Python Protein MD Setup tutorial with mutations using BioExcel Building Blocks (biobb)
Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output, operation
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
Mutations Protein MD Setup tutorial using BioExcel Building Blocks (biobb)
Based on the official GROMACS tutorial .
This tutorial aims to illustrate the process of setting up a simulation system containing a protein , step by step, using the BioExcel Building Blocks library (biobb) . The particular example used is the Lysozyme protein (PDB code 1AKI).
Copyright & Licensing
This software has been developed in the MMB group at the BSC & IRB for the European BioExcel , funded by the European Commission (EU H2020 823830 , EU H2020 675728 ).
- (c) 2015-2023 Barcelona Supercomputing Center
- (c) 2015-2023 Institute for Research in Biomedicine
Licensed under the Apache License 2.0 , see the file LICENSE for details.
Code Snippets
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 | import time import argparse from biobb_common.configuration import settings from biobb_common.tools import file_utils as fu from biobb_chemistry.ambertools.reduce_remove_hydrogens import reduce_remove_hydrogens from biobb_structure_utils.utils.extract_molecule import extract_molecule from biobb_structure_utils.utils.cat_pdb import cat_pdb from biobb_model.model.fix_side_chain import fix_side_chain from biobb_model.model.mutate import mutate from biobb_gromacs.gromacs.pdb2gmx import pdb2gmx from biobb_gromacs.gromacs.editconf import editconf from biobb_gromacs.gromacs.solvate import solvate from biobb_gromacs.gromacs.grompp import grompp from biobb_gromacs.gromacs.genion import genion from biobb_gromacs.gromacs.mdrun import mdrun from biobb_gromacs.gromacs.make_ndx import make_ndx from biobb_analysis.gromacs.gmx_energy import gmx_energy from biobb_analysis.gromacs.gmx_rgyr import gmx_rgyr from biobb_analysis.gromacs.gmx_trjconv_str import gmx_trjconv_str from biobb_analysis.gromacs.gmx_image import gmx_image from biobb_analysis.gromacs.gmx_rms import gmx_rms def main(config, system=None): start_time = time.time() conf = settings.ConfReader(config, system) global_log, _ = fu.get_logs(path=conf.get_working_dir_path(), light_format=True) global_prop = conf.get_prop_dic(global_log=global_log) global_paths = conf.get_paths_dic() global_log.info("step0_reduce_remove_hydrogens: Removing Hydrogens") reduce_remove_hydrogens(**global_paths["step0_reduce_remove_hydrogens"], properties=global_prop["step0_reduce_remove_hydrogens"]) global_log.info("step1_extract_molecule: Extracting Protein") extract_molecule(**global_paths["step1_extract_molecule"], properties=global_prop["step1_extract_molecule"]) global_log.info("step00_cat_pdb: Concatenating protein with included ions") cat_pdb(**global_paths["step00_cat_pdb"], properties=global_prop["step00_cat_pdb"]) global_log.info("step2_fix_side_chain: Modeling the missing heavy atoms in the structure side chains") fix_side_chain(**global_paths["step2_fix_side_chain"], properties=global_prop["step2_fix_side_chain"]) for mutation_number, mutation in enumerate(conf.properties['mutations']): global_log.info('') global_log.info("Mutation: %s %d/%d" % (mutation, mutation_number+1, len(conf.properties['mutations']))) global_log.info('') prop = conf.get_prop_dic(prefix=mutation, global_log=global_log) paths = conf.get_paths_dic(prefix=mutation) global_log.info("step3_mutate: Modeling mutation") prop['step3_mutate']['mutation_list'] = mutation paths['step3_mutate']['input_pdb_path'] = global_paths['step2_fix_side_chain']['output_pdb_path'] mutate(**paths["step3_mutate"], properties=prop["step3_mutate"]) global_log.info("step4_pdb2gmx: Generate the topology") pdb2gmx(**paths["step4_pdb2gmx"], properties=prop["step4_pdb2gmx"]) global_log.info("step5_editconf: Create the solvent box") editconf(**paths["step5_editconf"], properties=prop["step5_editconf"]) global_log.info("step6_solvate: Fill the solvent box with water molecules") solvate(**paths["step6_solvate"], properties=prop["step6_solvate"]) global_log.info("step7_grompp_genion: Preprocess ion generation") grompp(**paths["step7_grompp_genion"], properties=prop["step7_grompp_genion"]) global_log.info("step8_genion: Ion generation") genion(**paths["step8_genion"], properties=prop["step8_genion"]) global_log.info("step9_grompp_min: Preprocess energy minimization") grompp(**paths["step9_grompp_min"], properties=prop["step9_grompp_min"]) global_log.info("step10_mdrun_min: Execute energy minimization") mdrun(**paths["step10_mdrun_min"], properties=prop["step10_mdrun_min"]) global_log.info("step100_make_ndx: Creating an index file for the whole system") make_ndx(**paths["step100_make_ndx"], properties=prop["step100_make_ndx"]) global_log.info("step11_grompp_nvt: Preprocess system temperature equilibration") grompp(**paths["step11_grompp_nvt"], properties=prop["step11_grompp_nvt"]) global_log.info("step12_mdrun_nvt: Execute system temperature equilibration") mdrun(**paths["step12_mdrun_nvt"], properties=prop["step12_mdrun_nvt"]) global_log.info("step13_grompp_npt: Preprocess system pressure equilibration") grompp(**paths["step13_grompp_npt"], properties=prop["step13_grompp_npt"]) global_log.info("step14_mdrun_npt: Execute system pressure equilibration") mdrun(**paths["step14_mdrun_npt"], properties=prop["step14_mdrun_npt"]) global_log.info("step15_grompp_md: Preprocess free dynamics") grompp(**paths["step15_grompp_md"], properties=prop["step15_grompp_md"]) global_log.info("step16_mdrun_md: Execute free molecular dynamics simulation") mdrun(**paths["step16_mdrun_md"], properties=prop["step16_mdrun_md"]) global_log.info("step17_gmx_image1: Image Trajectory, step1, moving ligand to center of the water box") gmx_image(**paths["step17_gmx_image1"], properties=prop["step17_gmx_image1"]) global_log.info("step18_gmx_image2: Image Trajectory, step2, removing rotation") gmx_image(**paths["step18_gmx_image2"], properties=prop["step18_gmx_image2"]) global_log.info("step19_gmx_trjconv_str: Convert final structure from GRO to PDB") gmx_trjconv_str(**paths["step19_gmx_trjconv_str"], properties=prop["step19_gmx_trjconv_str"]) global_log.info("step20_gmx_energy: Generate energy plot from minimization/equilibration") gmx_energy(**paths["step20_gmx_energy"], properties=prop["step20_gmx_energy"]) global_log.info("step21_gmx_rgyr: Generate Radius of Gyration plot for the resulting setup trajectory from the free md step") gmx_rgyr(**paths["step21_gmx_rgyr"], properties=prop["step21_gmx_rgyr"]) global_log.info("step22_rmsd_first: Generate RMSd (against 1st snp.) plot for the resulting setup trajectory from the free md step") gmx_rms(**paths["step22_rmsd_first"], properties=prop["step22_rmsd_first"]) global_log.info("step23_rmsd_exp: Generate RMSd (against exp.) plot for the resulting setup trajectory from the free md step") gmx_rms(**paths["step23_rmsd_exp"], properties=prop["step23_rmsd_exp"]) if conf.properties['run_md']: global_log.info("step24_grompp_md: Preprocess long MD simulation after setup") grompp(**paths["step24_grompp_md"], properties=prop["step24_grompp_md"]) elapsed_time = time.time() - start_time global_log.info('') global_log.info('') global_log.info('Execution successful: ') global_log.info(' Workflow_path: %s' % conf.get_working_dir_path()) global_log.info(' Config File: %s' % config) if system: global_log.info(' System: %s' % system) global_log.info('') global_log.info('Elapsed time: %.1f minutes' % (elapsed_time/60)) global_log.info('') if __name__ == '__main__': parser = argparse.ArgumentParser(description="Based on the official Gromacs tutorial") parser.add_argument('--config', required=True) parser.add_argument('--system', required=False) args = parser.parse_args() main(args.config, args.system) |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Created: 1yr ago
Updated: 1yr ago
Maitainers:
public
URL:
https://github.com/bioexcel/biobb_workflows/tree/master/biobb_wf_md_setup_mutations/python
Name:
python-protein-md-setup-tutorial-with-mutations
Version:
Version 3
Downloaded:
0
Copyright:
Public Domain
License:
None
Keywords:
- Future updates
Related Workflows

ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...

Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...

snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...

ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics

RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...

This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...