Snakemake module for generating reports related to Hydra-Genetics results

public public 1yr ago Version: v0.1.0 0 bookmarks

A module containing rules for various types of reports

:speech_balloon: Introduction

The module contains rules for generating reports from results generated by other Hydra-Genetics modules.

:heavy_exclamation_mark: Dependencies

In order to use this module, the following dependencies are required:

:school_satchel: Preparations

Sample data

Input data should be added to samples.tsv and units.tsv . The following information need to be added to these files:

Column Id Description
samples.tsv
sample unique sample/patient id, one per row
units.tsv
sample same sample/patient id as in samples.tsv
type data type identifier (one letter), can be one of T umor, N ormal, R NA
platform type of sequencing platform, e.g. NovaSeq
machine specific machine id, e.g. NovaSeq instruments have @Axxxxx
flowcell identifer of flowcell used
lane flowcell lane number
barcode sequence library barcode/index, connect forward and reverse indices by + , e.g. ATGC+ATGC
fastq1/2 absolute path to forward and reverse reads
adapter adapter sequences to be trimmed, separated by comma

:white_check_mark: Testing

The workflow repository contains a small test dataset .tests/integration which can be run like so:

$ cd .tests/integration
$ snakemake \
 -s ../../workflow/Snakefile \
 --configfile config.yaml \
 --use-singularity \
 --singularity-args "--bind $(realpath ../..)" \
 -j1

:rocket: Usage

To use this module in your workflow, follow the description in the snakemake docs . Add the module to your Snakefile like so:

module reports:
 snakefile:
 github(
 "reports",
 path="workflow/Snakefile",
 tag="0.1.0",
 )
 config:
 config
use rule * from reports as reports_*

Output files

The following output files should be targeted via another rule:

File Description
reports/cnv_html_report/{sample}_{type}.{tc_method}.cnv_report.html Interactive report of CNV calling results

:judge: Rule Graph

%%{ init: { "flowchart-font-size": "15px" } }%%
flowchart RL
 0(all)
 1(_copy_cnv_html_report)
 2(cnv_html_report)
 3(merge_cnv_json)
 4(cnv_json)
 1 --> 0
 2 --> 1
 3 --> 2
 4 --> 3
 classDef default fill:#00495C,stroke:#000C0F,stroke-width:2,color:#FEF6FC;

Code Snippets

37
38
script:
    "../scripts/cnv_html_report.py"
68
69
script:
    "../scripts/cnv_json.py"
104
105
script:
    "../scripts/merge_cnv_json.py"
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
from jinja2 import Template
from pathlib import Path
import sys
import time


def get_sample_name(filename):
    return Path(filename).name.split(".")[0]


def create_report(template_filename, json_filename, css_files, js_files, show_table, tc, tc_method):
    with open(template_filename) as f:
        template = Template(source=f.read())

    with open(json_filename) as f:
        json_string = f.read()

    css_string = ""
    for css_filename in css_files:
        with open(css_filename) as f:
            css_string += f.read()

    js_string = ""
    for js_filename in js_files:
        with open(js_filename) as f:
            js_string += f.read()

    return template.render(
        dict(
            json=json_string,
            css=css_string,
            js=js_string,
            metadata=dict(
                date=time.strftime("%Y-%m-%d %H:%M", time.localtime()),
                sample=get_sample_name(json_filename),
                show_table=show_table,
                tc=tc,
                tc_method=tc_method,
            ),
        )
    )


def main():
    log = Path(snakemake.log[0])

    logfile = open(log, "w")
    sys.stdout = sys.stderr = logfile

    json_filename = snakemake.input.json
    template_dir = Path(snakemake.input.template_dir)
    html_filename = snakemake.output.html

    html_template = template_dir / "index.html"
    css_files = sorted(template_dir.glob("*.css"))
    js_files = sorted(template_dir.glob("*.js"))

    report = create_report(
        html_template,
        json_filename,
        css_files,
        js_files,
        snakemake.params.include_table,
        snakemake.params.tc,
        snakemake.params.tc_method,
    )

    with open(html_filename, "w") as f:
        f.write(report)


if __name__ == "__main__":
    main()
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import collections
import csv
import functools
import json
from pathlib import Path
import sys


# The functions `parse_*_ratios` functions take a filename of a file containing
# copy number log2-ratios across the genome for a specific CNV caller. The
# functions `parse_*_segments` takes a filename of a file containing log2-ratio
# segments across the genome for a specific caller. The return value from both
# of these functions should be a list of dictionaries, where the dictionaries
# look like
#
# {
#     "chromosome": str,
#     "start": int,
#     "end": int,
#     "log2": float,
# }
#


PARSERS = collections.defaultdict(dict)


def cnv_parser(file_format, header=True, skip=0, comment="#"):
    """
    Decorator for parsers of CNV result files. The first argument of
    the wrapped function should be a path to a file, and this argument
    is replaced with the contents of that file. How the content is represented
    depends on the file format:

    - tsv, csv: a generator over lines, each line being a list of values
    - vcf:

    arguments:
        file_format     a file path
        skip            the number of lines to skip before starting to read
                        the file
    """

    def decorator_cnv_parser(func):
        caller_filetype = func.__name__.split("_")[1:]
        caller = "_".join(caller_filetype[:-1])
        filetype = caller_filetype[-1]

        def line_generator(file, delim):
            for _ in range(skip):
                next(file)
            found_header = False
            for line in csv.reader(file, delimiter=delim):
                if line[0].strip()[0] == comment:
                    continue
                if header and not found_header:
                    found_header = True
                    continue
                yield line

        @functools.wraps(func)
        def wrapper(*args, **kwargs):
            f = None
            try:
                f = open(args[0], "r")
                if file_format == "tsv":
                    lines = line_generator(f, delim="\t")
                elif file_format == "csv":
                    lines = line_generator(f, delim=",")
                else:
                    raise IOError(f"invalid filetype: {file_format}")
                args = [lines] + list(args[1:])
                return func(*args, **kwargs)
            finally:
                if f is not None:
                    f.close()

        PARSERS[caller][filetype] = wrapper

    return decorator_cnv_parser


@cnv_parser("tsv", header=True)
def parse_cnvkit_ratios(file):
    ratios = []
    for line in file:
        ratios.append(
            dict(
                chromosome=line[0],
                start=int(line[1]),
                end=int(line[2]),
                log2=float(line[5]),
            )
        )
    return ratios


@cnv_parser("tsv", header=True)
def parse_cnvkit_segments(file):
    segments = []
    for line in file:
        segments.append(
            dict(
                chromosome=line[0],
                start=int(line[1]),
                end=int(line[2]),
                log2=float(line[4]),
            )
        )
    return segments


@cnv_parser("tsv", header=True, comment="@")
def parse_gatk_ratios(file):
    ratios = []
    for line in file:
        ratios.append(
            dict(
                chromosome=line[0],
                start=int(line[1]),
                end=int(line[2]),
                log2=float(line[3]),
            )
        )
    return ratios


@cnv_parser("tsv", header=True, comment="@")
def parse_gatk_segments(file):
    segments = []
    for line in file:
        segments.append(
            dict(
                chromosome=line[0],
                start=int(line[1]),
                end=int(line[2]),
                log2=float(line[4]),
            )
        )
    return segments


def to_json(caller, ratios, segments):
    json_dict = dict(
        caller=caller,
        ratios=ratios,
        segments=segments,
    )
    return json.dumps(json_dict)


def main():
    log = Path(snakemake.log[0])

    logfile = open(log, "w")
    sys.stdout = sys.stderr = logfile

    caller = snakemake.wildcards["caller"]
    ratio_filename = snakemake.input["ratios"]
    segment_filename = snakemake.input["segments"]

    output_filename = snakemake.output["json"]

    skip_chromosomes = snakemake.params["skip_chromosomes"]

    if caller not in PARSERS:
        print(f"error: no parser for {caller} implemented", file=sys.stderr)
        sys.exit(1)

    ratios = PARSERS[caller]["ratios"](ratio_filename)
    segments = PARSERS[caller]["segments"](segment_filename)

    if skip_chromosomes is not None:
        ratios = [r for r in ratios if r["chromosome"] not in skip_chromosomes]
        segments = [s for s in segments if s["chromosome"] not in skip_chromosomes]

    with open(output_filename, "w") as f:
        print(to_json(caller, ratios, segments), file=f)


if __name__ == "__main__":
    main()
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
from collections import defaultdict
from collections.abc import Generator
from dataclasses import dataclass
import json
from pathlib import Path
import pysam
import sys
from typing import Union


@dataclass
class CNV:
    caller: str
    chromosome: str
    genes: list
    start: int
    length: int
    type: str
    copy_number: float
    baf: float

    def end(self):
        return self.start + self.length - 1

    def overlaps(self, other):
        return self.chromosome == other.chromosome and (
            # overlaps in the beginning, or self contained in other
            (self.start >= other.start and self.start <= other.end())
            or
            # overlaps at the end, or self contained in other
            (self.end() >= other.start and self.end() <= other.end())
            or
            # other is contained in self
            (other.start >= self.start and other.end() <= self.end())
        )

    def __hash__(self):
        return hash(f"{self.caller}_{self.chromosome}:{self.start}-{self.end()}_{self.copy_number}")


cytoband_config = snakemake.config.get("merge_cnv_json", {}).get("cytoband_config", {}).get("colors", {})
cytoband_centromere = "acen"
cytoband_colors = {
    "gneg": cytoband_config.get("gneg", "#e3e3e3"),
    "gpos25": cytoband_config.get("gpos25", "#555555"),
    "gpos50": cytoband_config.get("gpos50", "#393939"),
    "gpos75": cytoband_config.get("gpos75", "#8e8e8e"),
    "gpos100": cytoband_config.get("gpos100", "#000000"),
    "acen": cytoband_config.get("acen", "#963232"),
    "gvar": cytoband_config.get("gvar", "#000000"),
    "stalk": cytoband_config.get("stalk", "#7f7f7f"),
}


def parse_fai(filename, skip=None):
    with open(filename) as f:
        for line in f:
            chrom, length = line.strip().split()[:2]
            if skip is not None and chrom in skip:
                continue
            yield chrom, int(length)


def parse_annotation_bed(filename, skip=None):
    with open(filename) as f:
        for line in f:
            chrom, start, end, name = line.strip().split()[:4]
            if skip is not None and chrom in skip:
                continue
            yield chrom, int(start), int(end), name


def cytoband_color(giemsa):
    return cytoband_colors.get(giemsa, "#ff0000")


def parse_cytobands(filename, skip=None):
    cytobands = defaultdict(list)
    with open(filename) as f:
        for line in f:
            chrom, start, end, name, giemsa = line.strip().split()
            if skip is not None and chrom in skip:
                continue
            cytobands[chrom].append(
                {
                    "name": name,
                    "start": int(start),
                    "end": int(end),
                    "direction": "none",
                    "giemsa": giemsa,
                    "color": cytoband_color(giemsa),
                }
            )

    for k, v in cytobands.items():
        cytobands[k] = sorted(v, key=lambda x: x["start"])
        centromere_index = [i for i, x in enumerate(cytobands[k]) if x["giemsa"] == cytoband_centromere]

        if len(centromere_index) > 0 and len(centromere_index) != 2:
            print(
                f"error: chromosome {k} does not have 0 or 2 centromere bands, " f"found {len(centromere_index)}", file=sys.stderr
            )
            sys.exit(1)
        elif len(centromere_index) == 0:
            continue

        cytobands[k][centromere_index[0]]["direction"] = "right"
        cytobands[k][centromere_index[1]]["direction"] = "left"

    return cytobands


def get_vaf(vcf_filename: Union[str, bytes, Path], skip=None) -> Generator[tuple, None, None]:
    vcf = pysam.VariantFile(str(vcf_filename))
    for variant in vcf.fetch():
        if variant.chrom in skip:
            continue
        yield variant.chrom, variant.pos, variant.info.get("AF", None)


def get_cnvs(vcf_filename, skip=None):
    cnvs = defaultdict(lambda: defaultdict(list))
    vcf = pysam.VariantFile(vcf_filename)
    for variant in vcf.fetch():
        if skip is not None and variant.chrom in skip:
            continue
        caller = variant.info.get("CALLER")
        if caller is None:
            raise KeyError("could not find caller information for variant, has the vcf been annotated?")
        genes = variant.info.get("Genes")
        if genes is None:
            continue
        if isinstance(genes, str):
            genes = [genes]
        cnv = CNV(
            caller,
            variant.chrom,
            sorted(genes),
            variant.pos,
            variant.info.get("SVLEN"),
            variant.info.get("SVTYPE"),
            variant.info.get("CORR_CN"),
            variant.info.get("BAF"),
        )
        cnvs[variant.chrom][caller].append(cnv)
    return cnvs


def merge_cnv_dicts(dicts, vaf, annotations, cytobands, chromosomes, filtered_cnvs, unfiltered_cnvs):
    callers = list(map(lambda x: x["caller"], dicts))
    caller_labels = dict(
        cnvkit="cnvkit",
        gatk="GATK",
    )
    cnvs = {}
    for chrom, chrom_length in chromosomes:
        cnvs[chrom] = dict(
            chromosome=chrom,
            label=chrom,
            length=chrom_length,
            vaf=[],
            annotations=[],
            callers={c: dict(name=c, label=caller_labels.get(c, c), ratios=[], segments=[], cnvs=[]) for c in callers},
        )

    for a in annotations:
        for item in a:
            cnvs[item[0]]["annotations"].append(
                dict(
                    start=item[1],
                    end=item[2],
                    name=item[3],
                )
            )

    for c in cytobands:
        cnvs[c]["cytobands"] = cytobands[c]

    if vaf is not None:
        for v in vaf:
            cnvs[v[0]]["vaf"].append(
                dict(
                    pos=v[1],
                    vaf=v[2],
                )
            )

    # Iterate over the unfiltered CNVs and pair them according to overlap.
    for uf_cnvs, f_cnvs in zip(unfiltered_cnvs, filtered_cnvs):
        for chrom, cnvdict in uf_cnvs.items():
            callers = sorted(list(cnvdict.keys()))
            first_caller = callers[0]
            rest_callers = callers[1:]

            # Keep track of added CNVs on a chromosome to avoid duplicates
            added_cnvs = set()

            for cnv1 in cnvdict[first_caller]:
                pass_filter = False

                if cnv1 in f_cnvs[chrom][first_caller]:
                    # The CNV is part of the filtered set, so all overlapping
                    # CNVs should pass the filter.
                    pass_filter = True

                cnv_group = [cnv1]
                for caller2 in rest_callers:
                    for cnv2 in cnvdict[caller2]:
                        if cnv1.overlaps(cnv2):
                            # Add overlapping CNVs from other callers
                            cnv_group.append(cnv2)

                            if cnv2 in f_cnvs[chrom][caller2]:
                                # If the overlapping CNV is part of the filtered
                                # set, the whole group should pass the filter.
                                pass_filter = True

                for c in cnv_group:
                    if c in added_cnvs:
                        continue
                    cnvs[c.chromosome]["callers"][c.caller]["cnvs"].append(
                        dict(
                            genes=c.genes,
                            start=c.start,
                            length=c.length,
                            type=c.type,
                            cn=c.copy_number,
                            baf=c.baf,
                            passed_filter=pass_filter,
                        )
                    )
                    added_cnvs.add(c)

    for d in dicts:
        for r in d["ratios"]:
            cnvs[r["chromosome"]]["callers"][d["caller"]]["ratios"].append(
                dict(
                    start=r["start"],
                    end=r["end"],
                    log2=r["log2"],
                )
            )
        for s in d["segments"]:
            cnvs[s["chromosome"]]["callers"][d["caller"]]["segments"].append(
                dict(
                    start=s["start"],
                    end=s["end"],
                    log2=s["log2"],
                )
            )

    for v in cnvs.values():
        v["callers"] = list(v["callers"].values())

    return list(cnvs.values())


def main():
    log = Path(snakemake.log[0])

    logfile = open(log, "w")
    sys.stdout = sys.stderr = logfile

    annotation_beds = snakemake.input["annotation_bed"]
    fasta_index_file = snakemake.input["fai"]
    germline_vcf = snakemake.input["germline_vcf"]
    json_files = snakemake.input["json"]
    filtered_cnv_vcf_files = snakemake.input["filtered_cnv_vcfs"]
    cnv_vcf_files = snakemake.input["cnv_vcfs"]
    cytoband_file = snakemake.input["cytobands"]

    if len(germline_vcf) == 0:
        germline_vcf = None

    output_file = snakemake.output["json"]

    skip_chromosomes = snakemake.params["skip_chromosomes"]
    show_cytobands = snakemake.params["cytobands"]

    cnv_dicts = []
    for fname in json_files:
        with open(fname) as f:
            cnv_dicts.append(json.load(f))

    fai = parse_fai(fasta_index_file, skip_chromosomes)
    vaf = None
    if germline_vcf is not None:
        vaf = get_vaf(germline_vcf, skip_chromosomes)
    annotations = []
    for filename in annotation_beds:
        annotations.append(parse_annotation_bed(filename, skip_chromosomes))

    cytobands = []
    if cytoband_file and show_cytobands:
        cytobands = parse_cytobands(cytoband_file, skip_chromosomes)

    filtered_cnv_vcfs = []
    unfiltered_cnv_vcfs = []
    for f_vcf, uf_vcf in zip(filtered_cnv_vcf_files, cnv_vcf_files):
        filtered_cnv_vcfs.append(get_cnvs(f_vcf, skip_chromosomes))
        unfiltered_cnv_vcfs.append(get_cnvs(uf_vcf, skip_chromosomes))

    cnvs = merge_cnv_dicts(cnv_dicts, vaf, annotations, cytobands, fai, filtered_cnv_vcfs, unfiltered_cnv_vcfs)

    with open(output_file, "w") as f:
        print(json.dumps(cnvs), file=f)


if __name__ == "__main__":
    main()
ShowHide 3 more snippets with no or duplicated tags.

Login to post a comment if you would like to share your experience with this workflow.

Do you know this workflow well? If so, you can request seller status , and start supporting this workflow.

Free

Created: 1yr ago
Updated: 1yr ago
Maitainers: public
URL: https://hydra-genetics-reports.readthedocs.io
Name: reports
Version: v0.1.0
Badge:
workflow icon

Insert copied code into your website to add a link to this workflow.

Downloaded: 0
Copyright: Public Domain
License: GNU General Public License v3.0
  • Future updates

Related Workflows

cellranger-snakemake-gke
snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...