Bioinformatics pipeline for the analysis of amplicon sequencing data of eDNA samples from the PacMAN project
Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output, operation, topic
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
Bioinformatics pipeline for the PacMAN project UNDER DEVELOPMENT
This is the bioinformatics pipeline developed for the PacMAN (Pacific Islands Marine Bioinvasions Alert Network). This pipeline cleans and classifies sequences from eDNA samples. The PacMAN-pipeline is still under development with a first production release planned in 2023. The steps in this pipeline are compiled from publicly available bioinformatic pipelines like ANACAPA , tourmaline , tagseq-qiime2-snakemake , pema , CASCABEL and MBARI-BOG . The pipeline is based on the snakemake workflow management system. At first, we will develop this pipeline only keeping in mind CO1 data, but we want to expand the process to other barcodes as well, so that in the future it could be used for OBIS datasets broadly.
The initial pipeline has the following steps:
-
Trimmomatic
- Quality trimming and removal of sequencing adapters
-
Cutadapt
- Removal of primers
-
dada2
- ASV inference
-
Bowtie2
- sequence alignment with a reference database
-
BLCA
- Bayesian-based last common ancestor inference
-
BLAST
- Blast search of remaining unknown sequences agains the NCBI nt database
-
Data formatting
- Export to DwC-A compatible tables
Steps that still need to be added to the pipeline:
-
Data quality checkpoints for the scripts
-
Automatic revese complement of primer sequences.
-
Simplify use of default parameters for dada2?
-
Either make downstream formatting from taxonomic assignment more broad, or make separate downstream rules for other taxonomic classification methods.
Preparation for the run:
At the moment, the pipeline is planned to be run with the --use-conda flag, where each rule has an isolated environment, that will be installed in the working directory using conda.
Note : A future possibility for OBIS, would be to start building pipelines based on snakemake modules, to allow for more flexible development. Similar to what is being done here .
Before running the pipeline, the user must modify the files found in the config folder.
What is needed:
-
The information on the provided sequence files connected to the sample names
-
manifest_pe.csv
, contains the columns:
sample-id
,file-path
anddirection
(forward or reverse).
-
manifest_pe.csv
, contains the columns:
-
The information on the samples and linked metadata.
-
Fill in sample_data_template.csv : can contain all DwC data that should be added to the occurrence and dna-derived data tables
-
Note! control samples can be marked by adding
occurrenceStatus
asabsent
.
--> The ASVs from these samples will be removed from all samples, before the occurrence table is made
-
-
Make sure you have the reference database of choice
-
The fasta file with all sequences,
-
And the taxa file where the fasta-ids are linked to the taxonomic information
-
-
Change the config.yaml file for the specific run.
-
PROJECT
name: Usually a specific sample set -
RUN
name: the run with a specific combination of samples and/or parameters for the analysis -
SAMPLE_SET
: manifest file path -
sample-data-file
: manifest file path -
reference database: name of the database, fasta file and taxa file.
-
Primers used in both forward and reverse configuration
-
Chosen parameters for each step. (Template file configured for CO1 data using the Leray-Geller primer set).
-
The config file is then given to the pipeline during initiation (can be located anywhere).
Once this information is added, and the config file is filled in, a dry-run of the pipeline can be performed for testing with:
snakemake --use-conda --configfile ./config/config.yaml --rerun-incomplete --printshellcmds --cores 1 -np
Removing the
-np
flag will initiate the run.
Note, the pipeline is still under development and testing
Run using Docker
The repository includes a Dockerfile to run the entire pipeline in a Docker container. To do so, add your data files to the
data
directory and run the following commands to build the container and run the pipeline:
docker build -t pipeline .
docker run -v $(pwd):/src pipeline /bin/bash \
-c "snakemake --use-conda -p --cores all"
Example when using external data and results folders:
docker build -t pipeline .
docker run \
-v /home/ubuntu/data/dev/PacMAN-pipeline:/src \
-v /home/ubuntu/data:/src/data \
-v /home/ubuntu/data/results:/src/results \
--rm \
pipeline \
/bin/bash -c "snakemake --rerun-incomplete --use-conda -p --cores all --configfile data/config/config_rey_noblast_2samples.yaml"
Steps
The pipeline will run the following steps (also see diagram ):
1. Initiate file structure
The run will first initiate a folder structure in the results folder as follows
PROJECT
├── samples
| ├── sample_1
| │ ├── forward (link to sample file)
| │ └── reverse (link to sample file)
| ├── sample_2
| ├── sample_3
| | .
| | .
| | .
| ├── sample_n
| └── multiqc_RUN.html
└── runs └── RUN ├── 01-trimmed ├── 03-dada2 ├── 04-taxonomy ├── 05-dwca └── 06-report
Samples will be linked to the file structure and their quality will be analysed with fastqc.
All quality files of the raw sequence files will be summarized with multiqc, and can be found in
/PROJECT/samples/multqc_RUN.html
.
1. Trimming and 2. removing primers
The sequences are trimmed and primers are removed utilising trimmomatic and cutadapt. Different illumina adapters are available through the trimmomatic pipeline in the resources folder (custom adapters can also be added). The primers must be added to the config file in both forward and reverse (reverse complement) directions.
3. dada2
ASVs are inferred with dada2, which is run in 2 steps. Initially filtering of samples is done based on user-defined parameters. The quality of sequences before and after this filtering is shown in aggregate in 2 plots (
06-reports/dada2
), and can be found separately for each samples in the
03-dada2/quality
folder.
dada2 returns the ASV-table (
03-dada2/seqtab-nochim.txt
), as well as the sequences of each asv (
03-dada2/rep-seqs.fna
). In addition the number of reads filtered at each step and remaining after sample processing are returned in the
06-report/dada2_stats.txt
file, and will be added to the report.
4. taxonomy
Because the taxonomic classification uses bowtie2 alignment, the reference database must first be built using bowtie2 build (if not already available). This will take a while, but will be available for all future runs with the same reference database. The database files are added to the resources folder of the PacMAN pipeline.
Taxonomy assignment proceeds as in the ANACAPA pipeline. The sequences are first aligned to the reference database with bowtie2, and the best 100 alignments are chosen. From these alignments the taxonomy is classified based on the bowtie2-blca algorithm. Each assigned taxonomic level receives a confidence score between 0-100. In the next step the user can decide which cutoff will be used for the final taxonomic assignments.
The tax table returned by BLCA is then filtered based on this cutoff, and returned in the
04-taxonomy/identity_filtered/
folder
5. Blast and lca (optional)
There is an option in the pipeline to further classify sequences that remained unclassified with BLASTn against the full ncbi nt database. However multiple resources are required for this to work. We recommend having a local copy of the full NCBI nt database available to run this step with the pipeline. If you have in total <10kbp of data (50 unknown sequences of 200 bp), you may also run the query in remote mode. We may include a loop to do this with more data at a later stage, but running the analysis remotely for more sequences will require a lot of time.
The user will need to also have access to NCBI-nt to TaxonID mapping files to get the scientific names of the sequences. The pipeline uses
BASTA
to filter and classify the Blast results based on an lca analysis. If a tax database is not provided in the configfile, the pipeline will prompt BASTA to download the tax_db (gb) to the
resources
folder. This will also take a long time.
5. dwca
In the final steps of the pipeline LSIDs are defined for the assigned taxonomic names, and the occurrence table and dna-derived data extension table are built for submitting into OBIS.
This step also returns a table
05-dwca/Taxa_not_in_worms.csv
, containing the taxonomic names and linked asvs that were not given an lsid. This table will require manual inspection, and possibly contacting the WoRMS team.
In this step the unknown sequences are given the ID for 'Biota'. Non-marine species (most taxa with no lsid), and ASVs found in the control sample(s) are not added to the final dwca-tables. All of these can still be found in the table
05-dwca/Full_tax_table_with_lsids
as well as the
05-dwca/phyloseq_object.rds
, which can be read with the phyloseq R package for further analysis and visualization.
Note! With this strategy, sequences that are known but not marine, are not included in the occurrence tables, while sequences that are not known are always included (as 'Biota').
Fields that also still need to be added/modified based on the genetic data guidelines are:
-
identificationRemarks
: The report of the analysis run -
identificationReferences
: Website of this pipeline
6. Reporting
An HTML report is made in the final steps with the statistics of the full run, to give an overview of what was done during the analysis and what the effect was on the results. Still more analysis will be added to this report.
Code Snippets
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 | from __future__ import print_function, division import sys import os import signal if sys.version_info < (3, 0): from StringIO import StringIO else: from io import StringIO try: from Bio import AlignIO, SeqIO except ImportError: sys.stderr.write("Error! BioPython is not detected!\n") sys.exit(1) import random import subprocess import re from collections import namedtuple, defaultdict import argparse import json ''' BLCA Core annotation tool ''' class SamEntry(object): def __init__(self, raw_row): self.qname = raw_row[0] self.flag = raw_row[1] self.rname = raw_row[2] self.pos = raw_row[3] self.mapq = raw_row[4] self.cigar = raw_row[5] self.rnext = raw_row[6] self.pnext = raw_row[7] self.tlen = raw_row[8] self.seq = raw_row[9] self.qual = raw_row[10] self.alignment_scores = [int(score.split(':')[-1]) for score in raw_row[11:13]] # sometimes it is a column early because there is no second best match if raw_row[17][:2] == 'MD': self.md_z_flags = raw_row[17].split(':')[-1] else: self.md_z_flags = raw_row[18].split(':')[-1] total_match_count, total_count = self.calulate_match_count(self.md_z_flags) self.identity_ratio_old = total_match_count / total_count self.identity_ratio = total_match_count / float(len(self.seq)) self.soft_clipped_ratio = self.cigar_total_soft_clipping() / total_count self.total_match = total_match_count def calulate_match_count(self, md_z_flags): tokenizer = re.compile(r'(\d+)|(\^[A-Z])|([A-Z])') total_match_count = 0.0 total_mismatch_count = 0.0 for item in tokenizer.finditer(md_z_flags): match_count, deletion, mismatch = item.groups() if match_count: total_match_count += int(match_count) if deletion: total_mismatch_count += 1 if mismatch: total_mismatch_count += 1 return total_match_count, (total_match_count + total_mismatch_count) # I am not completely sure if this is the logic that you want to use for checking unmapped at the ends # This function returns the max S at either end of the CIGAR score, 0 if there is no S at both ends def cigar_max_s(self): beginning_s, ending_s = self.get_soft_clipping() return max(beginning_s, ending_s) def cigar_total_soft_clipping(self): beginning_s, ending_s = self.get_soft_clipping() return beginning_s + ending_s def get_soft_clipping(self): tokenizer = re.compile(r'(?:\d+)|(?:[A-Z=])') cigar_elements = tokenizer.findall(self.cigar) if cigar_elements[1] == 'S': beginning_s = int(cigar_elements[0]) else: beginning_s = 0 if cigar_elements[-1] == 'S': ending_s = int(cigar_elements[-2]) else: ending_s = 0 return (beginning_s, ending_s) class NotAvailableHandler(object): def __init__(self): self.count = 0 self.na_forms = {'na', 'NA', 'Not Available', 'not available', 'Not available', 'nan'} self.encoded_na_form = 'NA;;' def encode_if_na(self, taxon): if taxon not in self.na_forms: return taxon self.count += 1 return 'NA;;{}'.format(self.count) def decode_if_na(self, taxon): if not taxon.startswith(self.encoded_na_form): return taxon return 'NA' parser = argparse.ArgumentParser(description='Bayesian-based LCA taxonomic classification method') ##### Required arguments ##### required = parser.add_argument_group('required arguments') required.add_argument("-i", "--sam", help="Input SAM file", type=str, required=True) required.add_argument('-q', '--reference', help="Reference fasta file", type=str, required=True) required.add_argument("-r", "--tax", help="reference taxonomy file for the Database", type=str, required=True) ##### Taxonomy filtering arguments ##### taxoptions = parser.add_argument_group('taxonomy profiling options [filtering of hits]') taxoptions.add_argument("-n", "--nper", help="number of times to bootstrap. Default: 100", type=int, default=100) taxoptions.add_argument("-b", "--iset", help="minimum identity score to include", type=float, default=0.8) taxoptions.add_argument('-l', '--length', help="minimum length of hit to include relative to query", type=float, default=0.5) taxoptions.add_argument('-s', '--softclipping', help='maximum soft clipped ratio to include', type=float, default=0.2) ##### Alignment control arguments ##### alignoptions = parser.add_argument_group('alignment control arguments') alignoptions.add_argument("-m", "--match", default=1.0, help="alignment match score. Default: 1", type=float) alignoptions.add_argument("-f", "--mismatch", default=-2.5, help="alignment mismatch penalty. Default: -2.5", type=float) alignoptions.add_argument("-g", "--ngap", default=-2.0, help="alignment gap penalty. Default: -2", type=float) ##### Other arguments ##### optional = parser.add_argument_group('other arguments') optional.add_argument('-p', '--muscle', help='Path to call muscle default: muscle', default='muscle') optional.add_argument("-o","--outfile",help="output file name. Default: <fasta>.blca.out",type=str) optional.add_argument("-v","--votesfile",help="votes file name. Default: <fasta>.blca.votes.jsonlines",type=str) optional.add_argument('--continue_mode', help="continue from a previous run by appending to the same output file", action='store_true') optional.add_argument("--muscle_use_diags", help="pass the diag argument to muscle", action='store_true') optional.add_argument("--muscle_max_iterations", help="set the max number of iterations for muscle", type=int, default=16) ##### parse arguments ##### args = parser.parse_args() ### bootstrap times ### nper = args.nper # number of bootstrap to permute ### Filter hits per query ### iset = args.iset # identify threshold ### Alignment options ### ngap = args.ngap # gap penalty match = args.match # match score mismatch = args.mismatch # mismatch penalty min_length = args.length sam_file_name = args.sam outfile_name = args.outfile or (sam_file_name + '.blca.out') votesfile_name = args.votesfile or (sam_file_name + '.blca.votes.jsonlines') reference_fasta = args.reference tax = args.tax muscle_path = args.muscle max_soft_clipping_allowed = args.softclipping continue_mode = args.continue_mode muscle_use_diags = args.muscle_use_diags muscle_max_iterations = args.muscle_max_iterations levels = ["superkingdom", "phylum", "class", "order", "family", "genus", "species"] def check_program(prgname): '''Check whether a program has been installed and put in the PATH''' path = os.popen("which " + prgname).read().rstrip() if len(path) > 0 and os.path.exists(path): print(prgname + " is located in your PATH!") else: print("ERROR: " + prgname + " is NOT in your PATH, please set up " + prgname + "!") sys.exit(1) def get_dic_from_aln(aln): '''Read in alignment and convert it into a dictionary''' alignment = AlignIO.read(aln, "clustal") alndic = {} for r in alignment: alndic[r.id] = list(r.seq) return alndic def pairwise_score(alndic, query, match, mismatch, ngap): '''Calculate pairwise alignment score given a query''' nt = ["A", "C", "T", "G", "g", "a", "c", "t"] hitscore = {} for k, v in alndic.items(): if k != query: hitscore[k] = 0 for i in range(len(v)): if (alndic[query][i] in nt) and (v[i] in nt) and (alndic[query][i] == v[i]): hitscore[k] += float(match) elif (alndic[query][i] not in nt) and (v[i] not in nt) and (alndic[query][i] == v[i]): hitscore[k] += float(0) elif ((alndic[query][i] not in nt) or (v[i] not in nt)) and (alndic[query][i] != v[i]): hitscore[k] += float(mismatch) elif (alndic[query][i] in nt) and (v[i] in nt) and (alndic[query][i] != v[i]): hitscore[k] += float(ngap) total = float(sum(hitscore.values())) if total <= 0: total = 1 for k, v in hitscore.items(): hitscore[k] = v / total return hitscore def random_aln_score(alndic, query, match, mismatch, ngap): '''Randomize the alignment, and calculate the score''' nt = ["A", "C", "T", "G", "g", "a", "c", "t"] idx = [] for i in range(len(list(alndic.values())[0])): idx.append(random.choice(range(len(list(alndic.values())[0])))) hitscore = {} for k, v in alndic.items(): if k != query: hitscore[k] = 0 for i in idx: if (alndic[query][i] in nt) and (v[i] in nt) and (alndic[query][i] == v[i]): hitscore[k] += float(match) elif (alndic[query][i] not in nt) and (v[i] not in nt) and (alndic[query][i] == v[i]): hitscore[k] += float(0) elif ((alndic[query][i] not in nt) or (v[i] not in nt)) and (alndic[query][i] != v[i]): hitscore[k] += float(mismatch) elif (alndic[query][i] in nt) and (v[i] in nt) and (alndic[query][i] != v[i]): hitscore[k] += float(ngap) return hitscore def get_gap_pos(query, alndic): '''Get the gap position in the alignment''' for i in range(len(alndic[query])): if alndic[query][i] != "-": start = i break for i in range(len(alndic[query]) - 1, 0, -1): if alndic[query][i] != "-": end = i break return start, end def cut_gap(alndic, start, end): '''Given a start and end gap position, truncate the alignmnet''' trunc_alndic = {} for k_truc, v_truc in alndic.items(): trunc_alndic[k_truc] = v_truc[start:end] return trunc_alndic def read_tax_acc(taxfile, not_available_handler): tx = open(taxfile) acctax = {} for l in tx: lne = l.rstrip().strip(";").split("\t") if len(lne) != 2: continue if (levels[0] + ':') not in l: taxons = [not_available_handler.encode_if_na(taxon) for taxon in lne[1].split(';')] acctax[lne[0].split('.')[0]] = dict(zip(levels, taxons)) else: pairs = [x.split(":", 1) for x in lne[1].split(";")] encoded = [(level, not_available_handler.encode_if_na(taxon)) for level, taxon in pairs] acctax[lne[0].split(".")[0]] = dict(encoded) tx.close() return acctax ################################################################ ## ## Running Script Start ## ################################################################ ## check whether muscle is located in the path # check_program("muscle") ### read in pre-formatted lineage information ### na_handler = NotAvailableHandler() acc2tax = read_tax_acc(tax, na_handler) print("> 1 > Read in taxonomy information!") reference_sequences = {} with open(reference_fasta) as f: for r in SeqIO.parse(f, "fasta"): reference_sequences[r.id] = str(r.seq) print("> 2 > Read in reference db") SequenceInfo = namedtuple('SequenceInfo', ['seq', 'hits']) ### read in input fasta file ### input_sequences = {} possible_rejects = set() with open(sam_file_name) as sam_file: for line in sam_file: pieces = line.strip().split('\t') entry = SamEntry(pieces) if entry.identity_ratio_old < iset: possible_rejects.add(entry.qname) if entry.soft_clipped_ratio > max_soft_clipping_allowed: possible_rejects.add(entry.qname) elif entry.rname not in reference_sequences: possible_rejects.add(entry.qname) elif len(reference_sequences[entry.rname]) / float(len(entry.seq)) < min_length: possible_rejects.add(entry.qname) elif entry.qname not in input_sequences: input_sequences[entry.qname] = SequenceInfo(seq=entry.seq, hits=[entry.rname]) else: input_sequences[entry.qname].hits.append(entry.rname) rejects = possible_rejects.difference(set(input_sequences)) print("> 3 > Read in bowtie2 output!") already_assigned = set() if continue_mode: for line in open(outfile_name): already_assigned.add(line.split('\t')[0]) outfile = open(outfile_name, 'a') else: outfile = open(outfile_name, 'w') for seqn, info in input_sequences.items(): if seqn in already_assigned: continue print("> 3 > Read in bowtie2 output!") count = 0 outfile = open(outfile_name, 'w') votesfile = open(votesfile_name, 'w') for seqn, info in input_sequences.items(): count += 1 if seqn in acc2tax: print("[WARNING] Your sequence " + seqn + " has the same ID as the reference database! Please correct it!") print("...Skipping sequence " + seqn + " ......") outfile.write(seqn + "\tSkipped\n") continue ### Get all the hits list belong to the same query ### ### Add query fasta sequence to extracted hit fasta ### fifsa = [] for hit in info.hits: if hit not in reference_sequences: print("Missing reference sequence for " + hit) continue fifsa.append(">{}\n{}\n".format(hit, reference_sequences[hit])) fifsa.append(">" + seqn + "\n" + info.seq) fifsa = "\n".join(fifsa) # os.system("rm " + seqn + ".dblist") ### Run muscle ### muscle_call = [muscle_path, '-quiet', '-clw', '-maxiters', str(muscle_max_iterations)] if muscle_use_diags: muscle_call.append('-diags') proc = subprocess.Popen(muscle_call, stdout=subprocess.PIPE, stdin=subprocess.PIPE, stderr=subprocess.PIPE) outs, errs = proc.communicate(fifsa.encode('utf-8')) if proc.returncode == -signal.SIGSEGV: print("Error: segmentation fault") alndic = get_dic_from_aln(StringIO(outs.decode('utf-8'))) # os.system("rm " + seqn + ".hits.fsa") # os.system("rm " + seqn + ".muscle") # print "Processing:",k1 ### get gap position and truncate the alignment### ## SAARA: Was getting here a keyerror, but wanted to see if otherwise working so added the exception # try: # start, end = get_gap_pos(seqn, alndic) # except KeyError: # continue start, end = get_gap_pos(seqn, alndic) trunc_alndic = cut_gap(alndic, start, end) orgscore = pairwise_score(trunc_alndic, seqn, match, mismatch, ngap) ### start bootstrap ### perdict = {} # record alignmet score for each iteration pervote = {} # record vote after nper bootstrap for j in range(nper): random_scores = random_aln_score(trunc_alndic, seqn, match, mismatch, ngap) perdict[j] = random_scores max_score = max(random_scores.values()) hits_with_max_score = [k3 for k3, v3 in random_scores.items() if v3 == max_score] vote_share = 1.0 / len(hits_with_max_score) for hit in hits_with_max_score: if hit in pervote: pervote[hit] += vote_share else: pervote[hit] = vote_share ### normalize vote by total votes ### ttlvote = sum(pervote.values()) for k4, v4 in pervote.items(): pervote[k4] = v4 / ttlvote * 100 ### votes_by_level = {} for level in levels: votes_by_level[level] = defaultdict(int) for hit in orgscore.keys(): short_hit_name = hit.split(".")[0] if short_hit_name not in acc2tax: print("Missing taxonomy info for ", short_hit_name) continue hit_taxonomy = acc2tax[short_hit_name] for level in levels: # deal with missing values in the taxonomy if level not in hit_taxonomy: hit_taxonomy[level] = na_handler.encode_if_na("NA") if hit in pervote: votes_by_level[level][hit_taxonomy[level]] += pervote[hit] else: votes_by_level[level][hit_taxonomy[level]] += 0 votesfile.write(json.dumps({"seqn": seqn, "votes": votes_by_level}) + "\n") try: outfile.write(seqn + "\t") for level in levels: levels_votes = votes_by_level[level] outfile.write(level + ":" + na_handler.decode_if_na(max(levels_votes, key=levels_votes.get)) + ";") outfile.write("\t") for level in levels: levels_votes = votes_by_level[level] outfile.write(level + ":" + str(max(levels_votes.values())) + ";") outfile.write("\t" + ";".join(info.hits)) outfile.write("\n") except ValueError as e: print(f"ValueError for {seqn}, possibly due to missing votes") outfile.write(seqn + "\tUnclassified\n") for seqn in rejects: outfile.write(seqn + "\tUnclassified\n") outfile.close() votesfile.close() |
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 | library(plyr) library(dplyr) library(yaml) library(dada2) library(Biostrings) library(ggplot2) library(tidyr) library(tibble) args <- commandArgs(trailingOnly = T) config <- read_yaml(args[2]) # Set the different paths for all the supplied libraries # NOTICE: only forward files given as input filtFs <- args[3:length(args)] filtFs_single <- gsub("_1P", "_1U", filtFs) filtRs <- gsub("_1P", "_2P", filtFs) filtRs_single <- gsub("_2P", "_2U", filtRs) outpath <- args[1] # The parameters nti/ntj, need the chosen nucleotides in a vector format: nti <- strsplit(config$DADA2$plotERRORS$nti, "")[[1]] if (length(nti) == 0) { message("Default value given to nti, all nucleotide transitions will be shown in the error plot") nti <- c("A", "C", "G", "T") } ntj <- strsplit(config$DADA2$plotERRORS$ntj, "")[[1]] if (length(nti) == 0) { message("Default value given to ntj, all nucleotide transitions will be shown in the error plot") ntj <- c("A", "C", "G", "T") } #For the analysis of Novaseq data, use a different error model, because of binned quality values #https://github.com/ErnakovichLab/dada2_ernakovichlab/tree/split_for_premise #https://github.com/benjjneb/dada2/issues/1307 and issue 791 loessErrfun_mod4 <- function(trans) { qq <- as.numeric(colnames(trans)) est <- matrix(0, nrow=0, ncol=length(qq)) for(nti in c("A","C","G","T")) { for(ntj in c("A","C","G","T")) { if(nti != ntj) { errs <- trans[paste0(nti,"2",ntj),] tot <- colSums(trans[paste0(nti,"2",c("A","C","G","T")),]) rlogp <- log10((errs+1)/tot) # 1 psuedocount for each err, but if tot=0 will give NA rlogp[is.infinite(rlogp)] <- NA df <- data.frame(q=qq, errs=errs, tot=tot, rlogp=rlogp) # original # ###! mod.lo <- loess(rlogp ~ q, df, weights=errs) ###! # mod.lo <- loess(rlogp ~ q, df, weights=tot) ###! # # mod.lo <- loess(rlogp ~ q, df) # jonalim's solution # https://github.com/benjjneb/dada2/issues/938 mod.lo <- loess(rlogp ~ q, df, weights = log10(tot),degree = 1, span = 0.95) pred <- predict(mod.lo, qq) maxrli <- max(which(!is.na(pred))) minrli <- min(which(!is.na(pred))) pred[seq_along(pred)>maxrli] <- pred[[maxrli]] pred[seq_along(pred)<minrli] <- pred[[minrli]] est <- rbind(est, 10^pred) } # if(nti != ntj) } # for(ntj in c("A","C","G","T")) } # for(nti in c("A","C","G","T")) # HACKY MAX_ERROR_RATE <- 0.25 MIN_ERROR_RATE <- 1e-7 est[est>MAX_ERROR_RATE] <- MAX_ERROR_RATE est[est<MIN_ERROR_RATE] <- MIN_ERROR_RATE # enforce monotonicity # https://github.com/benjjneb/dada2/issues/791 estorig <- est est <- est %>% data.frame() %>% mutate_all(funs(case_when(. < X40 ~ X40, . >= X40 ~ .))) %>% as.matrix() rownames(est) <- rownames(estorig) colnames(est) <- colnames(estorig) # Expand the err matrix with the self-transition probs err <- rbind(1-colSums(est[1:3,]), est[1:3,], est[4,], 1-colSums(est[4:6,]), est[5:6,], est[7:8,], 1-colSums(est[7:9,]), est[9,], est[10:12,], 1-colSums(est[10:12,])) rownames(err) <- paste0(rep(c("A","C","G","T"), each=4), "2", c("A","C","G","T")) colnames(err) <- colnames(trans) # Return return(err) } # Get sample names sample.names <- gsub("_1P.fastq.gz", "", basename(filtFs)) message(paste0("Sample ", sample.names, " will be analyzed", collapse = "\n")) # Assign names to files names(filtFs) <- sample.names names(filtRs) <- sample.names names(filtFs_single) <- sample.names names(filtRs_single) <- sample.names allfiles <- list(filtFs, filtRs, filtFs_single, filtRs_single) names(allfiles) <- c("filtFs", "filtRs", "filtFs_single", "filtRs_single") errs <- list() dereps <- list() dadas <- list() seqtab <- list() files_exist <- list() for (i in 1:4) { message("Check that files are not empty") files_loop <- c() for (j in 1:length(allfiles[[i]])) { info <- file.info(allfiles[[i]][j]) if (!is.na(info$size) & info$size > 20) { # 20 is the size of an empty .gz file files_loop <- c(files_loop, allfiles[[i]][j]) } } if (is.null(files_loop)) { files_exist[i] <- list(NULL) } else { files_exist[[i]] <- files_loop } } # Update sample names with existing paired files sample.names<-names(files_exist[[1]]) # Loop through all file types (forward, reverse, unpaired forward, unpaired reverse) for learning errors and dereplicating for (i in 1:4) { if (length(files_exist[[i]])!=0) { #any(file.exists(files_exist[[i]])) message(paste("learning error rates of files:", i, ": (1) forward paired (2) reverse paired (3) forward single and (4) reverse single " , sep=" ")) #Add here a more generic character matching if (config$meta$sequencing$seq_meth=="NovaSeq6000"){ message("learning error rates using a modified error model for NovaSeq data") errs[[i]] <- learnErrors(files_exist[[i]], #allfiles[[i]][file.exists(allfiles[[i]])] multithread = config$DADA2$learnERRORS$multithread, nbases = as.numeric(config$DADA2$learnERRORS$nbases), randomize = config$DADA2$learnERRORS$randomize, MAX_CONSIST = as.numeric(config$DADA2$learnERRORS$MAX_CONSIST), OMEGA_C = as.numeric(config$DADA2$learnERRORS$OMEGA_C), verbose = config$DADA2$learnERRORS$verbose, errorEstimationFunction = loessErrfun_mod4, ) } else { errs[[i]] <- learnErrors(files_exist[[i]], #allfiles[[i]][file.exists(allfiles[[i]])] multithread = config$DADA2$learnERRORS$multithread, nbases = as.numeric(config$DADA2$learnERRORS$nbases), randomize = config$DADA2$learnERRORS$randomize, MAX_CONSIST = as.numeric(config$DADA2$learnERRORS$MAX_CONSIST), OMEGA_C = as.numeric(config$DADA2$learnERRORS$OMEGA_C), verbose = config$DADA2$learnERRORS$verbose) } message("Making error estimation plots of reads") png(filename = paste0(outpath, "06-report/dada2/error_profile_", names(allfiles)[i], ".png")) p_ERR <- plotErrors( errs[[i]], nti = nti, ntj = ntj, obs = config$DADA2$plotERRORS$obs, err_out = config$DADA2$plotERRORS$err_out, err_in = config$DADA2$plotERRORS$err_in, nominalQ = config$DADA2$plotERRORS$nominalQ) print(p_ERR) dev.off() message("Running dereplication of reads") #print(paste("files that exist:", files_exist[[i]])) dereps[[i]] <- derepFastq(files_exist[[i]], #allfiles[[i]][file.exists(allfiles[[i]])] n = as.numeric(config$DADA2$derepFastq$num), config$DADA2$learnERRORS$verbose) message("Running dada on reads") dadas[[i]] <- dada(dereps[[i]], errs[[i]], selfConsist = config$DADA2$dada$selfConsist, pool = config$DADA2$dada$pool, priors = config$DADA2$dada$priors, multithread = config$DADA2$learnERRORS$multithread, verbose = config$DADA2$learnERRORS$verbose) # Convert to list in case there's only one file if (is(dadas[[i]], "dada")) { message("Convert to list in case there's only one file") dadas[[i]] <- list(dadas[[i]]) names(dadas[[i]]) <- names(files_exist[[i]])#allfiles[[i]][file.exists(allfiles[[i]])]) } if (is(dereps[[i]], "derep")) { dereps[[i]] <- list(dereps[[i]]) names(dereps[[i]]) <- names(files_exist[[i]])#allfiles[[i]][file.exists(allfiles[[i]])]) } # If no files found for the paired reads (should not be the case!) } else if (!grepl("single", names(allfiles)[i])) { message("Error: no paired reads to process") stop() # If no files found for the unpaired reads, continue with the workflow # It has to be made sure in the snakefile that this step is run despite not requiring output files } else { message("No further unpaired reads to process") } } # Merge forward and reverse paired reads message("Attempting merge") # Define function for merging and formatting seqtabs: next steps require an integer matrix merge_format_seqtab <- function(seqtab1, seqtab2) { df1 <- reshape2::melt(seqtab1, varnames = c("sample", "sequence")) df2 <- reshape2::melt(seqtab2, varnames = c("sample", "sequence")) df <- bind_rows(df1, df2) %>% group_by(sample, sequence) %>% summarize(value = sum(value)) %>% ungroup() m <- reshape2::acast(df, sample ~ sequence, value.var = "value") mode(m) <- "integer" return(m) } if (config$DADA2$mergePairs$include) { message("merging pairs") mergers <- mergePairs(dadas[[1]], dereps[[1]], dadas[[2]], dereps[[2]], minOverlap = as.numeric(config$DADA2$mergePairs$minOverlap), maxMismatch = as.numeric(config$DADA2$mergePairs$maxMismatch), returnRejects = config$DADA2$mergePairs$returnRejects, propagateCol = config$DADA2$mergePairs$propagateCol, justConcatenate = config$DADA2$mergePairs$justConcatenate, trimOverhang = config$DADA2$mergePairs$trimOverhang, verbose = config$DADA2$learnERRORS$verbose) if (is.data.frame(mergers)) { mergers <- list(mergers) %>% setNames(sample.names) } # Create read/ASV mapping mergers_all <- mergePairs(dadas[[1]], dereps[[1]], dadas[[2]], dereps[[2]], minOverlap = as.numeric(config$DADA2$mergePairs$minOverlap), maxMismatch = as.numeric(config$DADA2$mergePairs$maxMismatch), returnRejects = TRUE, propagateCol = config$DADA2$mergePairs$propagateCol, justConcatenate = config$DADA2$mergePairs$justConcatenate, trimOverhang = config$DADA2$mergePairs$trimOverhang, verbose = config$DADA2$learnERRORS$verbose) if (is.data.frame(mergers_all)) { mergers_all <- list(mergers_all) %>% setNames(sample.names) } mapping <- lapply(names(mergers_all), function(name) { merger_to_dada <- lapply(mergers_all[[name]]$forward, function(x) { which(dadas[[1]][[name]]$map == x) }) merger_to_read <- lapply(merger_to_dada, function(x) { which(dereps[[1]][[name]]$map %in% x) }) names(merger_to_read) <- mergers_all[[name]]$sequence merger_to_read }) names(mapping) <- names(mergers_all) for (name in names(mapping)) { fq <- microseq::readFastq(filtFs[[name]]) headers <- sub(" .*", "", fq$Header) mapping[[name]] <- mapping[[name]] %>% enframe(name = "sequence", value = "read") %>% unnest() %>% filter(sequence != "") %>% mutate(read = headers[read]) %>% arrange(sequence, read) } seqtab <- makeSequenceTable(mergers) # When merging is done with returnRejects=TRUE, the abundance of the rejected merges is returned, but not the sequence # We want to collect also these single sequences and add them to the seqtab (to avoid loosing ANY data) if (config$DADA2$mergePairs$returnRejects == TRUE) { unmerged_f <- list() unmerged_r <- list() concatenated <- list() for (i in 1:length(sample.names)) { unmerged_f[[i]] <- dadas[[1]][[sample.names[i]]]$sequence[mergers[[sample.names[i]]]$forward[!mergers[[sample.names[i]]]$accept]] unmerged_r[[i]] <- dadas[[2]][[sample.names[i]]]$sequence[mergers[[sample.names[i]]]$reverse[!mergers[[sample.names[i]]]$accept]] # Here for the rejected reads (!merger$sample$accept) the indices are collected (merger$sample$forward, merger$sample$reverse) # The sequences are sourced from the original dada-file (dadaF$sample$denoised, dadaR$sample$denoised) # It seems that concatenating these reads and keeping them for further analyses can result in better taxonomic coverage (Dacey et al. 2021 https://doi.org/10.1186/s12859-021-04410-2) # Abundances for these reads is taken from the merged abundances. # reverse complement reverse reads so that the following taxonomic assignment will work optimally. unmerged_r[[i]] <- sapply(sapply(sapply(unmerged_r[[i]], DNAString), Biostrings::reverseComplement), toString) sequence <- paste0(unmerged_f[[i]], unmerged_r[[i]]) abundance <- mergers[[sample.names[i]]]$abundance[!mergers[[sample.names[i]]]$accept] concatenated[[i]] <- tibble(sequence, abundance) } names(concatenated) <- sample.names #names(unmerged_r)=sample.names # Make sequence table seqtab_unmerged <- makeSequenceTable(concatenated) # The merged returnrejects = T seqtab also contains a column with an empty header, # This is all rejected (non-merged) abundances combined. # This column messes with future steps, so we want to remove it. # We have instead collected the abundances of the unmerged reads to add to the table with sequences. #seqtab <- seqtab[,-which(colnames(seqtab) == "")] # Merge with paired reads and format for the next steps (integer matrix) seqtab <- merge_format_seqtab(seqtab, seqtab_unmerged) } } else { message("no merging of paired reads") # Combine forward and reverse sequences to one table seqtab1 <- makeSequenceTable(dadas[[1]]) seqtab2 <- makeSequenceTable(dadas[[2]]) # Reverse complement reverse reads so that the following taxonomic assignment will work optimally. colnames(seqtab2) <- sapply(sapply(sapply(colnames(seqtab2), DNAString), Biostrings::reverseComplement), toString) seqtab <- cbind(seqtab1, seqtab2) } # Add ASVs from single reads to full table, and format table to the right format to continue with the pipeline # It has to be an integer matrix with samples as rownames and sequences as column names if (length(files_exist[[3]])!=0) { message("Adding ASVs from unpaired forward reads to ASV-table") seqtab3 <- makeSequenceTable(dadas[[3]]) seqtab <- merge_format_seqtab(seqtab, seqtab3) } if (length(files_exist[[4]])!=0) { message("Adding ASVs from unpaired reverse reads to ASV-table") seqtab4 <- makeSequenceTable(dadas[[4]]) # Here also the sequences from the reverse reads are reverse complemented before they are added to the sequence table colnames(seqtab4) <- sapply(sapply(sapply(colnames(seqtab4), DNAString), reverseComplement), toString) seqtab <- merge_format_seqtab(seqtab, seqtab4) } # Chimeras removed from the full combined table as per: https://github.com/benjjneb/dada2/issues/1235: # We think the best way (in most cases, using current common techs -- such is the challenge of recommendations) is to combine the tables from multiple runs and then remove chimeras on that combined table. # Look into details of how chimera removal is done to understand if this is smart # In their case they are looking at equal length reads, possibly the single reads and paired reads should not be combined for chimera removal? message("removing chimeras") seqtab.nochim <- removeBimeraDenovo(seqtab, method = config$DADA2$removeBimeraDenovo$method, multithread = config$DADA2$learnERRORS$multithread, verbose = config$DADA2$learnERRORS$verbose) print(dim(seqtab.nochim)) # ASVs denominated by the actual sequence, we want to simplify the names. new.names <- c(paste("asv.", 1:length(colnames(seqtab.nochim)), sep = "")) message(head(new.names)) # Save fasta, before changing names in the seqtab table message("Making fasta table") uniquesToFasta(seqtab.nochim, fout = paste0(outpath, "03-dada2/rep-seqs.fna"), ids = new.names) # Export read/asv mapping if (exists("mapping")) { message("Exporting read/asv mapping") asv_sequences <- data.frame(asv = new.names, sequence = colnames(seqtab.nochim)) for (name in names(mapping)) { mapping[[name]] <- mapping[[name]] %>% left_join(asv_sequences, by = "sequence") %>% select(read, asv) %>% filter(!is.na(asv)) dir.create(file.path(paste0(outpath, "03-dada2/mapping/"))) dir.create(file.path(paste0(outpath, "03-dada2/mapping/", name))) write.table(mapping[[name]], paste0(outpath, "03-dada2/mapping/", name, "/", name, "_mapping.txt"), sep = "\t", col.names = TRUE, row.names = FALSE, quote = FALSE) } } # Finally, change names in otu table message("Changing sequence names") colnames(seqtab.nochim) <- new.names #Replace any NAs that are possibly in the seqtab with 0s seqtab.nochim[is.na(seqtab.nochim)] <- 0 # This show sequence length distributions (see if you should include this) #seq_hist <- table(nchar(getSequences(seqtab))) #fname_seqh <- paste(args[6],"seq_hist.txt",sep="") #write.table(seq_hist, file = fname_seqh , sep = "\t", quote=FALSE, col.names = FALSE) # Collect results of how many reads are available at each step in a table: getN <- function(x) sum(getUniques(x)) # Make a table with all information on the reads retained from the run, if paired reads were merged: message("Making summary table") if (config$DADA2$mergePairs$include) { track <- cbind(sapply(dadas[[1]], getN), sapply(dadas[[2]], getN), sapply(mergers, getN), rowSums(seqtab.nochim), rowSums(seqtab.nochim != 0)) colnames(track) <- c("denoisedF", "denoisedR", "merged", "nonchim", "ASVs") # If paired reads were not merged: } else { track <- cbind(sapply(dadas[[1]], getN), sapply(dadas[[2]], getN), rowSums(seqtab.nochim), rowSums(seqtab.nochim != 0)) colnames(track) <- c("denoisedF", "denoisedR", "nonchim", "ASVs") } # Add also information on the reads that came from possibly evaluated single reads if (length(files_exist[[3]])!=0) { message("Adding info from unpaired forward reads to the summary table") denoisedF_single <- sapply(dadas[[3]], getN) track <- merge(track, data.frame(denoisedF_single), by = 0, all = TRUE) rownames(track) <- track$Row.names track <- subset(track, select = -Row.names) # Reorder columns: track <- track %>% relocate(denoisedF_single, .before = nonchim) } if (length(files_exist[[4]])!=0) { message("Adding info from unpaired reverse reads to the summary table") denoisedR_single <- sapply(dadas[[4]], getN) track <- merge(track, data.frame(denoisedR_single), by = 0, all = TRUE) rownames(track) <- track$Row.names track <- subset(track, select = -Row.names) track <- track %>% relocate(denoisedR_single, .before = nonchim) } rownames(track) #rownames(track) <- sample.names #message(track) # Read results of filtering step and append the results of ASV step: out <- read.table(paste0(outpath, "06-report/dada2/dada2_filtering_stats.txt"), header = TRUE) #track <- cbind(out, track) track <- merge(out, track, by = 0, all = TRUE) rownames(track) <- track$Row.names track <- subset(track, select = -Row.names) # Write output tables of reads and the otu_table: write.table(track, paste0(outpath, "06-report/dada2/dada2_stats.txt"), row.names = TRUE, col.names = TRUE, quote = FALSE) write.table(t(seqtab.nochim), paste0(outpath,"03-dada2/seqtab-nochim.txt"), sep = "\t", row.names = TRUE, col.names = NA, quote = FALSE) # Fix for https://github.com/tidyverse/ggplot2/issues/2787 if (file.exists("Rplots.pdf")) { file.remove("Rplots.pdf") } |
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 | library(yaml) library(dada2) #library(Biostrings) library(ggplot2) args <- commandArgs(trailingOnly = TRUE) # Add all arguments for dada2 parameters from configfile! config <- read_yaml(args[2]) # Set the different paths for all the supplied libraries paths <- args[3:length(args)] #print(paths) outpath <- args[1] #print(outpath) # Set the different paths for all the supplied libraries # NOTICE: only forward files given as input filesForw <- paths filesRev <- gsub("_1P", "_2P", filesForw) filesForw_single <- gsub("_1P", "_1U", filesForw) filesRev_single <- gsub("_1P", "_2U", filesForw) # Get sample names #sample.names <- gsub("_1P.fastq.gz", "", basename(filesForw)) #message(paste("Sample", sample.names, "will be analysed", collapse = "\n")) sample.names <- list() # Make folder for quality plots, and report dir.create(paste0(outpath, "03-dada2/quality"), recursive = TRUE) dir.create(paste0(outpath, "06-report/dada2/")) allfiles <- list(filesForw, filesRev, filesForw_single, filesRev_single) names(allfiles) <- c("filesForw", "filesRev", "filesForw_single", "filesRev_single") files_exist <- list() filts <- list() quals <- list() # loop through 1. forward paired, 2. reverse paired 3. forward single 4. reverse single reads # First check that files are not empty (cutadapt returns empty files for those that don't pass any filters.) # Filter and trim does not make empty files that don't pass filters, so make these separately. message("Analyse different files group separately") for (i in 1:4) { message("Check that files are not empty") files_loop <- c() for (j in 1:length(allfiles[[i]])) { info <- file.info(allfiles[[i]][j]) if (!is.na(info$size) & info$size > 20) { # 20 is the size of an empty .gz file files_loop <- c(files_loop, allfiles[[i]][j]) } } if (is.null(files_loop)) { files_exist[i] <- list(NULL) } else { files_exist[[i]] <- files_loop } if (length(files_exist[[i]] != 0)) { message(paste("making quality plots of raw reads:", i, ": (1) forward paired (2) reverse paired (3) forward single and (4) reverse single " , sep = " ")) sample.names[[i]] <- gsub("_1P.fastq.gz", "", basename(files_exist[[i]])) sample.names[[i]] <- gsub("_2P.fastq.gz", "", sample.names[[i]]) sample.names[[i]] <- gsub("_1U.fastq.gz", "", sample.names[[i]]) sample.names[[i]] <- gsub("_2U.fastq.gz", "", sample.names[[i]]) message(paste(names(allfiles)[i], "reads of sample", sample.names[[i]], "will be analysed", collapse = "\n")) quals[[i]] <- gsub("02-cutadapt/", "03-dada2/quality/", files_exist[[i]]) quals[[i]] <- gsub(".fastq.gz", ".png", quals[[i]]) plot_list <- list() message("Making quality plots") for (j in 1:length(quals[[i]])) { dir.create(dirname(quals[[i]][j]), showWarnings = FALSE) p <- plotQualityProfile(files_exist[[i]][j]) ggsave(quals[[i]][j], plot = p, dpi = 150, width = 10, height = 10, units = "cm") } #Make aggregate plot of all reads print(plotQualityProfile(files_exist[[i]], aggregate = T)) ggsave(paste0(outpath,"06-report/dada2/aggregate_quality_profiles_", names(allfiles)[i], ".png"), dpi = 300, width = 10, height = 10, units = "cm") #Create path and file names for filtered samples" filts[[i]] <- gsub("02-cutadapt/", "03-dada2/filtered/", files_exist[[i]]) #assign names to files names(filts[[i]]) <- sample.names[[i]] } else { message(paste("No reads to process for", names(allfiles)[i], sep=" ")) } } # Run filtering on reads: # Paired reads together and single reads separately if (config$meta$sequencing$lib_layout=="Paired") { message("Filtering and Trimming paired reads based on parameter set in the config file") out <- filterAndTrim(files_exist[[1]], filts[[1]], files_exist[[2]], filts[[2]], truncLen = c(config$DADA2$filterAndTrim$Trunc_len_f,config$DADA2$filterAndTrim$Trunc_len_r), truncQ = config$DADA2$filterAndTrim$TruncQ, trimRight = config$DADA2$filterAndTrim$Trim_right, trimLeft = config$DADA2$filterAndTrim$Trim_left, maxLen = config$DADA2$filterAndTrim$maxLen, minLen = config$DADA2$filterAndTrim$minLen, maxN = config$DADA2$filterAndTrim$maxN, minQ = config$DADA2$filterAndTrim$minQ, maxEE = config$DADA2$filterAndTrim$MaxEE, rm.phix = config$DADA2$filterAndTrim$Rm.phix, orient.fwd = config$DADA2$filterAndTrim$orient.fwd, matchIDs = config$DADA2$filterAndTrim$matchIDs, id.sep = config$DADA2$filterAndTrim$id.sep, id.field = config$DADA2$filterAndTrim$id.field, compress = config$DADA2$filterAndTrim$compress, multithread = config$DADA2$filterAndTrim$multithread, n = config$DADA2$filterAndTrim$num, OMP = config$DADA2$filterAndTrim$OMP, verbose = config$DADA2$filterAndTrim$verbose ) # Write out to save the effect of filtering on the reads: rownames(out) <- sample.names[[1]] out <- as.data.frame(out) colnames(out)[2] <- "reads.out.paired" stats_reads <- out #write.table(out, paste0(outpath, "06-report/dada2/dada2_filtering_stats_paired_reads.txt"), row.names = TRUE, col.names = TRUE, quote = FALSE) qualfiltsFs <- gsub(".png", "_filtered.png", quals[[1]]) qualfiltsRs <- gsub(".png", "_filtered.png", quals[[2]]) # Make quality profile plots. message("Making quality plots of the filtered reads") filts_passedF <- c() filts_passedR <- c() plot_list <- list() for (j in 1:length(qualfiltsFs)) { if (file.exists(filts[[1]][j])) { filts_passedF <- c(filts_passedF, filts[[1]][j]) dir.create(dirname(qualfiltsFs[j]), showWarnings = FALSE) p <- plotQualityProfile(filts[[1]][j]) ggsave(qualfiltsFs[j], plot = p, dpi = 150, width = 10, height = 10, units = "cm") } if (file.exists(filts[[2]][j])) { filts_passedR <- c(filts_passedR, filts[[2]][j]) dir.create(dirname(qualfiltsRs[j]), showWarnings = FALSE) q <- plotQualityProfile(filts[[2]][j]) ggsave(qualfiltsRs[j], plot = q, dpi = 150, width = 10, height = 10, units = "cm") } } print(plotQualityProfile(filts_passedF, aggregate = T)) ggsave(paste0(outpath, "06-report/dada2/aggregate_quality_profiles_paired_filtered_forward.png"), dpi = 300, width = 10, height = 10, units = "cm") print(plotQualityProfile(filts_passedR, aggregate = T)) ggsave(paste0(outpath, "06-report/dada2/aggregate_quality_profiles_paired_filtered_reverse.png"), dpi = 300, width = 10, height = 10, units = "cm") } else { message("Paired read files will be analysed in single-end mode") #Append files_exist 1P and files_exist 2P to the single reads so that they are analysed in the same workflow #Forward reads: if (length(files_exist[[3]] != 0)) { files_exist[[3]]=c(files_exist[[1]], files_exist[[3]]) filts[[3]]=c(filts[[1]], filts[[3]]) quals[[3]]=c(quals[[1]], quals[[3]]) sample.names[[3]]=c(sample.names[[1]], sample.names[[3]]) } else { files_exist[[3]]=files_exist[[1]] filts[[3]]=filts[[1]] quals[[3]]=quals[[1]] sample.names[[3]]=sample.names[[1]] } #Reverse reads: if (length(files_exist[[4]] != 0)) { files_exist[[4]]=c(files_exist[[2]], files_exist[[4]]) filts[[4]]=c(filts[[2]], filts[[4]]) quals[[4]]=c(quals[[2]], quals[[4]]) sample.names[[4]]=c(sample.names[[2]], sample.names[[4]]) } else { files_exist[[4]]=files_exist[[2]] filts[[4]]=filts[[2]] quals[[4]]=quals[[2]] sample.names[[4]]=sample.names[[2]] } } # Same for single reads: message("Filtering and Trimming unpaired forward reads based on parameter set in the config file") if (length(files_exist[[3]]) != 0) { #filts[[3]] <- filts[[3]][file.exists(filts[[3]])] out <- filterAndTrim(files_exist[[3]], filts[[3]], truncLen = config$DADA2$filterAndTrim$Trunc_len_f, truncQ = config$DADA2$filterAndTrim$TruncQ, trimRight = config$DADA2$filterAndTrim$Trim_right, trimLeft = config$DADA2$filterAndTrim$Trim_left, maxLen = config$DADA2$filterAndTrim$maxLen, minLen = config$DADA2$filterAndTrim$minLen, maxN = config$DADA2$filterAndTrim$maxN, minQ = config$DADA2$filterAndTrim$minQ, maxEE = config$DADA2$filterAndTrim$MaxEE, rm.phix = config$DADA2$filterAndTrim$Rm.phix, orient.fwd = config$DADA2$filterAndTrim$orient.fwd, matchIDs = config$DADA2$filterAndTrim$matchIDs, id.sep = config$DADA2$filterAndTrim$id.sep, id.field = config$DADA2$filterAndTrim$id.field, compress = config$DADA2$filterAndTrim$compress, multithread = config$DADA2$filterAndTrim$multithread, n = config$DADA2$filterAndTrim$num, OMP = config$DADA2$filterAndTrim$OMP, verbose = config$DADA2$filterAndTrim$verbose ) # Write out to save the effect of filtering on the reads: rownames(out) <- sample.names[[3]] out <- as.data.frame(out) colnames(out) <- c("reads.in.forward.single", "reads.out.forward.single") if (config$meta$sequencing$lib_layout=="Paired") { stats_reads <- cbind(stats_reads, out[match(rownames(stats_reads), rownames(out)),]) #stats_reads$reads.out.forward.single = out$reads.out.forward.single[match(rownames(stats_reads), rownames(out))] #write.table(out, paste0(outpath, "06-report/dada2/dada2_filtering_stats_unpaired_forward_reads.txt"), row.names = TRUE, col.names = TRUE, quote = FALSE) } else { stats_reads <- out } qualfiltsFs_single <- gsub(".png", "_filtered.png", quals[[3]]) # Make quality profile plots. message("Making quality plots of the filtered reads") filts_passedF <- c() plot_list <- list() for (j in 1:length(qualfiltsFs_single)) { if (file.exists(filts[[3]][j])) { filts_passedF <- c(filts_passedF, filts[[3]][j]) dir.create(dirname(qualfiltsFs_single[j]), showWarnings = FALSE) p <- plotQualityProfile(filts[[3]][j]) ggsave(qualfiltsFs_single[j], plot = p, dpi = 150, width = 10, height = 10, units = "cm") } } if (length(filts_passedF)!=0){ print(plotQualityProfile(filts_passedF, aggregate = T)) ggsave(paste0(outpath, "06-report/dada2/aggregate_quality_profiles_filtered_unpaired_forward.png"), dpi = 300, width = 10, height = 10, units = "cm") } } message("Filtering and Trimming unpaired reverse reads based on parameter set in the config file") if (length(files_exist[[4]]) != 0) { out <- filterAndTrim(files_exist[[4]], filts[[4]], truncLen = config$DADA2$filterAndTrim$Trunc_len_r, truncQ = config$DADA2$filterAndTrim$TruncQ, trimRight = config$DADA2$filterAndTrim$Trim_right, trimLeft = config$DADA2$filterAndTrim$Trim_left, maxLen = config$DADA2$filterAndTrim$maxLen, minLen = config$DADA2$filterAndTrim$minLen, maxN = config$DADA2$filterAndTrim$maxN, minQ = config$DADA2$filterAndTrim$minQ, maxEE = config$DADA2$filterAndTrim$MaxEE, rm.phix = config$DADA2$filterAndTrim$Rm.phix, orient.fwd = config$DADA2$filterAndTrim$orient.fwd, matchIDs = config$DADA2$filterAndTrim$matchIDs, id.sep = config$DADA2$filterAndTrim$id.sep, id.field = config$DADA2$filterAndTrim$id.field, compress = config$DADA2$filterAndTrim$compress, multithread = config$DADA2$filterAndTrim$multithread, n = config$DADA2$filterAndTrim$num, OMP = config$DADA2$filterAndTrim$OMP, verbose = config$DADA2$filterAndTrim$verbose ) # Write out to save the effect of filtering on the reads: rownames(out) <- sample.names[[4]] out <- as.data.frame(out) colnames(out) <- c("reads.in.reverse.single", "reads.out.reverse.single") stats_reads <- cbind(stats_reads, out[match(rownames(stats_reads), rownames(out)),]) #stats_reads$reads.out.reverse.single = out$reads.out.reverse.single[match(rownames(stats_reads), rownames(out))] #write.table(out, paste0(outpath, "06-report/dada2/dada2_filtering_stats_unpaired_reverse_reads.txt"), row.names = TRUE, col.names = TRUE, quote = FALSE) qualfiltsRs_single <- gsub(".png", "_filtered.png", quals[[4]]) # Make quality profile plots. message("Making quality plots of the filtered reads") filts_passedR <- c() plot_list <- list() for (j in 1:length(qualfiltsRs_single)) { if (file.exists(filts[[4]][j])){ filts_passedR <- c(filts_passedR, filts[[4]][j]) dir.create(dirname(qualfiltsRs_single[j]), showWarnings = FALSE) p <- plotQualityProfile(filts[[4]][j]) ggsave(qualfiltsRs_single[j], plot = p, dpi = 150, width = 10, height = 10, units = "cm") } } if (length(filts_passedR)!=0){ print(plotQualityProfile(filts_passedR, aggregate = T)) ggsave(paste0(outpath, "06-report/dada2/aggregate_quality_profiles_filtered_unpaired_reverse.png"), dpi = 300, width = 10, height = 10, units = "cm") } } write.table(stats_reads, paste0(outpath, "06-report/dada2/dada2_filtering_stats.txt"), row.names = TRUE, col.names = TRUE, quote = FALSE) # Fix for https://github.com/tidyverse/ggplot2/issues/2787 if (file.exists("Rplots.pdf")) { file.remove("Rplots.pdf") } # Make empty files for the those samples that did not pass filtering (and no files therefore created) ## There is no error if all reads have been eliminated, but no files ## are written in this case. Check for the output files, and if they ## don't exist, create empty ones. for (i in 1:length(filts)) { for(fn in filts[[i]]){ if(!file.exists(fn)){ cat(gettextf('creating empty file %s\n', fn)) gzf = gzfile(fn) cat('', file=gzf, fill=FALSE) close(gzf) }}} |
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 | library("stringr") library("phyloseq") library("dplyr") library("xml2") library("yaml") # Parse arguments args <- commandArgs(trailingOnly = T) message("args <- ", capture.output(dput(args))) # output for debugging outpath <- args[1] tax_file_path <- args[3] otu_file_path <- args[2] rep_seqs_path <- args[4] sample_file_path <- args[5] config_path <- args[6] # LOAD data (this will be done from input later on) tax_file <- read.csv(tax_file_path, sep = "\t", header = T, row.names = 1) otu_file <- read.csv(otu_file_path, sep = "\t", header = T, row.names = 1, check.names = F) Rep_seqs <- Biostrings::readDNAStringSet(rep_seqs_path) sample_file <- read.csv(sample_file_path, sep = ";", header = T, row.names = 1) config <- read_yaml(config_path) # TODO: Add checks! # 1. Make sure that the values are given # 2. Make sure that the sample names in the otu-file (the original sample table), and the sample_data match! # 3. Make sure the required fields are not empty # BasisOfRecord, eventdate, occurrencestatus (what about latitude and longitude?) ########################### 2. Add user provided fields to sample data ############################################################################################ # First change empty values to NA #args[args[5:15] == "None"] <- NA sample_file$target_gene <- config$meta$sequencing$target_gene sample_file$subfragment <- config$meta$sequencing$subfragment sample_file$pcr_primer_forward <- config$meta$sequencing$pcr_primer_forward sample_file$pcr_primer_reverse <- config$meta$sequencing$pcr_primer_reverse sample_file$pcr_primer_name_forward <- config$meta$sequencing$pcr_primer_name_forw sample_file$pcr_primer_name_reverse <- config$meta$sequencing$pcr_primer_name_reverse sample_file$pcr_primer_reference <- config$meta$sequencing$pcr_primer_reference sample_file$lib_layout <- config$meta$sequencing$lib_layout sample_file$seq_meth <- config$meta$sequencing$seq_meth sample_file$sop <- config$meta$sequencing$sop sample_file$votu_db <- config$DATABASE$name # Addition of possible extra fields: extra_fields <- config$meta$sequencing$extra_fields args_name_value <- data.frame(command = 1, value = 1) if (extra_fields != "None") { extra_args <- str_split(extra_fields, ",", simplify = T) for (i in 1:length(extra_args)) { args_name_value[i,] <- str_split(extra_args[i], ":", simplify = T) } for(i in 1:nrow(args_name_value)) { sample_file[,args_name_value[i, 1]] <- args_name_value[i, 2] } } ########################### 3. Collect all values to phyloseq object ###################################### tax_table <- phyloseq::tax_table(as(tax_file, "matrix")) otu_table <- phyloseq::otu_table(otu_file, taxa_are_rows = T) sample_data <- phyloseq::sample_data(sample_file) # Here I make a phyloseq object with the three files phydata <- phyloseq::phyloseq(otu_table, tax_table, sample_data) phydata <- phyloseq::merge_phyloseq(phydata, Rep_seqs) # Print the amount of information stored: phydata # Save the phyloseq rdata object for easier access in the future print("Saving the phyloseq table to an Rdata object, for ease of access for data analysis later") print("The object can be loaded with readRDS, while the phyloseq package and library is loaded") print(paste("The saved object can be found here: ", outpath, "phyloseq_object.rds", sep = "")) saveRDS(phydata, paste0(outpath, "phyloseq_object.rds")) # Remove the OTUs that are found in the control samples (occurrenceStatus==absent) if ("absent" %in% sample_data$occurrenceStatus) { control_taxa <- taxa_names(filter_taxa(subset_samples(phydata, occurrenceStatus == "absent"), function(x) sum(x) > 0, TRUE)) good_taxa <- taxa_names(phydata)[!(taxa_names(phydata) %in% control_taxa)] phydata_no_control <- prune_taxa(good_taxa, phydata) } # Here add the total read counts in each sample to the sample_data table: # Here we should add a check that the samples are in the right order: if ("absent" %in% sample_data$occurrenceStatus) { sample_data(phydata_no_control)$sampleSizeValue <- sample_sums(phydata) sample_data(phydata_no_control)$organismQuantityType <- "DNA Sequence reads" sample_data(phydata_no_control)$sampleSizeUnit <- "DNA Sequence reads" phydf <- psmelt(phydata_no_control) } else { sample_data(phydata)$sampleSizeValue <- sample_sums(phydata) sample_data(phydata)$organismQuantityType <- "DNA Sequence reads" sample_data(phydata)$sampleSizeUnit <- "DNA Sequence reads" phydf <- psmelt(phydata) } phydf$occurrenceID <- paste(phydf$OTU, phydf$Sample, sep = "_") phydf$materialSampleID <- phydf$Sample # Change names where necessary #names(phydf[names(phydf)=="lastvalue"])="ScientificName" phydf <- phydf %>% rename(organismQuantity = Abundance) # %>% # add_column(organismQuantityType = "DNA Sequence reads") %>% # add_column(sampleSizeUnit = "DNA Sequence reads") # Remove 0 Abundance data (not valuable for us) phydf_present <- phydf[phydf$organismQuantity > 0,] # Write tables with all the fields found in the current tables: get_dwc_fields <- function(spec_url) { doc <- read_xml(spec_url) doc %>% xml_ns_strip() %>% xml_find_all("//property") %>% xml_attr(attr = "name") } spec_occurrence <- "https://rs.gbif.org/core/dwc_occurrence_2022-02-02.xml" occurrence_table_fields <- get_dwc_fields(spec_occurrence) spec_dna <- "https://rs.gbif.org/extension/gbif/1.0/dna_derived_data_2021-07-05.xml" DNA_extension_fields <- get_dwc_fields(spec_dna) occurrence_table <- phydf_present[,colnames(phydf_present) %in% occurrence_table_fields] DNA_derived_data_extension <- phydf_present[,colnames(phydf_present) %in% c("occurrenceID", DNA_extension_fields)] write.table(occurrence_table, paste0(outpath, "Occurrence_table.tsv"), sep = "\t", row.names = FALSE, col.names = TRUE, quote = FALSE, na = "") write.table(DNA_derived_data_extension, paste0(outpath, "DNA_extension_table.tsv"), sep = "\t", row.names = FALSE, col.names = TRUE, quote = FALSE, na = "") |
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 | library(worrms) library(stringr) library(Biostrings) library(dplyr) library(tidyr) RANKS <- c("kingdom", "phylum", "class", "order", "family", "genus", "species") PIPELINE <- "bowtie2;2.4.4;ANACAPA-blca;2021" BLAST_VERSION <- "blastn;2.12.0" BLAST_DB <- "NCBI-nt;" REF_DB_PATTERN <- "identity_filtered/\\s*(.*?)\\s*_blca_tax_table" # Parse arguments args <- commandArgs(trailingOnly = T) message("args <- ", capture.output(dput(args))) # output for debugging outpath <- args[1] tax_file_path <- args[2] rep_seqs_path <- args[3] if (length(args) == 5) { basta_file_path <- args[4] blast_date <- args[5] } else { basta_file_path <- NULL } ########################### 1. Read input files ################################################################################################################ tax_file <- read.csv(tax_file_path, sep = "\t", header = T) %>% rename("verbatimIdentification" = "taxonomy_confidence") # Add annotation pipeline and reference database tax_file$otu_seq_comp_appr <- PIPELINE result <- regmatches(tax_file_path, regexec(REF_DB_PATTERN, tax_file_path)) otu_db <- result[[1]][2] tax_file$otu_db <- otu_db rep_seqs <- Biostrings::readDNAStringSet(rep_seqs_path) # If blast was performed on the unknown sequences: if (!is.null(basta_file_path)) { if (file.size(basta_file_path) > 0) { message("0. Results of Blast annotation read") basta_file <- read.csv(basta_file_path, sep = "\t", header = F) colnames(basta_file) <- c("rowname", "sum.taxonomy") basta_file$verbatimIdentification <- basta_file$sum.taxonomy # Add annotation pipeline and reference database basta_file$otu_seq_comp_appr <- BLAST_VERSION basta_file$otu_db <- paste0(BLAST_DB, blast_date) } } ########################### 2. Modify tax table for taxonomic ranks, and find all possible worms ids (using worrms package) ##################################### message("1. Modify tax table for taxonomic ranks, and find all possible worms ids (using worrms package)") # Clean set of taxon names into taxonomy as a named list clean_taxonomy <- function(taxa) { if (all(str_detect(taxa, "([a-z]+)__(.*)_[0-9]"))) { taxa <- taxa[taxa != "" & taxa != "NA" & taxa != "nan"] if (length(taxa) == 0) { return(list(kingdom = NA)) } parts <- str_match(taxa, "([a-z]+)__(.*)_[0-9]") ranks <- recode(parts[,2], "k" = "kingdom", "p" = "phylum", "c" = "class", "o" = "order", "f" = "family", "g" = "genus", "s" = "species") taxon_names <- as.list(parts[,3]) names(taxon_names) <- ranks return(taxon_names) } else { if (length(taxa) == 0) { return(list(kingdom = NA)) } taxa[taxa %in% c("", "NA", "nan", "unknown", "Unknown")] <- NA taxon_names <- setNames(as.list(taxa), RANKS[1:length(taxa)]) return(taxon_names) } } if (exists("basta_file")) { # Remove ASVs present in basta file from tax file tax_file <- tax_file %>% filter(!rowname %in% basta_file$rowname) # Merge tax_file <- bind_rows(tax_file, basta_file) } taxonomies <- str_split(str_replace(tax_file$sum.taxonomy, ";+$", ""), ";") cleaned <- lapply(taxonomies, clean_taxonomy) taxmat <- cleaned %>% bind_rows() %>% as.data.frame() %>% select(!!!RANKS) %>% mutate(verbatimIdentification = tax_file$verbatimIdentification)%>% mutate(otu_seq_comp_appr = tax_file$otu_seq_comp_appr)%>% mutate(otu_db = tax_file$otu_db) row.names(taxmat) <- tax_file$rowname # Add possible remaining unknowns to the taxmat based on asvs in the rep_seqs (keep all ASVs in the final dataset) rep_seqs_unknown <- names(rep_seqs[!names(rep_seqs)%in%row.names(taxmat),]) taxmat_unknown <- data.frame( otu_seq_comp_appr = rep(PIPELINE, length(rep_seqs_unknown)), otu_db = rep(otu_db, length(rep_seqs_unknown)) ) row.names(taxmat_unknown) <- rep_seqs_unknown taxmat <- bind_rows(taxmat, taxmat_unknown) # TODO: failing with rate limit, submit in batches with at least version 0.4.3 of worrms (https://anaconda.org/conda-forge/r-worrms) match_name <- function(name) { lsid <- tryCatch({ res <- wm_records_names(name, marine_only = FALSE) # TODO: fix Sys.sleep(1) matches <- res[[1]] %>% filter(match_type == "exact" | match_type == "exact_genus" | match_type == "exact_subgenus") if (nrow(matches) > 1) { message(paste0("Multiple matches for ", name)) } return(matches[1,]) }, error = function(cond) { message(cond) return(NULL) }) } # Taxon names across all ranks tax_names <- taxmat %>% select(!!!RANKS) %>% unlist() %>% na.omit() %>% unique() %>% sort() matches <- sapply(tax_names, match_name) taxmat$scientificName <- NA taxmat$scientificNameID <- NA for (i in 1:nrow(taxmat)) { lsids <- taxmat[i, RANKS] %>% as.character() %>% sapply(function(x) { matches[[x]]$lsid }) %>% sapply(function(x) { ifelse(is.null(x), NA, x) }) %>% unlist() if (all(is.na(lsids))) next most_specific_name <- taxmat[i, max(which(!is.na(lsids)))] scientificnameid <- matches[[most_specific_name]]$lsid taxmat$scientificName[i] <- matches[[most_specific_name]]$scientificname taxmat$scientificNameID[i] <- matches[[most_specific_name]]$lsid taxmat$taxonRank[i] <- tolower(matches[[most_specific_name]]$rank) taxmat$kingdom[i] <- matches[[most_specific_name]]$kingdom taxmat$phylum[i] <- matches[[most_specific_name]]$phylum taxmat$class[i] <- matches[[most_specific_name]]$class taxmat$order[i] <- matches[[most_specific_name]]$order taxmat$family[i] <- matches[[most_specific_name]]$family taxmat$genus[i] <- matches[[most_specific_name]]$genus } # Add Incertae sedis LSID in case there is no last value taxmat$scientificName[is.na(taxmat$scientificName)] <- "Incertae sedis" taxmat$scientificNameID[is.na(taxmat$scientificNameID)] <- "urn:lsid:marinespecies.org:taxname:12" # Names not in WoRMS names_not_in_worms <- names(matches)[sapply(matches, is.null)] message("Number of species names not recognized in WORMS: ", length(names_not_in_worms)) # Add sequence to the tax_table slot (linked to each asv) taxmat$DNA_sequence <- as.character(rep_seqs[row.names(taxmat)]) # Write table of unknown names to make manual inspection easier: write.table(names_not_in_worms, paste0(outpath, "Taxa_not_in_worms.tsv"), sep = "\t", row.names = TRUE, col.names = TRUE, quote = FALSE, na = "") # Write tax table write.table(taxmat, paste0(outpath, "Full_tax_table_with_lsids.tsv"), sep = "\t", row.names = TRUE, col.names = TRUE, quote = FALSE, na = "") |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | import sys from pathlib import Path import csv import os if len(sys.argv) != 4: print("This program needs 3 arguments:") print("- Project name\n- Manifest file with three columns: sample-id, file-path, direction\n- Sample name") sys.exit() script_path, project_name, manifest_path, sample_name = sys.argv folders = [ "results/" + project_name + "/samples/" + sample_name + "/rawdata/forward_reads", "results/" + project_name + "/samples/" + sample_name + "/rawdata/reverse_reads" ] for folder in folders: Path(folder).mkdir(parents=True, exist_ok=True) print("Created folder %s" % (folder)) with open(manifest_path) as csv_file: reader = csv.reader(csv_file) next(reader) for row in reader: sample_id, file_path, direction = row if sample_id == sample_name: target_file = "fw.fastq.gz" if direction == "forward" else "rv.fastq.gz" target = os.path.abspath("results/" + project_name + "/samples/" + sample_id + "/rawdata/" + direction + "_reads/" + target_file) source = os.path.abspath(file_path) if Path(target).exists() or Path(target).is_symlink(): Path(target).unlink() print("Removed existing symlink %s" % (target)) os.symlink(source, target) print("Created symlink %s -> %s" % (target, source)) |
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 | import argparse import shutil def summarize_taxonomy(full_taxonomy, confidences): full_taxonomy = full_taxonomy.rstrip(';') confidences = confidences.rstrip(';') taxonomy_components = [f.split(":") for f in full_taxonomy.split(";")] confidence_components = [c.split(":") for c in confidences.split(";")] summary = ";".join([":".join((t[0], t[1], confidence_components[i][1])) for i, t in enumerate(taxonomy_components)]) return summary def truncate_taxonomy(full_taxonomy, confidences, cutoff): # the taxonomy and confidences may have an extra semicolon at the end full_taxonomy = full_taxonomy.rstrip(';') confidences = confidences.rstrip(';') taxonomy = dict([level.split(':', 1) for level in full_taxonomy.split(';')]) truncated_taxonomy = {} for level_info in confidences.split(';'): level_name, confidence_value = level_info.split(':') if float(confidence_value) >= cutoff: truncated_taxonomy[level_name] = taxonomy[level_name] return truncated_taxonomy def reformat_summary(summary_file_name, output_file_name, cutoff): output_levels = ["superkingdom","phylum", "class", "order", "family", "genus", "species"] summary = open(summary_file_name).readlines() previous_header = summary[0].strip().split('\t') taxonomy_index = previous_header.index('taxonomy') confidence_index = previous_header.index('taxonomy_confidence') header = previous_header[:taxonomy_index] + ['sum.taxonomy', 'taxonomy_confidence'] output = open(output_file_name + '.tmp', 'w') output.write('\t'.join(header) + '\n') for line in summary[1:]: fields = line.strip('\n').split('\t') # a colon in the taxonomy means that something was found if ':' in fields[taxonomy_index]: taxonomy = truncate_taxonomy(fields[taxonomy_index], fields[confidence_index], cutoff) output_taxonomy = [taxonomy.get(level, '') for level in output_levels] taxonomy_summary = summarize_taxonomy(fields[taxonomy_index], fields[confidence_index]) else: output_taxonomy = '' taxonomy_summary = '' fields_to_write = fields[:taxonomy_index] + [';'.join(output_taxonomy)] + [taxonomy_summary] output.write('\t'.join(fields_to_write) + '\n') output.close() shutil.move(output_file_name + '.tmp', output_file_name) parser = argparse.ArgumentParser(description='Reformats a summary table for use in R code') parser.add_argument('summary_file', type=str, help='Summary file') parser.add_argument('output_file', type=str, help='File where output will be written') parser.add_argument('cutoff', type=float, help='Confidence percent cutoff to include [0-100]') if __name__ == '__main__': args = parser.parse_args() summary_file = args.summary_file cutoff = args.cutoff output_file = args.output_file reformat_summary(summary_file, output_file, cutoff) |
92 93 94 | shell: "python workflow/scripts/init_sample_from_manifest_by_sample.py " + \ config["PROJECT"]+" {input} {wildcards.samples} " |
116 117 | shell: "fastqc {input.r1} {input.r2} -o results/{wildcards.PROJECT}/samples/{wildcards.samples}/qc/" |
134 135 | shell: "multiqc -dd 2 -n {output.raw_multi_html} {input.raw_qc_fw} {input.raw_qc_rv}" |
157 158 159 160 161 162 163 164 165 166 | shell: "trimmomatic PE \ {input} \ {output} \ ILLUMINACLIP:{config[trimmomatic][ILLUMINACLIP]} \ MAXINFO:{config[trimmomatic][MAXINFO]} \ LEADING:{config[trimmomatic][LEADING]} \ TRAILING:{config[trimmomatic][TRAILING]} \ {config[trimmomatic][extra_params]} \ 2> {log.f1}" |
186 187 188 189 190 191 192 193 194 195 196 | shell: "cutadapt \ -g {config[cutadapt][forward_primer]} \ -G {config[cutadapt][reverse_primer]} \ -A {config[cutadapt][rc_forward_primer]} \ -a {config[cutadapt][rc_reverse_primer]} \ -o {output.o1} -p {output.o2} \ {input.p1} {input.p2} \ --minimum-length 1 \ {config[cutadapt][extra_params]} \ 1> {log.f1}" |
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 | shell: "cutadapt \ -g {config[cutadapt][forward_primer]} \ -a {config[cutadapt][rc_reverse_primer]} \ -o {output.o1} \ {input.p1} \ --minimum-length 1 \ {config[cutadapt][se_extra_params]} \ 1> {log.f1}; \ cutadapt \ -g {config[cutadapt][reverse_primer]} \ -a {config[cutadapt][rc_forward_primer]} \ -o {output.o2} \ {input.p2} \ --minimum-length 1 \ {config[cutadapt][se_extra_params]} \ 1> {log.f2}" |
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 | shell: "cutadapt \ -g {config[cutadapt][forward_primer]} \ -a {config[cutadapt][rc_reverse_primer]} \ -o {output.o1} \ {input.u1} \ --minimum-length 1 \ {config[cutadapt][se_extra_params]} \ 1> {log.f1}; \ cutadapt \ -g {config[cutadapt][reverse_primer]} \ -a {config[cutadapt][rc_forward_primer]} \ -o {output.o2} \ {input.u2} \ --minimum-length 1 \ {config[cutadapt][se_extra_params]} \ 1> {log.f2}" |
293 294 295 296 297 | shell: "Rscript ./workflow/scripts/Dada2_FilterAndTrim_combined.R \ results/{config[PROJECT]}/runs/{config[RUN]}/ \ "+config_path+" \ {input.f1}" |
313 314 315 316 317 | shell: "Rscript ./workflow/scripts/Dada2_ASVInference_Single.R \ results/{config[PROJECT]}/runs/{config[RUN]}/ \ "+config_path+" \ {input.FiltF}" |
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 | shell: "bowtie2-build {input.fasta} resources/bowtie2_dbs/" + \ config["DATABASE"]["name"]+"/"+config["DATABASE"]["name"] # Input for bowtie2 depends on if the mapping was given or not: now if statement, could be changed to something else? if config["DATABASE"]["location_bowtie2"] != None: rule bowtie2: input: rep_seqs = expand( "results/{PROJECT}/runs/{RUN}/03-dada2/rep-seqs.fna", PROJECT=PROJECT, RUN=RUN), output: o1 = "results/{PROJECT}/runs/{RUN}/04-taxonomy/bowtie2/{DATABASE}_bowtie2_local.sam", o2 = "results/{PROJECT}/runs/{RUN}/04-taxonomy/bowtie2/{DATABASE}_bowtie2_rejects.fasta", log: f1 = "results/{PROJECT}/runs/{RUN}/06-report/bowtie2/bowtie2_{DATABASE}_log.txt" |
360 361 362 363 364 365 366 367 368 369 370 371 372 | shell: "bowtie2 -x {config[DATABASE][location_bowtie2]} \ -f -U {input.rep_seqs} \ -S {output.o1} \ --no-hd \ --no-sq \ --very-sensitive \ --local \ --no-unal \ -p {config[TAXONOMY][threads]} \ -k {config[TAXONOMY][distinct_alignments]} \ --un {output.o2} \ 2> {log.f1}" |
391 392 393 394 395 396 397 398 399 400 401 402 403 | shell: "bowtie2 -x {params.ref_idx_base} \ -f -U {input.rep_seqs} \ -S {output.o1} \ --no-hd \ --no-sq \ --very-sensitive \ --local \ --no-unal \ -p {config[TAXONOMY][threads]} \ -k {config[TAXONOMY][distinct_alignments]} \ --un {output.o2} \ 2> {log.f1}" |
416 417 418 419 420 421 422 423 424 425 426 427 428 | shell: "python ./workflow/scripts/blca_from_bowtie.py \ -i {input.f1} \ -r {config[DATABASE][taxa]} \ -q {config[DATABASE][fasta]} \ -b {config[TAXONOMY][min_identity]} \ -l {config[TAXONOMY][min_length]} \ -n {config[TAXONOMY][bootstrap_no]} \ -m {config[TAXONOMY][match_score]} \ -f {config[TAXONOMY][mismatch_penalty]} \ -g {config[TAXONOMY][gap_penalty]} \ -o {output.o1} \ -v {output.o2} " |
436 437 438 439 440 441 | shell: "sed -e '1s/^/rowname\ttaxonomy\ttaxonomy_confidence\taccessions\\n/' {input.f1} > {output.o1}; \ python ./workflow/scripts/reformat_summary_for_r.py \ {output.o1} \ {output.o2} \ {config[TAXONOMY][blca_confidence_cutoff]}" |
460 461 462 463 464 465 466 467 468 469 470 471 472 | shell: "awk '/Unclassified/ {{print $1}}' {input.taxa} > {output.o1}; \ awk '/;;;;;;/ {{print $1}}' {input.filtered} | cat >> {output.o1}; \ sort -t . -k 2n -o {output.o1} {output.o1}; \ seqtk subseq {input.fasta} {output.o1} > {output.o2}; \ cat {input.rejects} >> {output.o2}; \ blastn \ -query {output.o2} \ -out {output.o3} \ -outfmt 6 \ -perc_identity {config[BLAST][perc_identity]} \ -num_threads {threads} \ {config[BLAST][database]}" |
486 487 488 489 490 491 492 493 494 495 496 497 | shell: "basta sequence \ -p {config[BLAST][portion_of_hits]} \ -i {config[BLAST][percent_identity]} \ -l {config[BLAST][alignment_length]} \ -e {config[BLAST][e_value]} \ -n {config[BLAST][max_hits]} \ -m {config[BLAST][min_hits]} \ -d {config[BLAST][tax_db]} \ {input.blast_results} \ {output.basta_results} \ gb" |
506 507 508 509 510 511 512 513 514 515 516 517 518 | shell: "basta download gb -d ./resources/tax_db/; \ basta sequence \ -p {config[BLAST][portion_of_hits]} \ -i {config[BLAST][percent_identity]} \ -l {config[BLAST][alignment_length]} \ -e {config[BLAST][e-value]} \ -n {config[BLAST][max_hits]} \ -m {config[BLAST][min_hits]} \ -d ./resources/tax_db/ \ {input.blast_results} \ {output.basta_results} \ gb" |
556 557 558 559 560 561 562 | shell: "Rscript ./workflow/scripts/get_lsids.R \ results/{wildcards.PROJECT}/runs/{wildcards.RUN}/05-dwca/ \ {input.f1} \ {input.f2} \ {input.f3} \ {config[BLAST][database_date]}" |
575 576 577 578 579 580 581 582 | shell: "Rscript ./workflow/scripts/format_for_dwc_new.R \ results/{wildcards.PROJECT}/runs/{wildcards.RUN}/05-dwca/ \ {input.f1} \ {input.f2} \ {input.f3} \ {config[meta][sampling][sample_data_file]}\ "+config_path+" " |
595 596 | shell: "Rscript -e \"rmarkdown::render('workflow/scripts/Report_PacMAN_Pipeline.Rmd', output_file = '../../results/{PROJECT}/runs/{RUN}/06-report/report.html', params=list(config='"+config_path+"'))\"" |
Support
- Future updates
Related Workflows





