polya_liftover sc/snRNAseq Snakemake Workflow using PolyA_DB and UCSC Liftover with Cellranger.
Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output, operation
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
polya_liftover - sc/snRNAseq Snakemake Workflow
A Snakemake workflow for using PolyA_DB and UCSC Liftover with Cellranger.
Some genes are not accurately annotated in the reference genome. Here, we use information provide by the PolyA_DB v3.2 to update the coordinates, then the USCS Liftover tool to update to a more recent genome. Next, we use Cellranger to create the reference and count matrix. Finally, by taking advantage of the integrated Conda and Singularity support, we can run the whole thing in an isolated environment.
Code Snippets
14 15 16 17 | shell: "wget --no-verbose -O resources/cellranger.tar.gz '{params.url}' &> {log} && " "tar -xzf resources/cellranger.tar.gz -C resources &> {log} && " "rm -rf resources/cellranger.tar.gz " |
29 30 31 32 33 34 | shell: "wget " "--no-verbose -O- " "{params.url} | " "gunzip > {output.gtf} " "2> {log}" |
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 | shell: "{input.bin} " "mkgtf " "{input.gtf} " "{output.gtf} " "--attribute=gene_biotype:protein_coding " "--attribute=gene_biotype:lncRNA " "--attribute=gene_biotype:IG_C_gene " "--attribute=gene_biotype:IG_D_gene " "--attribute=gene_biotype:IG_J_gene " "--attribute=gene_biotype:IG_LV_gene " "--attribute=gene_biotype:IG_V_gene " "--attribute=gene_biotype:IG_V_pseudogene " "--attribute=gene_biotype:IG_J_pseudogene " "--attribute=gene_biotype:IG_C_pseudogene " "--attribute=gene_biotype:TR_C_gene " "--attribute=gene_biotype:TR_D_gene " "--attribute=gene_biotype:TR_J_gene " "--attribute=gene_biotype:TR_V_gene " "--attribute=gene_biotype:TR_V_pseudogene " "--attribute=gene_biotype:TR_J_pseudogene " "--attribute=transcript_biotype:protein_coding " "--attribute=transcript_biotype:lncRNA " "--attribute=transcript_biotype:IG_C_gene " "--attribute=transcript_biotype:IG_D_gene " "--attribute=transcript_biotype:IG_J_gene " "--attribute=transcript_biotype:IG_LV_gene " "--attribute=transcript_biotype:IG_V_gene " "--attribute=transcript_biotype:IG_V_pseudogene " "--attribute=transcript_biotype:IG_J_pseudogene " "--attribute=transcript_biotype:IG_C_pseudogene " "--attribute=transcript_biotype:TR_C_gene " "--attribute=transcript_biotype:TR_D_gene " "--attribute=transcript_biotype:TR_J_gene " "--attribute=transcript_biotype:TR_V_gene " "--attribute=transcript_biotype:TR_V_pseudogene " "--attribute=transcript_biotype:TR_J_pseudogene " |
95 96 97 98 99 100 | shell: "wget " "--no-verbose -O- " "{params.url} | " "gunzip > {output.fa} " "2> {log}" |
14 15 16 17 18 19 20 21 22 | shell: "{input.bin} " "mkref " "--genome=converted_filtered_genome " "--genes={input.gtf} " "--fasta={input.fa} " "--memgb={params.mem} " "&> {log} && " "mv converted_filtered_genome {output.ref} " |
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 | shell: "{input.bin} " "count " "--nosecondary " "{params.introns} " "--id {wildcards.sample}_{wildcards.lane} " "--transcriptome {input.genome} " "--fastqs data " "--sample {wildcards.sample} " "--lanes {wildcards.lane} " "--expect-cells {params.n_cells} " "--localcores {threads} " "--localmem {params.mem} " "&> {log} && " "rm -rf results/counts/{wildcards.sample}_{wildcards.lane} && " "mv {wildcards.sample}_{wildcards.lane} results/counts " |
17 18 19 20 21 | shell: "unzip " "{input.bcl_zip} " "-d results/bcl2fastq " "&> {log}" |
33 34 35 36 37 | shell: "mv " "{input} " "{output} " "&> {log}" |
51 52 | script: "../scripts/convert_to_bed.py" |
13 14 15 16 17 18 | shell: "wget " "--no-verbose -O- " "{params.url} | " "gunzip > {output.over_9_to_10} " "2> {log}" |
30 31 32 33 34 35 | shell: "wget " "--no-verbose -O- " "{params.url} | " "gunzip > {output.over_10_to_39} " "2> {log}" |
17 18 19 20 21 22 23 | shell: "liftOver " "{input.bed} " "{input.chain} " "{output.bed} " "{output.unmapped} " "&> {log} " |
39 40 41 42 43 44 45 | shell: "liftOver " "{input.bed} " "{input.chain} " "{output.bed} " "{output.unmapped} " "&> {log} " |
58 59 60 61 62 63 | shell: "workflow/scripts/move_coordinates.bash " "-b {input.bed} " "-g {input.gtf} " "-o {output.gtf} " "&> {log}" |
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | if __name__ == "__main__": from helpers.get_logger import get_logger LOG = snakemake.log[0] # noqa: F821 PARAMS = snakemake.params # noqa: F821 OUTPUT = snakemake.output # noqa: F821 logger = get_logger(__name__, LOG) with open(OUTPUT["bed"], "w") as file: lines = [ f"chr{pos['chr']} {pos['start']-1} {pos['end']-1} {name}\n" for name, pos in PARAMS["genes"].items() ] file.writelines(lines) logger.info(f"Converted to BED file as:\n{lines}") |
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | set -e -x # Get parameters from snakemake while getopts ":b:g:o:" opt; do case "$opt" in b) BEDFILE="$OPTARG" ;; g) GTF="$OPTARG" ;; o) OUT="$OPTARG" ;; :) echo 'All arguments must be provided' >&2 exit 1 ;; \?) echo 'An illegal option was provided' >&2 exit 1 ;; esac done # We want to iteratively modify while preserving the original file # So we create a tmpfile, modify that, then move it to output TMPGTF=$(mktemp) cp $GTF $TMPGTF # Read Bedfile, splitting on expected fields while read -r CHR NEWSTART NEWEND NAME; do # Extract current end from GTF OLDEND=$(awk -v name="$NAME" '$3 == "gene" && $0 ~ name {print $5}' "$TMPGTF") # Increment NEWEND as GTF is 1-indexed, while BED is 0-indexed ((NEWEND+=1)) # For anyline that contains `name` # If field 5 (feature end) is OLDEND, # Replace with NEWWEND # Also, we don't want to use sponge, so old fashioned tmp files TMPFILE=$(mktemp) awk \ -v oldend="$OLDEND" \ -v newend="$NEWEND" \ -v name="$NAME" \ 'BEGIN{FS=OFS="\t"} $5 == oldend && $0 ~ name {$5 = newend} 1' \ "$TMPGTF" > "$TMPFILE" && mv "$TMPFILE" "$TMPGTF" done < "$BEDFILE" mv "$TMPGTF" "$OUT" |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Created: 1yr ago
Updated: 1yr ago
Maitainers:
public
URL:
https://github.com/IMS-Bio2Core-Facility/polya_liftover
Name:
polya_liftover
Version:
Version 1
Downloaded:
0
Copyright:
Public Domain
License:
MIT License
Keywords:
- Future updates
Related Workflows

ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...

Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...

snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...

ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics

RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...

This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...