Snakemake workflow: 10X single-cell + LARRY
A Snakemake workflow to process single-cell libraries generated with 10XGenomics platform (RNA, ATAC and RNA+ATAC) together with LARRY barcoding .
Setup
The following files a
Code Snippets
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | shell: """ cellranger count \ {params.feature_ref} \ {params.n_cells} \ {params.extra_p} \ {params.introns} \ --id {wildcards.sample} \ --transcriptome {params.genome} \ --libraries {input.libraries} \ --localcores {threads} \ --localmem {params.mem_gb} \ &> {log} && \ # a folder in results/counts/{wildcards.sample} is automatically created due to the output declared, which # is a problem to move the cellranger output files. The workaround of deleting that folder fixes that. rm -r results/01_counts/{wildcards.sample} && \ mv {wildcards.sample} results/01_counts/{wildcards.sample} """ |
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 | shell: """ cellranger-atac count \ {params.extra_p} \ --id {wildcards.sample} \ --reference {params.genome} \ --fastqs data/clean \ --localcores {threads} \ --localmem {params.mem_gb} \ &> {log} && \ # a folder in results/counts/{wildcards.sample} is automatically created due to the output declared, which # is a problem to move the cellranger output files. The workaround of deleting that folder fixes that. rm -r results/01_counts/{wildcards.sample} && \ mv {wildcards.sample} results/01_counts/{wildcards.sample} """ |
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 | shell: """ cellranger-arc count \ {params.introns} \ {params.extra_p} \ --id {wildcards.sample} \ --reference {params.genome} \ --libraries {input.libraries} \ --localcores {threads} \ --localmem {params.mem_gb} \ &> {log} && \ # a folder in results/counts/{wildcards.sample} is automatically created due to the output declared, which # is a problem to move the cellranger output files. The workaround of deleting that folder fixes that. rm -r results/01_arc/{wildcards.sample} && \ mv {wildcards.sample} results/01_arc/{wildcards.sample} """ |
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 | shell: """ cellranger count \ {params.feature_ref} \ {params.n_cells} \ {params.extra_p} \ {params.introns} \ --id {wildcards.sample} \ --chemistry=ARC-v1 \ --transcriptome {params.genome} \ --libraries {input.libraries} \ --localcores {threads} \ --localmem {params.mem_gb} \ &> {log} && \ # a folder in results/counts/{wildcards.sample} is automatically created due to the output declared, which # is a problem to move the cellranger output files. The workaround of deleting that folder fixes that. rm -r results/01_counts/{wildcards.sample} && \ mv {wildcards.sample} results/01_counts/{wildcards.sample} """ |
24 25 | script: "../scripts/python/extract_barcodes.py" |
41 42 43 44 | shell: """ java -Xmx200G -Xss1G -jar /UMICollapse/umicollapse.jar fastq -k {wildcards.hd} --tag -i {input} -o {output} 2> {log} """ |
61 62 | script: "../scripts/python/correct_barcodes.py" |
78 79 80 81 | shell: """ cat {input} > {output} """ |
99 100 | script: "../scripts/R/generate_feature_ref_larry.R" |
26 27 | script: "../scripts/R/create_seurat.R" |
47 48 | script: "../scripts/R/barcode_summary.Rmd" |
70 71 | script: "../scripts/R/barcode_filtering.R" |
89 90 | script: "../scripts/R/merge_seurat.R" |
113 114 | script: "../scripts/R/RNA_exploration.Rmd" |
10 11 12 13 14 | shell: """ ln -s {input[0]} {output.fw} ln -s {input[1]} {output.rv} """ |
23 24 25 26 | shell: """ ln -s {input} {output} """ |
45 46 47 48 49 | shell: """ cat {input.fw} > {output.fw} 2> {log} cat {input.rv} > {output.rv} 2>> {log} """ |
63 64 65 66 | shell: """ cat {input} > {output} 2> {log} """ |
79 80 81 82 83 | shell: """ mv {input.fw} {output.fw} mv {input.rv} {output.rv} """ |
96 97 98 99 100 | shell: """ mv {input.fw} {output.fw} mv {input.rv} {output.rv} """ |
115 116 117 118 119 120 | shell: """ mv {input.fw} {output.fw} mv {input.rv} {output.rv} mv {input.r3} {output.r3} """ |
133 134 | script: "../scripts/python/create_library_csv.py" |
145 146 | script: "../scripts/python/generate_cellhashing_ref.py" |
158 159 | script: "../scripts/R/generate_feature_ref.R" |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 | import gzip import re import pandas as pd from Bio.SeqIO.QualityIO import FastqGeneralIterator input_file = snakemake.input[0] output_fastq = snakemake.output["corrected_fq"] feature_ref = snakemake.output["feature_ref"] color = snakemake.wildcards.larry_color read = snakemake.wildcards.read_fb #------------------------------------------------------------------------------------------------------------------------------------ # Declare functions #------------------------------------------------------------------------------------------------------------------------------------ def create_feature_ref(reference_dict, color, read, feature_ref): """ Generate a dictionary with barcode sequences and their corresponding larry color to generate the feature reference csv file required by cellranger. It takes as input a dictionary with read cluster id's as keys and sequences (corresponding to the reference barcode of the clusetr) as values. """ extra_nts = r'TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT' bc_dict = {str(key): color for key in reference_dict.values()} bc_df = pd.DataFrame.from_dict(bc_dict, orient='index', columns = ['id']) bc_df = bc_df.rename_axis("sequence").reset_index() bc_df['sequence'] = bc_df['sequence'].str.replace(extra_nts, '', regex=True).astype('str') bc_df['name'] = bc_df.groupby('id').cumcount() + 1 bc_df['name'] = bc_df['id'] + "_" + bc_df['name'].astype(str) bc_df['id'] = bc_df['name'] bc_df['read'] = read bc_df['pattern'] = extra_nts + "(BC)" bc_df['feature_type'] = "Custom" bc_df.to_csv(feature_ref, index = False) def get_reference_barcodes(input_fastq): """ This function will parse a fastq processed by UMIcollapse https://github.com/Daniel-Liu-c0deb0t/UMICollapse. By parsing the fastq, it will create a dictionary with read cluster id's as keys and the sequences of the reference barcodes of the cluster as values. It also returns a list containing all the fastq records to be used later and avoid having to parse again the fastq. """ fastq_entries = [] cluster_dict_id = dict() reference_pattern = re.compile(r'cluster_size=') with gzip.open(input_fastq, 'rt') as input_handle: for title, seq, qual in FastqGeneralIterator(input_handle): fastq_entries += [[title, seq, qual]] match = reference_pattern.search(title) if match: # Create a dictionary with the cluster id and the corresponding consensus sequence cluster_id = re.sub('^.* cluster_id=([0-9]+).*', r'\1', title) cluster_dict_id[cluster_id] = "TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT" + seq return(cluster_dict_id, fastq_entries) def write_corrected_fastq(output_fastq, reference_dict, fastq_entries): """ This function will correct the sequences from the fastq file by substituting them by the reference sequence of every read cluster and write a new fastq file. Takes as input a dictionary with read cluster id's as keys and the sequences of the reference barcodes of the cluster as values and a list containing all the records of the fastq file. Using the dictionary, it will update all the sequences from the list based on the reference sequence present in the dictionary. """ with gzip.open(output_fastq, 'wt') as output_handle: for title, seq, qual in fastq_entries: # Get cluster id for read, use that cluster id to access cluster_dict_id dict # which contains the reference sequence. This way I generate a second dict in which # Every read id is a associated to a specific sequence. # Remove the tag from umicollapse from read_id (title) cluster_id = re.sub('^.* cluster_id=([0-9]+).*', r'\1', title) seq = reference_dict[cluster_id] title = re.sub("\scluster_id.*$", "", title) qual = "IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII" + qual # Fake qscore for the extra 50 fake T's _ = output_handle.write(f"@{title}\n{seq}\n+\n{qual}\n") #------------------------------------------------------------------------------------------------------------------------------------ # Main #------------------------------------------------------------------------------------------------------------------------------------ # Create dict with reference barcodes, store fastq in list reference_dict, fastq_records = get_reference_barcodes(input_file) # Correct fastq file with reference barcodes and save output fastq write_corrected_fastq(output_fastq, reference_dict, fastq_records) # Generate a feature ref csv from the dictionary of reference barcodes create_feature_ref(reference_dict, color, read, feature_ref) |
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 | import os """Create the content of library.csv for the feature barcoding and multiome pipeline from cellranger. Based on what is written in the column lib_type from the units file, write the following: "fastq folder,fastq name,library type". """ abs_path = os.getcwd() sample = snakemake.wildcards["sample"] is_feature_bc = snakemake.params["is_feature_bc"] is_cell_hashing = snakemake.params["is_cell_hashing"] lib_type = snakemake.params["library_type"] lib_csv = dict() ######################################################################################################## # Create library dict ######################################################################################################## if is_feature_bc: lib_csv['FB'] = f'{abs_path}/data/clean,{sample}_FB,Custom' if is_cell_hashing: lib_csv['CH'] = f'{abs_path}/data/clean,{sample}_CH,Antibody Capture' elif lib_type == 'GEX': lib_csv['GEX'] = f'{abs_path}/data/clean,{sample}_GEX,Gene Expression' elif lib_type == 'ATAC': lib_csv['ATAC'] = f'{abs_path}/data/clean,{sample}_ATAC,Chromatin Accessibility' elif lib_type == 'ARC' and not is_feature_bc: lib_csv['ATAC'] = f'{abs_path}/data/clean,{sample}_ATAC,Chromatin Accessibility' lib_csv['GEX'] = f'{abs_path}/data/clean,{sample}_GEX,Gene Expression' elif lib_type == 'ARC' and is_feature_bc: lib_csv['GEX'] = f'{abs_path}/data/clean,{sample}_GEX,Gene Expression' # Save library dict to csv out_csv = '\n'.join(lib_csv.values()) with open(snakemake.output["library"], 'wt') as output_handle: output_handle.write("fastqs,sample,library_type\n") output_handle.write(out_csv) ######################################################################################################## # Create library dict for arc ######################################################################################################## # If the library is multiome and there is feature barcode data, the pipeline must be run 2 times # One for rna + larry and the other for rna+atac. Due to this, we need 2 different library csv files. if lib_type == 'ARC' and is_feature_bc: lib_csv2 = dict() lib_csv2['ATAC'] = f'{abs_path}/data/clean,{sample}_ATAC,Chromatin Accessibility' lib_csv2['GEX'] = f'{abs_path}/data/clean,{sample}_GEX,Gene Expression' # Save library (arc) dict to csv out_csv2 = '\n'.join(lib_csv2.values()) with open(snakemake.output["library_arc"], 'wt') as output_handle: output_handle.write("fastqs,sample,library_type\n") output_handle.write(out_csv2) else: lib_csv2 = "If library type is not ARC, ignore this file." with open(snakemake.output["library_arc"], 'wt') as output_handle: output_handle.write(lib_csv2) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 | import gzip import re from Bio.SeqIO.QualityIO import FastqGeneralIterator #------------------------------------------------------------------------------------------------------------------------------------ # Declare input/output files #------------------------------------------------------------------------------------------------------------------------------------ input_fb = snakemake.input["fb"] input_cb = snakemake.input["cb"] output_fb = snakemake.output["filt_fb"] output_cb = snakemake.output["filt_cb"] barcode_patterns = snakemake.params["barcode_dict"] #------------------------------------------------------------------------------------------------------------------------------------ # Declare functions #------------------------------------------------------------------------------------------------------------------------------------ def extract_barcodes(input_file, barcode_patterns): """ This function will take a fastq file from larry barcode enrichment and a dictionary in which the keys are the barcode patterns and the corresponding larry library name/color (i.e: {...TG...AG... : GFP}). It will parse the fastq file, look for reads that contain the barcode and extract the barcode sequence from the read. All the fastq records containing barcodes will be stored in a dictionary, as a list. The keys of the dictionary are the larry colors, and the values are a list of the fastq records containing each specific barcode color. """ patterns = [re.compile(r'{}'.format(barcode)) for barcode in barcode_patterns.keys()] patterns_dict = {key: value for key, value in zip(patterns, barcode_patterns.values())} barcode_reads = {key: [] for key in barcode_patterns.values()} with gzip.open(input_file, 'rt') as input_handle: # Iterate over each record in the fastq file for title, seq, qual in FastqGeneralIterator(input_handle): # Look for barcode patterns for pattern in patterns: match = pattern.search(seq) if match: # Update record to contain just matched sequence seq = seq[match.start() : match.end()] qual = qual[match.start() : match.end()] # Save updated records to dictionary. Every key is a different barcode color, the content are all the records # corresponding to that color. barcode_reads[patterns_dict[pattern]] += [title, seq, qual], break return(barcode_reads) def extracted_bc_to_fq(output_fastqs, barcode_reads): """ Take the dictionary of larry colors and fastq records containing barcodes and save it to multiple fastq files, one for each larry color. """ # Order of output files is the same as the keys of the dictionary since both of them are taken from the same config variable for i, key in enumerate(barcode_reads.keys()): with gzip.open(output_fastqs[i], 'wt') as output_handle: for title, seq, qual in barcode_reads[key]: _ = output_handle.write(f"@{title}\n{seq}\n+\n{qual}\n") def subset_cb_fastq(input_fastq, output_fastq, barcode_reads): """ Subset the fastq file that contains the cellular barcodes (instead of larry barcodes) to contain the same read ids of the larry barcode fastq, which has been filtered and now does not contain all the initial fastq entries. Also, since the larry bc fq is split in different colors (if there is sequential barcoding), the order of fastq reads will be different. For this, the cellular barcode fastq must be filtered and then sorted to match the larry fastq. """ read_primer = re.compile(r"\s.*$") filtered_ids = [read_primer.sub('', fastq_record[0]) for larry_color in barcode_reads.values() for fastq_record in larry_color] filtered_ids_set = set(filtered_ids) fastq_records = {} with gzip.open(input_fastq, 'rt') as input_handle, gzip.open(output_fastq, 'wt') as output_handle: # Parse fastq and store records in dictionary using read_id as key for title, seq, qual in FastqGeneralIterator(input_handle): title_no_read_id = read_primer.sub('', title) if title_no_read_id in filtered_ids_set: fastq_records[title_no_read_id] = [title, seq, qual] # Sort the keys (read_id) of the dict to match the order of read_ids from the larry fastq index_map = {v: i for i, v in enumerate(filtered_ids)} fastq_records = dict( sorted(fastq_records.items(), key=lambda pair: index_map[pair[0]]) ) # Save to fastq for title, seq, qual in fastq_records.values(): _ = output_handle.write(f"@{title}\n{seq}\n+\n{qual}\n") #------------------------------------------------------------------------------------------------------------------------------------ # Main #------------------------------------------------------------------------------------------------------------------------------------ # Filter reads containing barcodes from feature barcoding read and write to new fastq file barcode_reads = extract_barcodes(input_fb, barcode_patterns) extracted_bc_to_fq(output_fb, barcode_reads) # Subset the other fastq (the one containing cellular barcodes) based on the read ids filtered before subset_cb_fastq(input_cb, output_cb, barcode_reads) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | def generate_cellhash_ref_csv(cell_hashing_dict): """Generate cmo-set csv file indicating the totalseq names and barcode sequences + positions""" cmo_csv = "id,name,read,pattern,sequence,feature_type\n" for key, value in cell_hashing_dict.items(): cmo_csv += f"{key},{key},{value[0]},{value[1]},{value[2]},Antibody Capture\n" return cmo_csv cell_hashing_Abs = snakemake.params["cellhash_ab_names"] cell_hashing_dict = snakemake.params["cell_hashing"] cell_hashing_dict = dict((Ab, cell_hashing_dict[Ab]) for Ab in cell_hashing_Abs) # Use just cellhash Abs corresponding to this sample cellhash_csv = generate_cellhash_ref_csv(cell_hashing_dict) with open(snakemake.output[0], 'wt') as output_handle: output_handle.write(cellhash_csv) |
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 | log <- file(snakemake@log[[1]], open = "wt") sink(log) sink(log, type = "message") ### Libraries library(Seurat) library(tidyverse) library(DropletUtils) source("workflow/scripts/R/functions.R") #----------------------------------------------------------------------------------------------------------------------- # Functions #----------------------------------------------------------------------------------------------------------------------- get_larry_molinfo <- function(molinfo) { larry_bc_pos <- which(molinfo$feature.type == "Custom") larry_molinfo <- molinfo$data %>% data.frame() %>% dplyr::filter(gene %in% larry_bc_pos) %>% mutate(larry_bc = molinfo$genes[gene]) %>% # Create col with larry bc name instead of idx from molinfo$genes mutate(larry_color = str_replace(larry_bc, "_.*$", "")) %>% # Add color information to split barcodes dplyr::select(-gene) return(larry_molinfo) } filter_umi_reads <- function(df_molinfo, read_threshold) { df_molinfo <- df_molinfo %>% dplyr::filter(reads >= read_threshold) return(df_molinfo) } filter_bc_umis <- function(df_molinfo, umi_threshold) { df_molinfo <- df_molinfo %>% dplyr::group_by(cell, larry_bc, larry_color) %>% dplyr::count() %>% dplyr::rename(n_umi = n) %>% dplyr::filter(n_umi >= umi_threshold) %>% dplyr::ungroup() return(df_molinfo) } #----------------------------------------------------------------------------------------------------------------------- # Data laoding #----------------------------------------------------------------------------------------------------------------------- seurat_rds <- snakemake@input[[1]] molec_info_h5 <- snakemake@params[["molecule_info"]] output_rds <- snakemake@output[[1]] umi_cutoff <- snakemake@params[["umi_cutoff"]] read_cutoff <- snakemake@params[["reads_cutoff"]] seurat <- readRDS(seurat_rds) molinfo <- read10xMolInfo(molec_info_h5, get.cell = TRUE, get.umi = TRUE, get.gem = FALSE, get.gene = TRUE, get.reads = TRUE, get.library = FALSE ) # Modify cell names form molinfo file to match those from seurat (basically add whatever is) # before and after the cellular barcode (which consists in random 16 nucleotides, by now) cell_prefix <- Cells(seurat) %>% str_replace("[AGTC]{16}-.*", "") cell_suffix <- Cells(seurat) %>% str_replace(".*_[AGTC]{16}", "") molinfo$data <- molinfo$data %>% data.frame() %>% dplyr::mutate(cell = paste0(cell_prefix, cell, cell_suffix)) %>% filter(cell %in% Cells(seurat)) %>% DataFrame() molinfo_larry <- get_larry_molinfo(molinfo) #----------------------------------------------------------------------------------------------------------------------- # Barcode calling #----------------------------------------------------------------------------------------------------------------------- larry_filt <- molinfo_larry %>% filter_umi_reads(read_cutoff) %>% filter_bc_umis(umi_cutoff) larry_bc_calls <- larry_filt %>% dplyr::group_by(cell, larry_color) %>% dplyr::filter(n_umi == max(n_umi)) %>% dplyr::filter(n() == 1) %>% dplyr::ungroup() %>% dplyr::select(cell, larry_bc) %>% dplyr::group_by(cell) %>% dplyr::arrange(larry_bc) %>% dplyr::summarise(larry_bc = paste(larry_bc, collapse = "__")) %>% tibble::deframe() seurat$larry <- larry_bc_calls #----------------------------------------------------------------------------------------------------------------------- # Filter larry matrix and save to new rds #----------------------------------------------------------------------------------------------------------------------- # Add barcode matrix to seurat object. Since not all cells are present in the barcode matrix, we will have to manually # add the missing cells and set 0 to all barcode UMIs. # The matrix added is the matrix filtered by reads, not by UMIs. In this way it is always possible to go back to the matrix # without read filtering or read filtered (larry_filt) in order to call the barcodes again later on in a different way # and always having the original data. larry_filt_reads <- molinfo_larry %>% filter_umi_reads(read_cutoff) %>% filter_bc_umis(0) larry_filt_mat <- larry_filt_reads %>% mutate(cell = factor(cell, levels = Cells(seurat))) %>% dplyr::select(cell, larry_bc, n_umi) %>% pivot_wider(values_from = n_umi, names_from = cell, values_fill = 0) %>% column_to_rownames("larry_bc") %>% as.matrix() # Create empty matrix for cells without larry barcodes barcode_names <- unique(larry_filt_reads$larry_bc) cell_names_noLarry <- Cells(seurat)[!Cells(seurat) %in% larry_filt_reads$cell] mtx_noLarry_cells <- matrix(0, length(barcode_names), length(cell_names_noLarry), dimnames = list( barcode_names, cell_names_noLarry ) ) # Merge both matrices final_larry_mtx <- cbind(larry_filt_mat, mtx_noLarry_cells) %>% as("dgCMatrix") # Add filtered matrix to seurat object seurat[["Larry_filt"]] <- CreateAssayObject(counts = final_larry_mtx) saveRDS(seurat, file = output_rds) |
20 21 22 23 24 25 26 27 28 | knitr::opts_chunk$set( echo = TRUE, error = FALSE, fig.align = "center", message = FALSE, warning = FALSE, fig.width = 10, fig.height = 8 ) |
32 33 34 | log <- file(snakemake@log[[1]], open = "wt") sink(log) sink(log, type = "message") |
38 39 40 41 | library(Seurat) library(tidyverse) library(DropletUtils) source("workflow/scripts/R/functions.R") |
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 | get_larry_molinfo <- function(molinfo) { larry_bc_pos <- which(molinfo$feature.type == "Custom") larry_molinfo <- molinfo$data %>% data.frame() %>% dplyr::filter(gene %in% larry_bc_pos) %>% mutate(larry_bc = molinfo$genes[gene]) %>% # Create col with larry bc name instead of idx from molinfo$genes mutate(larry_color = str_replace(larry_bc, "_.*$", "")) %>% # Add color information to split barcodes dplyr::select(-gene) return(larry_molinfo) } filter_umi_reads <- function(df_molinfo, read_threshold) { df_molinfo <- df_molinfo %>% dplyr::filter(reads >= read_threshold) return(df_molinfo) } filter_bc_umis <- function(df_molinfo, umi_threshold) { df_molinfo <- df_molinfo %>% dplyr::group_by(cell, larry_bc, larry_color) %>% dplyr::count() %>% dplyr::rename(n_umi = n) %>% dplyr::filter(n_umi >= umi_threshold) %>% dplyr::ungroup() return(df_molinfo) } efficiency_larry <- function(df_molinfo, umi_threshold, n_cells) { efficiency <- df_molinfo %>% filter_bc_umis(umi_threshold) %>% dplyr::group_by(larry_color) %>% dplyr::distinct(cell) %>% dplyr::count() %>% dplyr::mutate(efficiency = n/n_cells, umi_threshold = umi_threshold ) %>% dplyr::ungroup() return(efficiency) } plot_larry_efficiency <- function(molinfo_larry, read_threshold, n_cells, umi_thresholds) { larry_molinfo_read_filt <- molinfo_larry %>% filter_umi_reads(read_threshold) larry_eficiencies <- purrr::map_df(umi_thresholds, \(umi_threshold) efficiency_larry(larry_molinfo_read_filt, umi_threshold, n_cells) ) p <- larry_eficiencies %>% ggplot2::ggplot(aes( x = umi_threshold, y = efficiency)) + geom_line() + facet_wrap(~ larry_color) + theme_bw() + ggtitle(paste0(read_threshold, " read threshold")) return(p) } prop_integrations_larry <- function(df_molinfo, umi_threshold) { integrtions <- df_molinfo %>% filter_bc_umis(umi_threshold) %>% dplyr::group_by(larry_color) %>% dplyr::count(cell) %>% dplyr::summarise( p_cells_multiple_integrations = sum(n > 1)/n() ) %>% dplyr::mutate(umi_threshold = umi_threshold) %>% dplyr::ungroup() return(integrtions) } plot_larry_mult_int <- function(molinfo_larry, read_threshold, umi_thresholds) { larry_molinfo_read_filt <- molinfo_larry %>% filter_umi_reads(read_threshold) larry_eficiencies <- purrr::map_df(umi_thresholds, \(umi_threshold) prop_integrations_larry(larry_molinfo_read_filt, umi_threshold) ) p <- larry_eficiencies %>% ggplot2::ggplot(aes( x = umi_threshold, y = p_cells_multiple_integrations)) + geom_line() + facet_wrap(~ larry_color) + theme_bw() + ggtitle(paste0(read_threshold, " read threshold")) + scale_x_continuous(breaks = umi_thresholds) return(p) } |
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 | seurat_rds <- snakemake@input[[1]] molec_info_h5 <- snakemake@params[["molecule_info"]] seurat <- readRDS(seurat_rds) molinfo <- read10xMolInfo(molec_info_h5, get.cell = TRUE, get.umi = TRUE, get.gem = FALSE, get.gene = TRUE, get.reads = TRUE, get.library = FALSE ) # Modify cell names form molinfo file to match those from seurat (basically add whatever is) # before and after the cellular barcode (which consists in random 16 nucleotides, by now) cell_prefix <- Cells(seurat) %>% str_replace("[AGTC]{16}-.*", "") cell_suffix <- Cells(seurat) %>% str_replace(".*_[AGTC]{16}", "") molinfo$data <- molinfo$data %>% data.frame() %>% dplyr::mutate(cell = paste0(cell_prefix, cell, cell_suffix)) %>% filter(cell %in% Cells(seurat)) %>% DataFrame() molinfo_larry <- get_larry_molinfo(molinfo) |
194 195 196 197 198 199 200 | molinfo_larry %>% ggplot(aes(reads)) + geom_histogram(bins = 100) + scale_y_log10() + scale_x_log10() + theme_bw() + facet_wrap(~larry_color) |
208 209 210 211 212 213 214 215 216 217 218 219 | summary_larry_thresholds <- map(1:10, \(read_threshold) plot_larry_efficiency( molinfo_larry = molinfo_larry, read_threshold = read_threshold, n_cells = length(Cells(seurat)), umi_thresholds = 1:10 ) ) names(summary_larry_thresholds) <- paste0(1:10, " reads") in_tabs(summary_larry_thresholds, level = 1L) |
228 229 230 231 232 233 234 235 236 237 238 | summary_larry_integrations <- map(1:10, \(read_threshold) plot_larry_mult_int( molinfo_larry = molinfo_larry, read_threshold = read_threshold, umi_thresholds = 1:10 ) ) names(summary_larry_integrations) <- paste0(1:10, " reads") in_tabs(summary_larry_integrations, level = 1L) |
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 | log <- file(snakemake@log[[1]], open = "wt") sink(log) sink(log, type = "message") ### Libraries library(Seurat) library(Signac) library(tidyverse) library(SingleCellExperiment) library(scDblFinder) library(BiocParallel) library(DropletUtils) #----------------------------------------------------------------------------------------------------------------------- # Create seurat object #----------------------------------------------------------------------------------------------------------------------- create_seurat <- function(input_files, sample_name, cellhash_names, min_cells_gene = 1, is_larry = FALSE, is_cell_hashing = FALSE, UMI_cutoff = 0) { # Load files names(input_files) <- sample_name data <- Read10X(data.dir = input_files) # Create seurat objects if (is.list(data)) { seurat <- CreateSeuratObject(counts = data$`Gene Expression`, min.cells = min_cells_gene) if (is_cell_hashing) { seurat[["Cellhashing"]] <- CreateAssayObject(counts = data$`Antibody Capture`) } if (is_larry) { seurat[["Larry"]] <- CreateAssayObject(counts = data$`Custom`) } } else { seurat <- CreateSeuratObject(counts = data, min.cells = min_cells_gene) } # Fix sample names. cellhashing column is added to be consistent with the structure of seurat objects # coming from libraries in which cellhashing has been performed. # Also a subsample entry is created to be consistent with samples with cellhashing. seurat$sample <- sample_name seurat$subsample <- sample_name Idents(seurat) <- seurat$sample # Remove cells with less than UMI threshold seurat <- subset(seurat, subset = nCount_RNA >= UMI_cutoff) return(seurat) } create_seurat_arc <- function(input_files, input_fragments, input_larry = NULL, sample_name, min_cells_gene = 1, is_larry = FALSE, UMI_cutoff = 0) { # Load files names(input_files) <- sample_name arc <- Read10X(data.dir = input_files) if (is_larry) { names(input_larry) <- sample_name larry <- Read10X(data.dir = input_larry) common_cells <- intersect( colnames(larry$Custom), colnames(arc$`Gene Expression`) ) seurat <- CreateSeuratObject(counts = arc$`Gene Expression`[,common_cells], min.cells = min_cells_gene) seurat[["ATAC"]] <- CreateChromatinAssay(counts = arc$`Peaks`[,common_cells], fragments = input_fragments, sep = c(":", "-")) seurat[["Larry"]] <- CreateAssayObject(counts = larry$Custom[,common_cells]) } else { seurat <- CreateSeuratObject(counts = arc$`Gene Expression`, min.cells = min_cells_gene) seurat[["ATAC"]] <- CreateChromatinAssay(counts = arc$`Peaks`, fragments = input_fragments, sep = c(":", "-")) } # Fix sample names. cellhashing column is added to be consistent with the structure of seurat objects # coming from libraries in which cellhashing has been performed. # Also a subsample entry is created to be consistent with samples with cellhashing. seurat$sample <- sample_name seurat$subsample <- sample_name Idents(seurat) <- seurat$sample # Remove cells with less than UMI threshold seurat <- subset(seurat, subset = nCount_RNA >= UMI_cutoff) return(seurat) } #----------------------------------------------------------------------------------------------------------------------- # Remove cell doublets #----------------------------------------------------------------------------------------------------------------------- remove_doublets <- function(seurat, cores = 1) { sce <- NormalizeData(seurat) %>% as.SingleCellExperiment() sce <- scDblFinder(sce, samples = "sample", BPPARAM = MulticoreParam(cores)) dblt_info <- sce$scDblFinder.class names(dblt_info) <- rownames(sce@colData) seurat$scDblFinder.class <- dblt_info print("Total number of singlets and doublets") print(table(seurat$scDblFinder.class)) return(seurat) } #----------------------------------------------------------------------------------------------------------------------- # Cellhashing assignment functions #----------------------------------------------------------------------------------------------------------------------- cell_hashing_assignment <- function(seurat, cellhash_names, sample_name) { sce <- as.SingleCellExperiment(seurat) hash.stats <- hashedDrops( counts(altExp(sce, "Cellhashing")), constant.ambient=TRUE) cellhash_ab_names <- metadata(hash.stats)$ambient %>% names() cell_hash_assignment <- hash.stats %>% as.data.frame() %>% tibble::rownames_to_column("cell_id") %>% dplyr::mutate(subsample = cellhash_names[cellhash_ab_names[Best]]) %>% dplyr::mutate(subsample = ifelse(Confident, subsample, paste0("Unassigned_", sample_name))) %>% dplyr::select(cell_id, subsample) %>% tibble::deframe() %>% unlist() seurat$subsample <- cell_hash_assignment return(seurat) } cell_hashing_assignment_seurat <- function(seurat, cellhash_names, sample_name) { seurat <- NormalizeData(seurat, assay = "Cellhashing", normalization.method = "CLR") seurat <- HTODemux(seurat, assay = "Cellhashing", positive.quantile = 0.99) return(seurat) } summary_cellhashing <- function(seurat, cellhash_names) { # Plots based on seurat and dropletutils cell hashing assignment Idents(seurat) <- "Cellhashing_classification" p1 <- RidgePlot(seurat, assay = "Cellhashing", features = rownames(seurat[["Cellhashing"]]), ncol = 1) p2 <- VlnPlot(seurat, features = "nCount_RNA", pt.size = 0.1, log = TRUE) Idents(seurat) <- "subsample" p3 <- RidgePlot(seurat, assay = "Cellhashing", features = rownames(seurat[["Cellhashing"]]), ncol = 1) p4 <- VlnPlot(seurat, features = "nCount_RNA", pt.size = 0.1, log = TRUE) print(p1) print(p2) print(p3) print(p4) # scatter plot of all pairwise combinations of Abs used for cellhashing. # First with emprydrops annotation, then with seurat annotation ab_combs <- snakemake@params[["cellhash_names"]] %>% names() %>% combn(2) for (i in ncol(ab_combs)) { comb <- ab_combs[,i] p <- FeatureScatter(seurat, feature1 = comb[1], feature2 = comb[2], raster = TRUE) print(p) } Idents(seurat) <- "Cellhashing_classification" for (i in ncol(ab_combs)) { comb <- ab_combs[,i] p <- FeatureScatter(seurat, feature1 = comb[1], feature2 = comb[2], raster = TRUE) print(p) } } #----------------------------------------------------------------------------------------------------------------------- # Main & save output #----------------------------------------------------------------------------------------------------------------------- # Create seurat object & calculate doublets if (snakemake@params[["library_type"]] == "ARC") { seurat <- create_seurat_arc( input_files = snakemake@input[["arc"]], input_fragments = snakemake@input[["fragments"]], input_larry = snakemake@input[["counts"]], sample_name = snakemake@wildcards[["sample"]], min_cells_gene = snakemake@params[["min_cells_gene"]], is_larry = snakemake@params[["is_larry"]], UMI_cutoff = snakemake@params[["umi_cutoff"]] ) } else { seurat <- create_seurat( input_files = snakemake@input[["counts"]], sample_name = snakemake@wildcards[["sample"]], min_cells_gene = snakemake@params[["min_cells_gene"]], is_larry = snakemake@params[["is_larry"]], is_cell_hashing = snakemake@params[["is_cell_hashing"]], cellhash_names = snakemake@params[["cellhash_names"]], UMI_cutoff = snakemake@params[["umi_cutoff"]] ) } # Remove doublets seurat <- remove_doublets(seurat, cores = snakemake@threads[[1]]) # Add mitochondrial and ribosomal RNA metrics mito_pattern <- snakemake@params[["mito_pattern"]] ribo_pattern <- snakemake@params[["ribo_pattern"]] seurat[["percent.mt"]] <- PercentageFeatureSet(seurat, pattern = mito_pattern) seurat[["percent.ribo"]] <- PercentageFeatureSet(seurat, pattern = ribo_pattern) # Filter doublets and save object seurat_clean <- subset(seurat, subset = scDblFinder.class == "singlet") # If the library has been processed with cell hashing, assign cells to subsamples in seurat without doublets if (snakemake@params[["is_cell_hashing"]]) { seurat_clean <- cell_hashing_assignment( seurat = seurat_clean, cellhash_names = snakemake@params[["cellhash_names"]], sample_name = snakemake@wildcards[["sample"]] ) seurat_clean <- cell_hashing_assignment_seurat( seurat = seurat_clean, cellhash_names = snakemake@params[["cellhash_names"]], sample_name = snakemake@wildcards[["sample"]] ) pdf(paste0("results/02_createSeurat/", snakemake@wildcards[["sample"]], "_cellhash.pdf"), width = 7.5, height = 5) summary_cellhashing(seurat_clean, snakemake@params[["cellhash_names"]]) dev.off() } # Save to rds saveRDS(seurat_clean, snakemake@output[["no_doublets"]]) saveRDS(seurat, snakemake@output[["raw"]]) |
R
tidyverse
Seurat
SingleCellExperiment
Signac
DropletUtils
scDblFinder
From
line
2
of
R/create_seurat.R
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | log <- file(snakemake@log[[1]], open = "wt") sink(log) sink(log, type = "message") library(tidyverse) #------------------------------------------------------------------------------------------ # Load feature ref from every sample and merge it into 1 #------------------------------------------------------------------------------------------ feature_ref <- snakemake@input %>% purrr::map(read_csv) %>% bind_rows() %>% mutate( id = str_replace(id, "_.*$", ""), name = id ) %>% distinct() %>% group_by(id) %>% mutate( id = paste0(id, "_", 1:n()), name = id ) %>% select(id, name, read, pattern, sequence, feature_type) write_csv(feature_ref, snakemake@output[[1]]) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | log <- file(snakemake@log[[1]], open = "wt") sink(log) sink(log, type = "message") library(tidyverse) #------------------------------------------------------------------------------------------ # Load feature ref from larry/cellhashing #------------------------------------------------------------------------------------------ if (length(snakemake@input[[1]]) == 1) { # If just cellhash or larry are set, return the same csv feature_ref <- read_csv(snakemake@input[[1]]) write_csv(feature_ref, snakemake@output[[1]]) } else { # Otherwise combine both larry and cellhash references into 1 larry_ref <- read_csv(snakemake@input[["larry_ref"]]) cellhash_ref <- read_csv(snakemake@input[["cell_hash_ref"]]) combined_ref <- bind_rows(larry_ref, cellhash_ref) write_csv(combined_ref, snakemake@output[[1]]) } |
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | log <- file(snakemake@log[[1]], open = "wt") sink(log) sink(log, type = "message") ### Libraries library(Seurat) library(tidyverse) ### Read and merge seurat objects if there are multiple samples if (length(snakemake@input) == 1) { seurat <- readRDS(snakemake@input[[1]]) } else { seurat_objects <- map(snakemake@input, \(x) readRDS(x)) seurat <- merge(seurat_objects[[1]], seurat_objects[2:length(seurat_objects)] %>% unlist()) } saveRDS(seurat, snakemake@output[["seurat"]]) |
20 21 22 23 24 25 26 27 28 | knitr::opts_chunk$set( echo = TRUE, error = FALSE, fig.align = "center", message = FALSE, warning = FALSE, fig.width = 10, fig.height = 8 ) |
32 33 34 | log <- file(snakemake@log[[1]], open = "wt") sink(log) sink(log, type = "message") |
38 39 40 41 | library(Seurat) library(tidyverse) library(viridis) source("workflow/scripts/R/functions.R") |
45 46 47 48 49 | input_file <- snakemake@input[[1]] marker_genes <- snakemake@params[["marker_genes"]] species <- snakemake@params[["species"]] cluster_degs <- snakemake@params[["cluster_degs"]] sample_degs <- snakemake@params[["sample_degs"]] |
53 | seurat <- readRDS(input_file) |
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 | # CC genes data(cc.genes.updated.2019) if (species == "mouse") { s.genes <- str_to_title(cc.genes.updated.2019$s.genes) g2m.genes <- str_to_title(cc.genes.updated.2019$g2m.genes) } else { s.genes <- cc.genes.updated.2019$s.genes g2m.genes <- cc.genes.updated.2019$g2m.genes } # Pipeline params n_pcs <- 25 k <- 20 # Seurat pipeline seurat <- seurat %>% NormalizeData() %>% FindVariableFeatures() %>% ScaleData() %>% RunPCA(npcs = n_pcs) %>% FindNeighbors(dims = 1:n_pcs, k.param = k) %>% FindClusters() %>% RunUMAP(dims = 1:n_pcs, n.neighbors = k, min.dist = 0.3) %>% CellCycleScoring(s.features = s.genes, g2m.features = g2m.genes, set.ident = TRUE) Idents(seurat) <- seurat$seurat_clusters |
90 | VlnPlot(seurat, features = c("percent.mt"), pt.size = 0, group.by = "sample") + theme(legend.position = "none") |
96 | VlnPlot(seurat, features = c("percent.ribo"), pt.size = 0, group.by = "sample") + theme(legend.position = "none") |
105 | VlnPlot(seurat, features = c("percent.mt"), pt.size = 0, group.by = "seurat_clusters") + theme(legend.position = "none") |
111 | VlnPlot(seurat, features = c("percent.ribo"), pt.size = 0, group.by = "seurat_clusters") + theme(legend.position = "none") |
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 | seurat_sample_plt <- DimPlot(seurat, group.by = "sample", raster=FALSE) seurat_cluster_plt <- DimPlot(seurat, group.by = "seurat_clusters", raster=FALSE) seurat_cc_plt <- DimPlot(seurat, group.by = "Phase", raster=FALSE) seurat_RNA_plt <- FeaturePlot(seurat, features = "nFeature_RNA", max.cutoff = "q99", raster=FALSE) + scale_color_viridis() seurat_Count_plt <- FeaturePlot(seurat, features = "nCount_RNA", max.cutoff = "q99", raster=FALSE) + scale_color_viridis() seurat_mt_plt <- FeaturePlot(seurat, features = "percent.mt", max.cutoff = "q99", raster=FALSE) + scale_color_viridis() seurat_ribo_plt <- FeaturePlot(seurat, features = "percent.ribo", max.cutoff = "q99", raster=FALSE) + scale_color_viridis() l <- list( UMAP_sample = seurat_sample_plt, UMAP_cluster = seurat_cluster_plt, UMAP_CellCycle = seurat_cc_plt, UMAP_nGenes = seurat_RNA_plt, UMAP_nCounts = seurat_Count_plt, UMAP_mt = seurat_mt_plt, UMAP_ribo = seurat_ribo_plt ) in_tabs(l, level = 1L) |
142 143 144 145 146 147 148 149 | detected_genes <- GetAssayData(object = seurat, slot = "data") %>% rownames() plots <- map( marker_genes, \(gene) plot_detected_genes(seurat, detected_genes, gene) ) in_tabs(plots, labels = marker_genes, level = 1L) |
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 | cluster_markers <- FindAllMarkers(seurat, only.pos = T, logfc.threshold = 0.25) write_tsv(cluster_markers, cluster_degs) top_9_markers <- cluster_markers %>% filter(p_val_adj < 0.05) %>% group_by(cluster) %>% slice(1:9) %>% split(f = as.factor(paste0("Cluster ", .$cluster))) %>% map(pull, gene) plots <- map( top_9_markers, \(genes) FeaturePlot(seurat, features = genes, ncol = 3, raster=FALSE) & scale_color_viridis() ) in_tabs(plots, level = 1L) |
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 | Idents(seurat) <- seurat$sample if (length(unique(seurat$sample)) == 1) { print("Only 1 sample present in the seurat object, markers by sample can't be calculated.") } else { sample_markers <- FindAllMarkers(seurat, only.pos = T, logfc.threshold = 0.25) write_tsv(sample_markers, sample_degs) Idents(seurat) <- seurat$seurat_clusters top_9_markers <- sample_markers %>% filter(p_val_adj < 0.05) %>% group_by(cluster) %>% slice(1:9) %>% split(f = as.factor(.$cluster)) %>% map(pull, gene) plots <- map( top_9_markers, \(genes) FeaturePlot(seurat, features = genes, ncol = 3, raster=FALSE) & scale_color_viridis() ) in_tabs(plots, level = 1L) } |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Created: 1yr ago
Updated: 1yr ago
Maitainers:
public
URL:
https://github.com/dfernandezperez/scRNAseq-snakemake
Name:
scrnaseq-snakemake
Version:
v0.0.1
Accessed: 1
Downloaded:
0
Copyright:
Public Domain
License:
None
Keywords:
- Future updates
Related Workflows

ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...

Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...

snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...

ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics

RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...

This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...