Python GMX Automatic Ligand Parameterization tutorial using Biobb
Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output, operation
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
Automatic Ligand parameterization tutorial using BioExcel Building Blocks (biobb)
This tutorial aims to illustrate the process of ligand parameterization for a small molecule , step by step, using the BioExcel Building Blocks library (biobb) . The particular example used is the Sulfasalazine protein (3-letter code SAS), used to treat rheumatoid arthritis, ulcerative colitis, and Crohn's disease.
OpenBabel and ACPype packages are used to add hydrogens, energetically minimize the structure , and generate parameters for the GROMACS package. With Generalized Amber Force Field (GAFF) forcefield and AM1-BCC charges.
Copyright & Licensing
This software has been developed in the MMB group at the BSC & IRB for the European BioExcel , funded by the European Commission (EU H2020 823830 , EU H2020 675728 ).
- (c) 2015-2023 Barcelona Supercomputing Center
- (c) 2015-2023 Institute for Research in Biomedicine
Licensed under the Apache License 2.0 , see the file LICENSE for details.
Code Snippets
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | import time import argparse from biobb_common.configuration import settings from biobb_common.tools import file_utils as fu from biobb_chemistry.babelm.babel_minimize import babel_minimize from biobb_chemistry.acpype.acpype_params_gmx import acpype_params_gmx def main(config, system=None): start_time = time.time() conf = settings.ConfReader(config, system) global_log, _ = fu.get_logs(path=conf.get_working_dir_path(), light_format=True) global_prop = conf.get_prop_dic(global_log=global_log) global_paths = conf.get_paths_dic() global_log.info("step2_babel_minimize: Energetically minimize hydrogen atoms") babel_minimize(**global_paths["step2_babel_minimize"], properties=global_prop["step2_babel_minimize"]) global_log.info("step3_acpype_params_gmx: Generating ligand parameters") acpype_params_gmx(**global_paths["step3_acpype_params_gmx"], properties=global_prop["step3_acpype_params_gmx"]) elapsed_time = time.time() - start_time global_log.info('') global_log.info('') global_log.info('Execution successful: ') global_log.info(' Workflow_path: %s' % conf.get_working_dir_path()) global_log.info(' Config File: %s' % config) if system: global_log.info(' System: %s' % system) global_log.info('') global_log.info('Elapsed time: %.1f minutes' % (elapsed_time/60)) global_log.info('') if __name__ == '__main__': parser = argparse.ArgumentParser(description="Automatic Ligand parameterization tutorial using BioExcel Building Blocks") parser.add_argument('--config', required=True) parser.add_argument('--system', required=False) args = parser.parse_args() main(args.config, args.system) |
Support
- Future updates
Related Workflows





