOT") hpoa["predicate"] = "biolink:has_phenotype" hpoa["relation"] = "RO:0002200" hpoa = ( hpoa[ [ "subject", "predicate", "object", "negated", "category", "relation", "knowledge_source", "source", "source version" ] ] .dropna() .drop_duplicates() ) hpoa["id"] = hpoa.subject.apply(lambda x: uuid.uuid4()) hpoa.to_csv(f"{args.output[1]}", sep="\t", index=False) if __name__ == "__main__": main() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | import pandas as pd import argparse import requests release = "https://api.github.com/repos/obophenotype/human-phenotype-ontology/releases/latest" def get_parser(): parser = argparse.ArgumentParser( prog="hpo_kgx_process.py", description=( "hpo_kgx_process: get hpo version." ), ) parser.add_argument("-i", "--input", nargs="+", help="Input files") parser.add_argument( "-o", "--output", nargs="+", default="go", help="Output prefix. Default: out", ) return parser def main(): parser = get_parser() args = parser.parse_args() hponodes = pd.read_csv(args.input[0], sep="\t", low_memory=False) hpoedges = pd.read_csv(args.input[1], sep="\t", low_memory=False) response = requests.get( release ) version = response.json()["name"] hponodes["source"] = "HPO" hponodes["source version"] = version hpoedges["source"] = "HPO" hpoedges["source version"] = version hponodes[["id", "category", "name", "provided_by", "description", "xref", "source","source version"]].drop_duplicates().to_csv( f"{args.output[0]}", sep="\t", index=False ) hpoedges[ ["id", "subject", "predicate", "object", "relation", "knowledge_source", "source", "source version"] ].to_csv(f"{args.output[1]}", sep="\t", index=False) if __name__ == "__main__": main() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | import argparse from collections import Counter from kgx.transformer import Transformer import networkx as nx def get_parser(): parser = argparse.ArgumentParser( prog="lcc.py", description=( "lcc: extract the largest connected component from a tsv format KG." ), ) parser.add_argument("-n", "--nodes", help="Node file") parser.add_argument("-e", "--edges", help="Edge files") parser.add_argument("-o", "--output", default="lcc", help="Output prefix. Default: lcc") return parser def main(): parser = get_parser() args = parser.parse_args() input_args = {'filename': [args.nodes, args.edges], 'format': 'tsv'} output_args = {'filename': args.output, 'format': 'tsv'} t = Transformer(stream=False) t.transform(input_args=input_args) print("connected components:", Counter(map(len, nx.connected_components(t.store.graph.graph.to_undirected())))) lcc = max(nx.connected_components(t.store.graph.graph.to_undirected()), key=len) print("Size of lcc:", len(lcc)) t.store.graph.graph = t.store.graph.graph.subgraph(lcc) t.save(output_args) if __name__ == "__main__": main() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | import argparse import pandas as pd from xlsx2csv import Xlsx2csv from io import StringIO def get_parser(): parser = argparse.ArgumentParser( prog="mirtarbase_to_csv.py", description="mirtarbase_to_csv: convert a mirtarbase xlsx file to csv.", ) parser.add_argument("-i", "--input", help="Input file") parser.add_argument( "-o", "--output", default="ensembl", help="Output prefix. Default: out" ) return parser def read_excel(path: str, sheet_name: str) -> pd.DataFrame: buffer = StringIO() Xlsx2csv(path, outputencoding="utf-8", sheet_name=sheet_name).convert(buffer) buffer.seek(0) df = pd.read_csv(buffer) return df def main(): parser = get_parser() args = parser.parse_args() path = args.input sheet = "Homo sapiens" read_excel(path, sheet).to_csv(f"{args.output}", sep="\t", index=False) if __name__ == "__main__": main() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 | import uuid import argparse import pandas as pd def get_version (fname): version = fname.split("/")[-1] version = version.split("_")[0] return version def get_parser(): parser = argparse.ArgumentParser( prog="mirtarbase_to_kgx.py", description=( "mirtarbase_to_kgx: convert a mirtarbase file to CSVs with nodes and edges." ), ) parser.add_argument("-i", "--input", help="Input files") parser.add_argument("-r", "--rna", help="Input files") parser.add_argument("-g", "--genes", help="Input files") parser.add_argument( "-o", "--output", nargs="+", default="ensembl", help="Output prefix. Default: out", ) return parser def main(): parser = get_parser() args = parser.parse_args() version = get_version(args.input) rnamapping = pd.read_csv(args.rna, sep="\t", header=None, low_memory=False).iloc[ :, :5 ] rnamapping.columns = ["RNACentral", "DB", "xref", "Species", "Type"] rnamapping = rnamapping[["RNACentral", "xref"]].drop_duplicates().set_index("xref") rnamapping = rnamapping[~rnamapping.index.duplicated(keep="first")].iloc[:, 0] genemapping = ( pd.read_csv(args.genes, sep="\t", low_memory=False) .drop_duplicates() .set_index("Entrez Gene ID") ) genemapping = genemapping[~genemapping.index.duplicated(keep="first")].iloc[:, 0] mirtarbase = pd.read_csv(args.input, sep="\t", low_memory=False) mirtarbase = mirtarbase[ ["miRTarBase ID", "miRNA", "Target Gene", "Target Gene (Entrez ID)"] ] mirtarbase["object"] = ( mirtarbase["Target Gene (Entrez ID)"].map(str).map(genemapping) ) mirtarbase["subject"] = mirtarbase["miRNA"].map(rnamapping) mirtarbase = mirtarbase.dropna(subset=["object", "subject"]) mirtarbase["object"] = "ENSEMBL:" + mirtarbase["object"] mirtarbase["subject"] = "RNACENTRAL:" + mirtarbase["subject"] mirtarbase["provided_by"] = "Mirtarbase" mirtarbase["knowledge_source"] = "Mirtarbase" mirtarbase["predicate"] = "biolink:interacts_with" mirtarbase["relation"] = "RO:0002434" mirtarbase["source"] = "Mirtarbase" mirtarbase["source version"] = version edges = mirtarbase[ ["object", "subject", "predicate", "knowledge_source", "relation", "source", "source version"] ].drop_duplicates() edges["id"] = mirtarbase["subject"].apply(lambda x: uuid.uuid4()) rna = mirtarbase[["subject", "miRNA", "provided_by", "source", "source version"]] rna["id"] = rna["subject"] rna["xref"] = rna["miRNA"] rna["category"] = "biolink:RNAProduct" dna = mirtarbase[ ["object", "Target Gene", "provided_by", "Target Gene (Entrez ID)", "source", "source version"] ] dna["xref"] = dna["Target Gene (Entrez ID)"] dna["name"] = dna["Target Gene"] dna["category"] = "biolink:Gene" dna["id"] = dna["object"] nodes = pd.concat([dna, rna]).drop_duplicates() nodes[["id", "name", "category", "provided_by", "xref", "source", "source version"]].to_csv( f"{args.output [0]}", sep="\t", index=False ) edges.to_csv(f"{args.output[1]}", sep="\t", index=False) if __name__ == "__main__": main() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | import pandas as pd import argparse import requests release = "https://api.github.com/repos/monarch-initiative/mondo/releases/latest" def get_parser(): parser = argparse.ArgumentParser( prog="mondo_kgx_process.py", description=( "mondo_kgx_process: get mondo version." ), ) parser.add_argument("-i", "--input", nargs="+", help="Input files") parser.add_argument( "-o", "--output", nargs="+", default="go", help="Output prefix. Default: out", ) return parser def main(): parser = get_parser() args = parser.parse_args() mondonodes = pd.read_csv(args.input[0], sep="\t", low_memory=False) mondoedges = pd.read_csv(args.input[1], sep="\t", low_memory=False) response = requests.get( release ) version = response.json()["name"] mondonodes["source"] = "MONDO" mondonodes["source version"] = version mondoedges["source"] = "MONDO" mondoedges["source version"] = version mondonodes[["id", "category", "name", "provided_by", "description", "xref", "source","source version"]].drop_duplicates().to_csv( f"{args.output[0]}", sep="\t", index=False ) mondoedges[ ["id", "subject", "predicate", "object", "relation", "knowledge_source", "source", "source version"] ].to_csv(f"{args.output[1]}", sep="\t", index=False) if __name__ == "__main__": main() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | import argparse import pandas as pd def get_parser(): parser = argparse.ArgumentParser( prog="mondo_mapping.py", description="mondo_mapping: get mondo mapping csv file" ) parser.add_argument("-i", "--input", help="Input mondo data file.") parser.add_argument( "-o", "--output", default="mondo_mapping", help="Output mondo mapping." ) return parser def main(): parser = get_parser() args = parser.parse_args() mondo_nodes = pd.DataFrame(pd.read_json(args.input).graphs[0]["nodes"]) mondo_nodes["id"] = ( mondo_nodes["id"].str.split("/").str[-1].str.replace("_", ":", regex=False) ) mondo_nodes["xrefs"] = mondo_nodes["meta"] mondo_map = [] for node in range(len(mondo_nodes)): try: xrefs = mondo_nodes["meta"][node]["xrefs"] if xrefs is not None: for xref in xrefs: mondo_map.append((xref["val"], mondo_nodes["id"][node])) except: continue mondo_map = pd.DataFrame(mondo_map, columns=["disease", "mondo"]) mondo_map.to_csv(f"{args.output}", sep="\t", index=False) if __name__ == "__main__": main() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 | import argparse import pandas as pd import uuid predicates = { "binding": "biolink:binds", "binding;regulatory": "biolink:binds", "regulatory": "biolink:regulates", "expression correlation": "biolink:correlates", "coexpression": "biolink:coexpressed_with", } GENES = ["Gene Id", "Gene Version", "Gene Name"] RNACENTRALMAPPING = [ "RNACentral ID", "DB", "Transcript ID", "Species", "RNA Type", "Gene ID", ] def add_predicates(df): predicatef = pd.Series(predicates).drop_duplicates() df["predicate"] = df["class"].map(predicatef) return df def read_rna(fnames, type): rnamapping = pd.DataFrame() for f in fnames: df = pd.read_csv(f, sep="\t", low_memory=False, header=None) df.columns = RNACENTRALMAPPING rnamapping = pd.concat([rnamapping, df]) rnamapping["ID"] = rnamapping[type].str.split(".").str[0] rnamapping = rnamapping[["ID", "RNACentral ID"]].drop_duplicates().set_index("ID") rnamapping = rnamapping[~rnamapping.index.duplicated(keep="first")].iloc[:, 0] return rnamapping def read_genes(fname): df = pd.read_csv(fname, sep=";", low_memory=False, header=None) df = df.iloc[:, :3] df.columns = GENES df = df[df["Gene Name"].str.contains("gene_name")] df["Gene Id"] = "ENSEMBL:" + df["Gene Id"].str.split(" ").str[-1].str.replace( '"', "" ) df["Gene Name"] = df["Gene Name"].str.split(" ").str[-1].str.replace('"', "") df = df[["Gene Id", "Gene Name"]].drop_duplicates().set_index("Gene Name") df = df[~df.index.duplicated(keep="first")].iloc[:, 0] return df def read_id_mapping_uniprot(fname): df = pd.read_csv(fname, sep="\t", header=None, low_memory=False) df.columns = ["ID", "Database", "Database ID"] df = df[df["Database"] == "UniProtKB-ID"] df["Database ID"] = df["Database ID"].str.split("_").str[0] df = df[["ID", "Database ID"]].drop_duplicates().set_index("ID") df = df[~df.index.duplicated(keep="first")].iloc[:, 0] return df def get_parser(): parser = argparse.ArgumentParser( prog="npinter_to_kgx.py", description="npinter_to_kgx: convert an npinter file to CSVs with nodes and edges.", ) parser.add_argument("-i", "--input", help="Input files") parser.add_argument("-p", "--proteins", help="Input files") parser.add_argument("-g", "--genes", help="Input files") parser.add_argument("-r", "--rna", nargs="+", help="Input files") parser.add_argument( "-o", "--output", nargs="+", default="npinter", help="Output prefix. Default: out" ) return parser def main(): parser = get_parser() args = parser.parse_args() npinterf = pd.read_csv(args.input, sep="\t", low_memory=False) npinterf = add_predicates(npinterf) uniprotf = read_id_mapping_uniprot(args.proteins) ensemblf = read_genes(args.genes) rnacentraltf = read_rna(args.rna, "Transcript ID") rnacentralgf = read_rna(args.rna, "Gene ID") version = args.input.split("/")[-1] version = version.split(".")[0].split("_")[1] npinterf["RNACentral Transcript"] = npinterf["ncID"].map(rnacentraltf) npinterf["RNACentral Gene"] = npinterf["ncID"].map(rnacentralgf) npinterf["subject"] = ( npinterf[["RNACentral Transcript", "RNACentral Gene"]].bfill(axis=1).iloc[:, 0] ) npinterf = npinterf.dropna(subset=["subject"]) npinterf["subject"] = "RNACENTRAL:" + npinterf["subject"] npinterf["provided_by"] = "NPInter" npinterf["knowledge_source"] = "NPInter" npinterf["source"] = "NPInter" npinterf["source version"] = version npinterproteins = npinterf[npinterf["level"].isin(["RNA-Protein"])] npinterproteins["Uniprot Name"] = npinterproteins["tarID"].map(uniprotf) npinterproteins = npinterproteins.dropna(subset=["Uniprot Name"]) npinterproteins["object"] = "UNIPROTKB:" + npinterproteins["tarID"] proteins = npinterproteins[["object", "provided_by", "Uniprot Name", "source", "source version"]] proteins["id"] = proteins["object"] proteins["name"] = proteins["Uniprot Name"] proteins["category"] = "biolink:Protein" proteins = proteins[["id", "name", "provided_by", "category", "source", "source version"] ].drop_duplicates() npinterrna = npinterf[npinterf["level"].isin(["RNA-RNA"])] npinterrna["RNACentral Transcript"] = npinterrna["tarID"].map(rnacentraltf) npinterrna["RNACentral Gene"] = npinterrna["tarID"].map(rnacentralgf) npinterrna["object"] = ( npinterrna[["RNACentral Transcript", "RNACentral Gene"]].bfill(axis=1).iloc[:, 0] ) npinterrna = npinterrna.dropna(subset=["object"]) npinterrna["object"] = "RNACENTRAL:" + npinterrna["object"] rnaobj = npinterrna[["object", "provided_by", "tarName", "tarType", "tarID","source", "source version"]] rnaobj["id"] = rnaobj["object"] rnaobj["name"] = rnaobj["tarName"] rnaobj["category"] = "biolink:RNAProduct" rnaobj["node_property"] = rnaobj["tarType"] rnaobj["xref"] = rnaobj["tarID"] rnaobj = rnaobj[["id", "name", "provided_by", "category", "xref", "node_property", "source", "source version"] ].drop_duplicates() npintergenes = npinterf[npinterf["level"].isin(["RNA-DNA"])] npintergenes["Ensembl ID"] = npintergenes["tarName"].map(ensemblf) npintergenes = npintergenes.dropna(subset=["Ensembl ID"]) npintergenes["object"] = npintergenes["Ensembl ID"] genes = npintergenes[["object", "provided_by", "tarName", "source", "source version"]] genes["id"] = genes["object"] genes["name"] = genes["tarName"] genes["category"] = "biolink:Gene" genes = genes[["id", "name", "provided_by", "category","source", "source version"]].drop_duplicates() rna = npinterf[["subject", "ncID", "provided_by", "ncType", "ncName","source", "source version"]] rna["id"] = rna["subject"] rna["name"] = rna["ncName"] rna["category"] = "biolink:RNAProduct" rna["xref"] = rna["ncID"] rna["node_property"] = rna["ncType"] rna = rna[ ["id", "name", "provided_by", "category", "xref", "node_property", "source", "source version"] ].drop_duplicates() nodes = pd.concat([proteins, genes, rna, rnaobj]).drop_duplicates() edges = pd.concat( [ npintergenes[["subject", "object", "knowledge_source", "predicate","source", "source version"]], npinterrna[["subject", "object", "knowledge_source", "predicate","source", "source version"]], npinterproteins[["subject", "object", "knowledge_source", "predicate","source", "source version"]], ] ) edges["id"] = edges["subject"].apply(lambda x: uuid.uuid4()) nodes.to_csv(f"{args.output[0]}", sep="\t", index=False) edges.to_csv(f"{args.output[1]}", sep="\t", index=False) if __name__ == "__main__": main() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 | import uuid import argparse import pandas as pd RNACENTRALMAPPING = [ "RNACentral ID", "DB", "Transcript ID", "Species", "RNA Type", "Gene ID", ] RNACENTRAL = ["DB", "RNACentral ID", "Name", "Type"] GENES = ["Gene Id", "Gene Version", "Gene Name"] def read_file(fname, columns): df = pd.read_csv(fname, sep="\t", header=None, comment="!", low_memory=False) df.columns = columns return df def get_version (fname): with open(fname) as f: version = f.readlines()[1].split("\n")[0] return version def read_genes(fname): df = pd.read_csv(fname, sep=";", low_memory=False, header=None) df = df.iloc[:, :3] df.columns = GENES df = df[df["Gene Name"].str.contains("gene_name")] df["Gene Id"] = "ENSEMBL:" + df["Gene Id"].str.split(" ").str[-1].str.replace( '"', "" ) df["Gene Name"] = df["Gene Name"].str.split(" ").str[-1].str.replace('"', "") df = df[["Gene Id", "Gene Name"]].drop_duplicates().set_index("Gene Id") df = df[~df.index.duplicated(keep="first")].iloc[:, 0] return df def get_parser(): parser = argparse.ArgumentParser( prog="rnacentral_to_kgx.py", description=( "rnacentral_to_kgx: convert an rnacentral file to CSVs with nodes and" " edges." ), ) parser.add_argument("-i", "--input", help="Input files") parser.add_argument("-m", "--mapping", help="Input files") parser.add_argument("-g", "--genes", help="Input files") parser.add_argument("-v", "--version", help="Version file") parser.add_argument( "-o", "--output", nargs="+", default="ensembl", help="Output prefix. Default: out", ) return parser def main(): parser = get_parser() args = parser.parse_args() version = get_version(args.version) rnacentralmapping = read_file(args.mapping, RNACENTRALMAPPING) rnacentralmapping["Gene ID"] = rnacentralmapping["Gene ID"].str.split(".").str[0] rnacentralgenemapping = ( rnacentralmapping[["RNACentral ID", "Gene ID"]] .drop_duplicates() .set_index("RNACentral ID") ) rnacentralgenemapping = rnacentralgenemapping[ ~rnacentralgenemapping.index.duplicated(keep="first") ].iloc[:, 0] rnacentralrnamapping = ( rnacentralmapping[["RNACentral ID", "Transcript ID"]] .drop_duplicates() .set_index("RNACentral ID") ) rnacentralrnamapping = rnacentralrnamapping[ ~rnacentralrnamapping.index.duplicated(keep="first") ].iloc[:, 0] genenames = read_genes(args.genes) rnacentral = read_file(args.input, RNACENTRAL) rnacentral["RNACentral ID"] = ( rnacentralmapping["RNACentral ID"].str.split("_").str[0] ) rnacentral["Ensembl Gene ID"] = rnacentral["RNACentral ID"].map( rnacentralgenemapping ) rnacentral["Ensembl Transcript ID"] = rnacentral["RNACentral ID"].map( rnacentralrnamapping ) rnacentral["provided_by"] = rnacentral["DB"].str.upper() rnacentral["knowledge_source"] = rnacentral["DB"].str.upper() rnacentral["subject"] = "ENSEMBL:" + rnacentral["Ensembl Gene ID"] rnacentral["object"] = "RNACENTRAL:" + rnacentral["RNACentral ID"] rnacentral["predicate"] = "biolink:has_gene_product" rnacentral["relation"] = "RO:0002205" rnacentral["source"] = "RNACentral" rnacentral["source version"] = version rnacentral = rnacentral.dropna(subset=["object", "subject"]) edges = rnacentral[ ["subject", "predicate", "object", "relation", "knowledge_source", "source", "source version"] ].drop_duplicates() edges["id"] = rnacentral["subject"].apply(lambda x: uuid.uuid4()) rna = rnacentral[["object", "Type", "provided_by", "Name", "Ensembl Transcript ID","source", "source version"]] rna["id"] = rna["object"] rna["category"] = "biolink:RNAProduct" rna["name"] = rna["Name"] rna["xref"] = "ENSEMBL:" + rna["Ensembl Transcript ID"] rna["node_property"] = rna["Type"] rna = rna[["id", "category", "name", "xref", "provided_by", "node_property","source", "source version"]] genes = rnacentral[["subject", "provided_by","source", "source version"]] genes["id"] = genes["subject"] genes["name"] = genes["subject"].map(genenames) genes["category"] = "biolink:Gene" genes = genes[["id", "category", "name", "provided_by","source", "source version"]] nodes = pd.concat([genes, rna]).drop_duplicates() nodes[["id", "name", "category", "provided_by", "xref", "node_property","source", "source version"]].to_csv( f"{args.output [0]}", sep="\t", index=False ) edges[ ["object", "subject", "id", "predicate", "knowledge_source", "relation","source", "source version"] ].to_csv(f"{args.output[1]}", sep="\t", index=False) if __name__ == "__main__": main() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 | import argparse import pandas as pd import uuid def read_id_mapping_uniprot(fname, id, type): df = pd.read_csv(fname, sep="\t", header=None, low_memory=False) df.columns = ["ID", "Database", "Database ID"] df = df[df["Database"] == type] df["Database ID"] = df["Database ID"].str.split("_").str[0] df = df[["ID", "Database ID"]].drop_duplicates().set_index(id) df = df[~df.index.duplicated(keep="first")].iloc[:, 0] return df def get_parser(): parser = argparse.ArgumentParser( prog="stringdb_to_kgx.py", description=( "string_to_csv: convert an string file to CSVs with nodes and edges." ), ) parser.add_argument("-i", "--input", help="Input files") parser.add_argument("-p", "--proteins", help="Input files") parser.add_argument( "-o", "--output", nargs="+", default="string", help="Output prefix. Default: out", ) return parser def main(): parser = get_parser() args = parser.parse_args() version = args.input.split("/")[-1] version = version.split(".")[3] stringdbf = pd.read_csv(args.input, sep=" ", low_memory=False) idmapping = read_id_mapping_uniprot(args.proteins, "Database ID", "STRING") namemapping = read_id_mapping_uniprot(args.proteins, "ID", "UniProtKB-ID") stringdbf["protein1 id"] = stringdbf["protein1"].map(idmapping) stringdbf["protein2 id"] = stringdbf["protein2"].map(idmapping) stringdbf = stringdbf.dropna(subset=["protein1 id", "protein2 id"]) stringdbf["subject"] = "UNIPROTKB:" + stringdbf["protein1 id"] stringdbf["object"] = "UNIPROTKB:" + stringdbf["protein2 id"] stringdbf["provided_by"] = "STRING" stringdbf["knowledge_source"] = "STRING" stringdbf["predicate"] = "biolink:interacts_with" stringdbf["relation"] = "RO:0002436" stringdbf["category"] = "biolink:Protein" stringdbf["has_confidence_level"] = stringdbf["combined_score"] stringdbf["source"] = "STRING" stringdbf["source version"] = version protein1 = stringdbf[ ["protein1", "protein1 id", "subject", "provided_by", "category", "source", "source version"] ] protein1["id"] = protein1["subject"] protein1["name"] = protein1["protein1 id"].map(namemapping) protein1["xref"] = "ENSEMBL:" + protein1["protein1"].str.split(".").str[-1] protein1 = protein1[["id", "name", "provided_by", "category", "xref", "source", "source version"]] protein2 = stringdbf[ ["protein2", "protein2 id", "object", "provided_by", "category", "source", "source version"] ] protein2["id"] = protein2["object"] protein2["name"] = protein2["protein2 id"].map(namemapping) protein2["xref"] = "ENSEMBL:" + protein2["protein2"].str.split(".").str[-1] protein2 = protein2[["id", "name", "provided_by", "category", "xref", "source", "source version"]] nodes = pd.concat([protein1, protein2]).drop_duplicates() edges = stringdbf[ ["subject", "object", "knowledge_source", "predicate", "has_confidence_level", "source", "source version"] ].drop_duplicates() edges["id"] = edges["subject"].apply(lambda x: uuid.uuid4()) nodes.to_csv(f"{args.output[0]}", sep="\t", index=False) edges.to_csv(f"{args.output[1]}", sep="\t", index=False) if __name__ == "__main__": main() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | import pandas as pd import argparse import requests release = "https://api.github.com/repos/obophenotype/uberon/releases/latest" def get_parser(): parser = argparse.ArgumentParser( prog="uberon_kgx_process.py", description=( "uberon_kgx_process: get uberon version." ), ) parser.add_argument("-i", "--input", nargs="+", help="Input files") parser.add_argument( "-o", "--output", nargs="+", default="go", help="Output prefix. Default: out", ) return parser def main(): parser = get_parser() args = parser.parse_args() uberonnodes = pd.read_csv(args.input[0], sep="\t", low_memory=False) uberonedges = pd.read_csv(args.input[1], sep="\t", low_memory=False) response = requests.get( release ) version = response.json()["name"] uberonnodes["source"] = "Uberon" uberonnodes["source version"] = version uberonedges["source"] = "Uberon" uberonedges["source version"] = version uberonnodes[["id", "category", "name", "provided_by", "description", "xref", "source","source version"]].drop_duplicates().to_csv( f"{args.output[0]}", sep="\t", index=False ) uberonedges[ ["id", "subject", "predicate", "object", "relation", "knowledge_source", "source", "source version"] ].to_csv(f"{args.output[1]}", sep="\t", index=False) if __name__ == "__main__": main() |
53 | shell: "kgx merge --merge-config ../config/merge_config.yaml" |
58 | shell: "python scripts/lcc.py -n {input.nodes} -e {input.edges} -o ../data/processed/finals/lcc " |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Created: 1yr ago
Updated: 1yr ago
Maitainers:
public
URL:
https://github.com/hmartiniano/ngest
Name:
ngest
Version:
v0.2.0
Downloaded:
0
Copyright:
Public Domain
License:
GNU General Public License v3.0
- Future updates
Related Workflows

ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...

Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...

snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...

ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics

RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...

This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...