BIOF501 Term Project: Pipeline for Pseudobulking and Function Prediction
Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output, operation, topic
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
By Alex Adrian-Hamazaki
Repository Contents
Directories
- bin: contains scripts used for creating pseudobulk and function prediction
Files
-
environment.yml: Contains dependen
Code Snippets
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 | print("RUNNING EGAD") packages <-installed.packages()[,"Package"] if (!"EGAD" %in% packages) { BiocManager::install("EGAD") } library(EGAD) library(tidyverse) library(stringr) #data_file <-snakemake@input[[1]] #Change save <- "~/Masters/Pseudobulk_Function_Pipeline_HighRes/data/EAGD/EGAD_sum_pc_OPfiltered.csv" # data_file <- "~/Masters/Pseudobulk_Function_Pipeline_HighRes/data/pseudobulk/sum_pseudobulk.csv" #data_file <- "~/Masters/Pseudobulk_Function_Pipeline_HighRes/data/bulk/bulk_pc.csv" is_bulk <- TRUE #Never change pc_genes <- "~/Masters/Pseudobulk_Function_Pipeline_HighRes/data/pc_genes/processed_uniprot.csv" sample_names <- "~/Masters/Pseudobulk_Function_Pipeline_HighRes/data/sample_names/bulk_pseudo.csv" shared_genes <- "~/Masters/Pseudobulk_Function_Pipeline_HighRes/data/pc_genes/scAndBulkOverlapGenes.txt" #../../../../pipeline42/datasets/Gtex/GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_tpm.gct ################ 2.1 : MAKING DATA SETS ########### MAKE COEXPRESSION NETWORK #~~~~~~~~~ If using file #expression_data <- t(read.delim('data/LiverAverageCounts.csv', sep = ',', header= TRUE, row.names = 1)) #~~~~~~~~ Diagnostic WD #getwd() #~~~~~~~~~If using command line #args = commandArgs(trailingOnly=TRUE) #data_file <- args[1] print("Loading Expression Dataset") expression_data <- (read.delim(data_file, sep = ',', header= TRUE, row.names = 1)) sample_names_df <- read.delim(sample_names, sep = ",", row.names = 1, header = TRUE) <<<<<<< HEAD ### Remove Organism Parts that are NOT shared between the two Tabula And Gtex Datasets filter_by_OP <- function(OP, expression_data) { expression2 <- expression_data %>% filter(str_detect(rownames(expression_data), paste0(OP,".*"))) return (expression2) ======= coexpression_network[is.na(coexpression_network)] <- 0 >>>>>>> 3c1fb065b25c7ca5703de1a68e8cd379c6c7289b } if (is_bulk) { print('Subsampling for Bulk name Organism Parts') OP_names <- sample_names_df$bulk_names expression_data <- expression_data %>% filter(rownames(expression_data) %in% OP_names) } else { print('Subsampling for Pseudobulk name Organism Parts') OP_names <- sample_names_df$pseudo_names expression_data_2 <- lapply(OP_names, filter_by_OP, expression_data) expression_data <- do.call(rbind, expression_data_2) } print("Filtering Expression Data for PC genes") pc <- read.delim(pc_genes, sep = ",", header = TRUE, row.names = 1) pc_names <- pc$FirstUniprot pc_expression <- expression_data[,colnames(expression_data) %in% pc_names] print(paste("Removed",ncol(expression_data)- ncol(pc_expression) , "non-protein coding genes")) ######### Build Coexpression Network coexpression_network <- cor(pc_expression) coexpression_network[is.na(coexpression_network)] <- 0 ############ BUILDING ANNOTATION SET print("Building Annotation Set") ### With builtin GO #annotations <- make_annotations(GO.human[,c('GO', 'evidence')], unique(GO.human$GO), unique(GO.human$evidence)) ### With Custom GO with BP GO <- read.delim(file = '~/Masters/Pseudobulk_Function_Pipeline_HighRes/data/GO/pro_GO.csv', sep = ",", stringsAsFactors = TRUE) # Filter the GO to Gene pairings for only Genes measured in our expression data because we only want GO terms with 20>= genes expression_genes <- colnames(expression_data) GO <- filter(GO, GO$DB_Object_Symbol %in% expression_genes) #in our sc data this removes ~3,000 genes #in bulk this removes ~16000 genes sheesh # Filter for only the genes that are measured in both data types (note this is redudant with the prev step now) sharedGenes <- read_csv(file =shared_genes, col_names = FALSE) GO <- filter(GO, GO$DB_Object_Symbol %in%sharedGenes$X1) GO_unique <- data.frame(table(GO$GO.ID)) colnames(GO_unique) <- c('GO', 'count') # Create a histogram looking at how many genes are affiliated with each GO term ggplot(data = GO_unique)+ geom_histogram(mapping = aes(count)) + scale_y_continuous(trans = 'log10') + labs(title = 'Distribution of Genes in GO Terms') + xlab('Number of Genes')+ ylab('GO Terms with number of genes') ################ Remove GO Terms with less than 20 Genes in the expression data. GO_unique_filtered <- filter(GO_unique, count >=20) 1-nrow(GO_unique_filtered)/nrow(GO_unique) #92.8 % of GO terms were removed in sc. 92% in bulk ggplot(data = GO_unique_filtered)+ geom_histogram(mapping = aes(count), breaks = c(0, 19, 30, 40, 50, 60, 70, 80, 90, 100, 150)) + scale_y_continuous(trans = 'log10') + labs(title = 'Distribution of Genes Assosiated with GO Terms') + xlab('Number of Genes')+ ylab('Count of GO Terms') # With GO_unique_filtered, we now have all of the GO Terms we want to use in our analysis GO_20_or_more <-dplyr::filter(GO, (GO$GO.ID %in% GO_unique_filtered$GO)) # 50694 GO To Gene assosiations were filtered out 1-nrow(GO_20_or_more)/nrow(GO) #44.9% of Gene to Go Term assosiations were for GO terms with less than 20 genes. 45% in bulk #Note: We removed 86.2% of GO terms, this onyl removed 31.5% of GO to gene assosiations #Make one hot encoding matrix # Contains only GO terms with 20 genes or more that were measured in both datasets annotations <- make_annotations(GO_20_or_more[,c('DB_Object_Symbol', 'GO.ID')], unique(GO_20_or_more$DB_Object_Symbol), unique(GO_20_or_more$GO.ID)) ################ Neighbor Voting print("Performing Neighbor Voting. This can take a while") auroc <- neighbor_voting(genes.labels = annotations, network = coexpression_network, nFold = 3, output = "AUROC") #auroc <- run_GBA(network = coexpression_network, # labels = annotations) rm(coexpression_network ) rm(annotations) print(paste0("Wrote AURUC to ", save )) write.table(x = auroc, paste0(save), sep = ",") |
41 42 43 44 | shell: """ python {params.script} {input.data} """ |
55 56 57 58 | shell: """ python {params.script} {input.data} {params.cell_type_column} """ |
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 | shell: """ echo {input.data} touch {output.pseudobulk} head -n 1 {input.data[0]} > {output.pseudobulk} array2=({input.data}) echo ${{array2}} for file in ${{array2[@]}}; do echo ${{file}} tail -n+2 ${{file}} >> {output.pseudobulk} done """ |
92 93 | script: "bin/EGAD.R" |
102 103 104 105 | shell: """ python {params.script} {input.data} """ |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Created: 1yr ago
Updated: 1yr ago
Maitainers:
public
URL:
https://github.com/AlexAdrian-Hamazaki/Pseudobulk_Function_Pipeline
Name:
pseudobulk_function_pipeline
Version:
1
Downloaded:
0
Copyright:
Public Domain
License:
None
- Future updates
Related Workflows

ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...

Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...

snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...

ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics

RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...

This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...