Snakemake workflow for pre-processing dwi data to re-train using b1000 hcp data
Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output, operation, topic
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
SUPERCEDED BY http://github.com/khanlab/hippunfold-train-b500
prep_retraining_dwi_hippunfold
Snakemake workflow for pre-processing dwi data to re-train using b1000 hcp data
Code Snippets
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | import json import nibabel as nib import numpy as np import sys with open(snakemake.input.shells) as f: shells_dict = json.load(f) #get bval parameter: bval = snakemake.params.bval #input dwi dwi_nib = nib.load(snakemake.input.dwi) print(dwi_nib.shape) #create output shape newshape = np.array(dwi_nib.shape[:3]) avg_shell = np.zeros(newshape.astype(int)) indices = shells_dict['shell_to_vol'][bval] if len(dwi_nib.shape) == 3 and len(indices) == 1 and indices[0] == 0: #we have 3d vol (e.g. b0 only), so just grab it.. avg_shell = dwi_nib.get_fdata()[:,:,:] elif len(dwi_nib.shape) == 4: #otherwise, pick out indices and average avg_shell = np.mean(dwi_nib.get_fdata()[:,:,:,indices],3) else: #if not either of these cases, then something weird with indices and volumes print('unable to get map indices to get avg shell') sys.exit() #now save as image avg_shell_nii = nib.Nifti1Image(avg_shell, affine=dwi_nib.affine ) avg_shell_nii.to_filename(snakemake.output[0]) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 | import numpy as np import json #load bvals bvals = np.loadtxt(snakemake.input[0]) #if just single bval (i.e. rev ph enc b0), then just set manually if bvals.size == 1: out_dict = dict() shells = [np.around(bvals,-2).astype('int').tolist()] out_dict['shells'] = shells out_dict['vol_to_shell'] = shells out_dict['shell_to_vol'] = {str(shells[0]): [0]} #point to index 0 #otherwise try to find shells else: shells = [] # histogram is used to find number of shells, with anywhere from 10 to 100 bins # want to use the highest number of bins that doesn't split up the shells # so that the bin centers can then be used as the shell bvalues.. for i,nbins in enumerate( np.arange(10,100,5) ): counts, bin_edges = np.histogram(bvals, bins=nbins ) bin_lhs = bin_edges[:-1] bin_rhs = bin_edges[1:] bin_centers = (bin_lhs + bin_rhs) / 2 shells.append(bin_centers[np.where(counts>0)]) #get number of shells for each bin-width choice nshells = [len(s) for s in shells] print('nshells') print(nshells) #use the highest number of bins that still produces the minimal number of shells min_nshells = np.min(nshells) possible_shells = np.where(nshells == min_nshells)[0] chosen_shells = shells[possible_shells[-1]] #round to nearest 100 chosen_shells = np.around(chosen_shells,-2).astype('int') print('chosen_shells') print(chosen_shells) #write to file #np.savetxt(snakemake.output[0],chosen_shells,fmt='%d') #get bval indices, by mindist to shell #bvals rep_shells = np.tile(chosen_shells,[len(bvals),1]) rep_bvals = np.tile(bvals,[len(chosen_shells),1]).T print(rep_shells) print(rep_bvals) #abs diff between bvals and shells diff = np.abs(rep_bvals - rep_shells) shell_ind = np.argmin(diff,1) shell_ind = chosen_shells[shell_ind] #get a list of indices shells to vols shell_to_vol = dict() for shell in chosen_shells.tolist(): shell_to_vol[shell] = np.where(shell_ind==int(shell))[0].tolist() #chosen_shell out_dict = dict() out_dict['shells'] = chosen_shells.tolist() out_dict['vol_to_shell'] = shell_ind.tolist() out_dict['shell_to_vol'] = shell_to_vol #write to json, shells and their indices with open(snakemake.output[0], 'w') as outfile: json.dump(out_dict, outfile,indent=4) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | from nilearn import plotting import matplotlib.pyplot as plt import matplotlib matplotlib.use('Agg') html_view = plotting.view_img(stat_map_img=snakemake.input.seg,bg_img=snakemake.input.img, opacity=0.5,cmap='viridis',dim=-1,threshold=0.5, symmetric_cmap=False,title='sub-{subject}'.format(**snakemake.wildcards)) html_view.save_as_html(snakemake.output.html) display = plotting.plot_roi(roi_img=snakemake.input.seg, bg_img=snakemake.input.img, display_mode='ortho') display.savefig(snakemake.output.png) display.close() |
88 | shell: 'singularity run {input.container} {input.bids} {params.out_root} participant --participant_label={params.participant_label}' |
96 | shell: 'cp {input} {output}' |
102 | shell: 'cp {input} {output}' |
108 | shell: 'cp {input} {output}' |
114 | shell: 'cp {input} {output}' |
120 | shell: 'cp {input} {output}' |
126 | shell: 'cp {input} {output}' |
132 | shell: 'cp {input} {output}' |
139 | shell: 'cp {input} {output}' |
146 147 | script: 'scripts/get_shells_from_bvals.py' |
161 162 | script: 'scripts/get_shell_avg.py' |
174 175 | shell: 'antsApplyTransforms -d 3 --interpolation BSpline -i {input.in_img} -o {output.out_img} -r {input.ref} -t {input.xfm}' |
183 184 | shell: 'c3d -verbose {input} -flip x -o {output}' |
193 194 | shell: 'c3d -verbose {input} -flip x -o {output}' |
211 | shell: 'dtifit --data={input.dwi} --out={params.out_prefix} --mask={input.mask} --bvecs={input.bvec} --bvals={input.bval} --gradnonlin={input.grad_dev} --verbose' |
224 | script: 'scripts/vis_qc_dseg.py' |
233 | shell: 'cp {input} {output}' |
244 | shell: 'cp {input.img} {output.img} && fslcpgeom {input.lbl} {output.img}' |
249 | shell: 'tar -cvf {output} {input}' |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Created: 1yr ago
Updated: 1yr ago
Maitainers:
public
URL:
https://github.com/akhanf/prep_retraining_dwi_hippunfold_smk
Name:
prep_retraining_dwi_hippunfold_smk
Version:
1
Downloaded:
0
Copyright:
Public Domain
License:
None
Keywords:
- Future updates
Related Workflows

ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...

Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...

snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...

ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics

RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...

This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...