Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output, operation
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
RNA-seq workflow
1. 基本信息
流程管理 : snakemake
2 主要软件
软件 | 版本 | 功能 |
---|---|---|
mulitqc | 数据质控 | |
salmon | RNA-Seq 定量 | |
DEseq2 | 差异分析 |
3 概要设计
3.1 目录及参数文件设计
3.1.1 目录
.
├── README.md #流程描述文件
├── config.yaml #流程参数文件
├── samples.tsv #fastq 信息
├── meta.tsv #样本分组信息文件
├── schemas #参数配置文件规范
│ ├── config.schema.yaml
│ ├── samples.schema.yaml
│ └── meta.schema.yaml
├── fastq #存储数据软链接
├── report #存储报告
├── result #存储中间文件
│ ├── 01_qc
│ ├── 02_quant
│ ├── 03_diffexp
├── rules #各部分流程snakefile
│ ├── qc.smk
│ ├── quant.smk
│ ├── diffexp.smk
├── scripts #存储python R脚本
└── Snakefile #main snakefile
3.1.2 config.yaml
#项目名称
PROJECT:
#项目负责人
PERSON:
#实验、文库信息
LIBRARYINFO: config/libraryinfo.tsv
####################
# 输入输出
####################
#数据信息表
meta: meta.tsv
#样品信息表
samples: samples.tsv
#数据路径
DATA_DIR: fastq/
#输出路径
working_dir: result/ #工作目录
report_dir: report/ #报告路径
####################
# 分析参数
####################
#参考基因信息
ref:
# 索引文件
index:
# 注释文件
annotation:
# 差异分析时使用的对比组。
diffexp:
contrasts:
treated-vs-untreated:
- treated
- untreated
3.1.3 meta.tsv
<sample> <condition>
A treated
B untreated
3.1.4 samples.tsv
<sample> <read1.fq> <read2.fq>
A fq1 fq2
A fq1 fq2
B fq1 fq2
Code Snippets
23 24 | script: "../scripts/deseq2.R" |
42 43 | script: "../scripts/output.Rmd" |
7 8 9 10 11 12 13 14 15 16 | shell: "fastqc {input} -o %s -t %s"%(qc_dir,global_thread) rule multiqc: input: expand("{outdir}/{sample}_R{read}_fastqc.zip",outdir=qc_dir,sample= samples.Sample,read=[1,2]) output: join(qc_dir,"multiqc_report.html") wrapper: "0.60.7/bio/multiqc" |
12 13 | wrapper: "0.60.7/bio/salmon/index" |
33 34 | wrapper: "0.60.7/bio/salmon/quant" |
45 46 | script: "../scripts/tximport.R" |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 | log <- file(snakemake@log[[1]], open="wt") sink(log) sink(log, type="message") library(tximport) library(readr) #library(EnsDb.Hsapiens.v86) library(stringr) library(DESeq2) library(dplyr) library(tidyverse) library(rtracklayer) #配置 parallel <- FALSE if (snakemake@threads > 1) { library("BiocParallel") register(MulticoreParam(snakemake@threads)) parallel <- TRUE } allfiles <- snakemake@input[['quant_files']] contrast<-snakemake@params[['contrast']] meta<-read.table(snakemake@params[['meta']],header=T,sep='\t') gtf<-snakemake@params[['gtf']] gtfinfo<-rtracklayer::import(gtf) #按照meta中Group分组输出差异分析结果 names(allfiles)<- basename(dirname(allfiles)) meta$Condition <- factor(meta$Condition) meta$Group <- factor(meta$Group) rownames(meta) <- meta$Sample samples<-meta%>% tibble::as_tibble()%>% dplyr::filter(Condition%in%contrast) print(samples) files=allfiles[samples$Sample] tx2gene <- gtfinfo%>% tibble::as_tibble() %>% dplyr::select(c(transcript_id,gene_id))%>% drop_na()%>% distinct() colnames(tx2gene)<-c("TXNAME",'GENEID') if (!all(file.exists(files))){ print(files) } #save.image() txi <- tximport(files, type="salmon", tx2gene=tx2gene,ignoreTxVersion=T) #@@@@@@@@@@@@@@@@差异分析@@@@@@@@@@@@@@@@@@@@@@@# ddsTxi <- DESeqDataSetFromTximport(txi,colData = samples,design = ~ Condition) ref=contrast[1] ddsTxi$Condition <- relevel(ddsTxi$Condition, ref = ref) if (length(contrast)>2){ dds <- DESeq(ddsTxi, parallel=parallel) }else{ dds <- DESeq(ddsTxi,parallel=TRUE,test='LRT',reduced=~1) } #@@@@@@@@@@@@@@@@获取结果、ID转换@@@@@@@@@@@@@@@@@@@@@@@# geneMaptmp <- gtfinfo %>% tibble::as_tibble() %>% dplyr::filter(type=="gene") if ('gene_name' %in% colnames(geneMaptmp)){ geneMap<-geneMaptmp%>% dplyr::select(c(gene_name,gene_id)) }else if ('gene_symbol' %in% colnames(geneMaptmp)){ geneMap<-geneMaptmp%>% dplyr::select(c(gene_symbol,gene_id)) } else{ geneMap<-geneMaptmp%>% dplyr::select(c(gene_id,gene_id)) } colnames(geneMap)<-c("gene_name",'gene_id') id_trans <-function(data_input){ data_input <-data_input%>% as.data.frame()%>% tibble::rownames_to_column(var='gene') %>% dplyr::left_join(geneMap,by=c('gene'='gene_id'))%>% dplyr::select(gene,gene_name, everything()) } get_result<-function(dds,resultname){ #res <- results(dds, contrast=contrast, parallel=parallel) res <- lfcShrink(dds, coef=resultname, type="apeglm",parallel=parallel) res%>% id_trans()%>% mutate(contrast=resultname) } if (length(resultsNames(dds))>2){ test<-'LRT' }else{ test<-'Wald' } name=resultsNames(dds)[2] res=get_result(dds,name) if (test=='LRT'){ for (i in 3:length(resultsNames(dds))){ name=resultsNames(dds)[i] tmp=get_result(dds,name) res<-res%>% bind_rows(tmp) } } #@@@@@@@@@@@@@@@@表达矩阵@@@@@@@@@@@@@@@@@@@@@@@# ## 输出矫正后表达量,样本量小于30时采用rlog进行转化,否则采用vsd if (dim(colData(dds))[1]<30){ ndds <- rlog(dds, blind=FALSE) } else { ndds <- vst(dds, blind=FALSE) } exp <- as.data.frame(assay(ndds)) %>% id_trans() %>% type_convert() #@@@@@@@@@@@@@@@@输出@@@@@@@@@@@@@@@@@@@@@@@# Name <-snakemake@params[['Name']] outdir<-snakemake@params[['outdir']] outdir<-paste0(outdir,'/') DESeq2_res_file=paste0(outdir,Name,'.DESeq2_res.tsv') exp_file=paste0(outdir,Name,'.DESeq2_exp.tsv') meta_file=paste0(outdir,Name,'.DESeq2_meta.tsv') write_tsv(samples,meta_file) write_tsv(exp,exp_file) write_tsv(res,DESeq2_res_file) saveRDS(ndds, file=snakemake@output[['deseq2_rds']]) |
19 | knitr::opts_chunk$set(eval=TRUE,echo = FALSE,warning=FALSE,message=FALSE,fig.height=6, fig.width=8,fig.align='center') |
28 29 30 31 32 33 | htmltools::tags$script(src = "https://code.jquery.com/jquery-3.5.1.js") htmltools::tags$script(src = "https://cdn.datatables.net/1.10.22/js/jquery.dataTables.min.js") <style type="text/css"> @import url("https://cdn.datatables.net/1.10.22/css/jquery.dataTables.min.css"); </style> |
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 | /* Custom filtering function which will search data in column four between two values */ $.fn.dataTable.ext.search.push( function( settings, data, dataIndex ) { var TlogFC = parseFloat( $('#TlogFC').val(), 1 ); var Tpadj = parseFloat( $('#Tpadj').val(), 0.5 ); var logFC = Math.abs(parseFloat( data[3] )) || 0; // use data for the age column var padj = parseFloat( data[6] ) || 1; // use data for the age column if ( ( isNaN( TlogFC ) && isNaN( Tpadj ) ) || ( isNaN( TlogFC ) && padj <= Tpadj ) || ( TlogFC <= logFC && isNaN( Tpadj ) ) || ( TlogFC <= logFC && padj <= Tpadj ) ) { return true; } return false; } ); $(document).ready(function() { var table = $('#mytable').DataTable(); // Event listener to the two range filtering inputs to redraw on input $('#TlogFC, #Tpadj').keyup(function() { table.draw(); } ); } ); |
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 | log <- file(snakemake@log[[1]], open="wt") sink(log) sink(log, type="message") options(StringAsFactor = F) options("digits" = 3) options(pillar.sigfig=3) library(ggpubr) library(pheatmap) library(DESeq2) library(apeglm) library(tidyverse) library(rtracklayer) library(dplyr) library(clusterProfiler) library(org.Hs.eg.db) |
R Markdown
tidyverse
dplyr
org.Hs.eg.db
ggpubr
clusterProfiler
apeglm
From
line
70
of
scripts/output.Rmd
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 | ndds<-read_rds(snakemake@input[['deseq2_rds']]) res<-read_tsv(snakemake@input[['deseq2_res']]) exp<-read_tsv(snakemake@input[['deseq2_exp']]) logFC_threshold <- snakemake@params[['logFC_threshold']] padj_threshold <- snakemake@params[['padj_threshold']] #输出 outdir<-snakemake@params[['outdir']] Name <-snakemake@params[['Name']] if (!file.exists(outdir)){ dir.create(outdir)} outdir<-paste0(outdir,'/') DEG_res=paste0(outdir,Name,'.DEG_res.tsv') DEG_exp_file=paste0(outdir,Name,'.DEG_exp.tsv') ma_fig=paste0(outdir,Name,'.maplot.svg') volcano_fig=paste0(outdir,Name,'.volcano.svg') heatmap_fig=paste0(outdir,Name,'.heatmap.svg') pca_fig=paste0(outdir,Name,'.pca.svg') go_fig1=paste0(outdir,Name,'.GO.barplot.svg') go_fig2=paste0(outdir,Name,'.GO.dotplot.svg') |
121 122 123 124 125 126 127 128 129 | if (length(resultsNames(ndds))>2){ test<-'LRT' }else{ test<-'Wald' } meta<-colData(ndds)%>% as.data.frame() knitr::kable(meta,caption='样品信息') |
138 139 140 141 | #res%>% # drop_na()%>% # mutate_if(is.numeric, ~round(., 3)) %>% # DT::datatable(filter = 'top', options = list(autoWidth = TRUE)) |
155 156 157 158 159 160 | res%>% arrange(desc(abs(log2FoldChange))) %>% drop_na() %>% dplyr::filter(padj<padj_threshold,abs(log2FoldChange)>logFC_threshold)%>% mutate_if(is.numeric, ~round(., 3)) %>% DT::datatable(filter = 'top', options = list(autoWidth = TRUE)) |
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 | #筛选结果 if (test=='Wald'){ DEG<-res%>% dplyr::filter(padj<padj_threshold,abs(log2FoldChange)>logFC_threshold)%>% arrange(padj)%>% as.data.frame() } else{ #LRT deggene<-res%>% dplyr::filter(padj<padj_threshold,abs(log2FoldChange)>logFC_threshold)%>% arrange(padj)%>% distinct(gene) DEG=res[res$gene%in%deggene$gene,] } DEG_exp=as.data.frame(exp[exp$gene%in%DEG$gene,]) write_tsv(DEG,DEG_res) write_tsv(DEG_exp,DEG_exp_file) |
198 199 200 201 202 203 204 205 206 207 208 209 210 | quant<-exp%>% dplyr::select(-gene,-gene_name)%>% as.data.frame() p2<- prcomp(t(quant)) pca_data <- predict(p2) pdata=pca_data[,c('PC1','PC2','PC3')]%>% as.data.frame()%>% cbind(meta) fig<-ggscatter(pdata, x = "PC1", y = "PC2",color = "Condition",size =4,shape="Group", palette = 'jco',ellipse = F, mean.point = F,star.plot = F,label='Sample', ggtheme = ggplot2::theme_minimal()) #ggsave(pca_fig,plot=fig) fig |
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 | df<-res%>% mutate(log10padj =-log10(res$padj)) fc_threshold=2**logFC_threshold fig<-ggmaplot(df,fdr = padj_threshold , fc = fc_threshold , #差异阈值的设定 size = 0.6, #点的大小 palette = c("#B31B21", "#1465AC", "darkgray"), genenames = as.vector(df$gene_name), xlab = "A",ylab = "M", legend = "top", top = 10, #选择展示的top基因数目 font.label = c("bold", 10),label.rectangle = TRUE, font.legend = "bold",select.top.method = "fc", font.main = "bold", ggtheme = ggplot2::theme_minimal() ) #ggsave(ma_fig,plot=fig) fig |
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 | df<-res%>% mutate(log10padj =-log10(res$padj))%>% arrange(desc(abs(log2FoldChange)))%>% drop_na() df$significant <- 'unchanged' df$significant[df$padj < padj_threshold & df$log2FoldChange > logFC_threshold] <-'upregulated' df$significant[df$padj < padj_threshold & df$log2FoldChange < -logFC_threshold] <-'downregulated' xMax <- 10 yMax <- 10 fig<-ggscatter(df, x = "log2FoldChange", y = "log10padj", #ylim=c(0,yMax), xlim=c(-xMax,xMax), ylab = "-log10(padj)", title = 'volcano plot', legend = "right", color = "significant", size = 0.8, label = "gene_name", repel = T, show.legend.text = F, palette = c("#00AFBB", "#999999", "#FC4E07") , label.select = df$gene_name[1:20])+ # 筛选需要标注的基因 theme(plot.title = element_text(hjust = 0.5)) #ggsave(volcano_fig,plot=fig) fig #save.image() |
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 | if (dim(DEG)[1]>2){ df<-DEG_exp%>% distinct(gene_name,.keep_all=TRUE)%>% drop_na() rownames(df)<-df$gene_name df<-df%>% dplyr::select(-gene,-gene_name) fig<-pheatmap(df,annotation = meta[,c('Group','Condition')], scale="row", # z-score处理 color = colorRampPalette(c('blue','white','red'))(50), # 低、中、高表达的颜色 cluster_cols = T, # 样品是否聚类 cluster_rows = T, show_colnames = T, show_rownames = F, fontsize = 8, # 字体大小 fontsize_row = 8, fontsize_col = 6,main='Gene count heatmap') #ggsave(heatmap_fig,plot=fig) fig}else{ print("差异基因过少") } |
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 | if (test=='LRT' && dim(DEG)[1]>0){ df<-DEG%>% distinct(gene_name,contrast,.keep_all=TRUE)%>% dplyr::select(gene_name,log2FoldChange,contrast)%>% distinct(gene_name,contrast,.keep_all=TRUE)%>% pivot_wider(names_from='contrast',values_from ='log2FoldChange')%>% #pivot_wider(names_from='contrast',values_from ='log2FoldChange',values_fill = list(log2FoldChange = 0))%>% as.data.frame()%>% drop_na(gene_name) rownames(df)=df$gene_name df=df[,-1] paletteLength <- 50 myBreaks <- c(seq(min(df), 0, length.out=ceiling(paletteLength/2) + 1), seq(max(df)/paletteLength, max(df), length.out=floor(paletteLength/2))) fig<-pheatmap(df, border_color=F, color = colorRampPalette(c('blue','white','red'))(50), # 低、中、高表达的颜色 scale='row', cluster_cols = F, # 样品是否聚类 cluster_rows = T, show_colnames = T, show_rownames = F, fontsize = 8, # 字体大小 fontsize_row = 8, fontsize_col = 10, main='Fold Change(log2) heatmap') fig } |
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 | if (dim(DEG)[1]>0){ deggene<-DEG%>% drop_na() ego_ALL <- enrichGO(gene = deggene$gene_name, OrgDb = 'org.Hs.eg.db', keyType = 'SYMBOL', ont = "ALL", pAdjustMethod = "BH", pvalueCutoff = 0.1, qvalueCutoff = 0.1) if(!is.null(ego_ALL)){ fig<-barplot(ego_ALL,showCategory=30,font.size=10) #ggsave(go_fig1,plot=fig) fig} } |
372 373 374 375 376 377 378 379 | if (dim(DEG)[1]>0){ if(!is.null(ego_ALL)){ fig=dotplot(ego_ALL,showCategory=30,font.size=10) #ggsave(go_fig2,plot=fig) fig}else{ print('无显著结果') } } |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | log <- file(snakemake@log[[1]], open="wt") sink(log) sink(log, type="message") library(tximport) library(readr) library(stringr) library(dplyr) library(tidyverse) files <- snakemake@input[['quant_files']] names(files)<- basename(dirname(files)) gtf<-snakemake@params[['gtf']] gtfinfo<-rtracklayer::import(gtf) tx2gene <- gtfinfo%>% tibble::as_tibble() %>% dplyr::select(c(transcript_id,gene_id))%>% drop_na()%>% distinct() colnames(tx2gene)<-c("TXNAME",'GENEID') if (!all(file.exists(files))){ print(files[!file.exists(files)]) } txi <- tximport(files, type="salmon", tx2gene=tx2gene,ignoreTxVersion=T) out<-as.data.frame(txi['abundance']) colnames(out)<-str_replace(colnames(out),'abundance.','') out=out[rowSums(out<0.1)<(dim(out)[2]*0.8),] write.table(out,snakemake@output[['quant_matrix']],sep='\t',quote=F) |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Created: 1yr ago
Updated: 1yr ago
Maitainers:
public
URL:
https://github.com/xiangyugits/rnaseq-salmon-deseq2
Name:
rnaseq-salmon-deseq2
Version:
1
Downloaded:
0
Copyright:
Public Domain
License:
None
Keywords:
- Future updates
Related Workflows

ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...

Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...

snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...

ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics

RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...

This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...