This documentation - with additional info - will be hosted here at some point
Clone the repository
#clone
git clone --recursive https://github.com/davidebolo1993/smk_sc_lr
cd smk_sc_lr
Create a dedicated conda environment
Setting up
config/config.yaml and config/samples.tsv manually, then:
#print help
./workflow/scripts/prepare.sh
Running individual rules on slurm cluster
Code Snippets
19 20 21 22 23 24 25 26 27 28 29 | shell: ''' cd results/ill/cellranger_count \ && rm -rf {params.sample_id} \ && cellranger count \ --id {params.sample_id} \ --transcriptome {input.ref} \ --fastqs {params.fq_folder} \ --localcores {threads} \ --localmem {resources.mem_mb} ''' |
20 21 22 23 24 25 26 27 28 29 30 31 | shell: ''' cd results/ill/cellranger_vdj \ && rm -rf {params.sample_id} \ && cellranger vdj \ --id {params.sample_id} \ --reference {input.ref} \ --fastqs {params.fq_folder} \ --localcores {threads} \ --localmem {resources.mem_mb} \ --sample {params.sample_id_2} ''' |
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | shell: ''' nextflow run resources/wf-single-cell \ -w {params.out_folder}/workspace \ -profile local \ -c resources/single-cell-resources/wf-single-cell.config \ --fastq {params.fq_folder} \ --single_cell_sample_sheet {params.sample_sheet} \ --ref_genome_dir {input.ref} \ --out_dir {params.out_folder} \ --matrix_min_genes 1 \ --matrix_min_cells 1 \ --matrix_max_mito 100 \ --max_threads {threads} \ --umi_cluster_max_threads {threads} \ --resources_mm2_max_threads {threads} \ --merge_bam ''' |
59 60 61 62 | shell: ''' Rscript workflow/scripts/tsvtomtx.r -c {input.tsv} -g {input.gtf} -b -o {params.out_folder} ''' |
76 77 78 79 | shell: ''' Rscript workflow/scripts/tsvtomtx.r -c {input.tsv} -g {input.gtf} -t -b -o {params.out_folder} ''' |
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 | library(Matrix) library(optparse) library(UniProt.ws) library(OmnipathR) sessionInfo() writeMMgz <- function(x, file) { mtype <- "real" if (is(x, "ngCMatrix")) { mtype <- "integer" } zz<-gzfile(file,"w") writeLines( c( sprintf("%%%%MatrixMarket matrix coordinate %s general", mtype), sprintf("%s %s %s", x@Dim[1], x@Dim[2], length(x@x)) ), zz ) close(zz) data.table::fwrite( x = summary(x), file = file, append = TRUE, sep = " ", row.names = FALSE, col.names = FALSE ) } writeGzFile <- function(x,file,has_colnames){ data.table::fwrite( x = x, file = file, sep = "\t", row.names = FALSE, col.names = has_colnames ) } options(warn = -1) option_list = list( make_option(c('-c', '--counts'), action='store', type='character', help='gene/transcript counts .tsv'), make_option(c('-g', '--gtf'), action='store', type='character', help='gene model in .gtf format'), make_option(c('-o', '--output'), action='store', type='character', help='output directory'), make_option(c('-t', '--transcript'), action='store_true', default=FALSE, help='use transcript matrix instead of gene matrix'), make_option(c('-b', '--biotype'), action='store_true', default=FALSE, help='additionally store a features-like file with biotypes') ) opt = parse_args(OptionParser(option_list=option_list)) print(opt) # create directory dir.create(file.path(opt$output), showWarning=F) # generate single-cell RNA seq data now<-Sys.time() message('[',now,'][Message] reading gene/transcript x cell .tsv') gbm<-as.matrix(data.table::fread(file.path(opt$counts)),header=T,rownames=1) now<-Sys.time() message('[',now,'][Message] done') message('[',now,'][Message] converting to sparse matrix') # save sparse matrix sparse.gbm <- Matrix(gbm,sparse = T) now<-Sys.time() message('[',now,'][Message] done') message('[',now,'][Message] storing to file') ## Market Exchange Format (MEX) format writeMMgz(x=sparse.gbm, file=file.path(opt$output,"matrix.mtx.gz")) now<-Sys.time() message('[',now,'][Message] done') message('[',now,'][Message] loading gene model') #load gene model - gtf gtf<-rtracklayer::import(file.path(opt$gtf)) gtf_df<-data.table::as.data.table(gtf) now<-Sys.time() message('[',now,'][Message] done') #maybe there are better ways - but this is pretty fast if (!opt$transcript) { #we have name -> we get id message('[',now,'][Message] translating gene names to ensembl gene ids') vals<-do.call(c,lapply(rownames(gbm),function(x) {unique(gtf_df[gene_name == x]$gene_id)[1]})) now<-Sys.time() message('[',now,'][Message] done') message('[',now,'][Message] storing to file') writeGzFile(x = data.frame(V1=rownames(gbm),V2=vals, V3="Gene Expression"), file =file.path(opt$output,"features.tsv.gz"),has_colnames=FALSE) if (opt$biotype) { now<-Sys.time() message('[',now,'][Message] extracting biotypes') bios<-do.call(c,lapply(rownames(gbm),function(x) {unique(gtf_df[gene_name == x]$gene_type)[1]})) now<-Sys.time() message('[',now,'][Message] done') message('[',now,'][Message] storing to file') gns_df<-data.frame(V1=rownames(gbm),V2=vals, V3=bios) colnames(gns_df)<-c("gene_name", "gene_id", "gene_type") writeGzFile(x = gns_df, file =file.path(opt$output,"biotypes.tsv.gz"),has_colnames=TRUE) } } else { #we have id-> we get name message('[',now,'][Message] translating transcript ids to ensembl transcript names') vals<-do.call(c,lapply(rownames(gbm),function(x) {unique(gtf_df[transcript_id == x]$transcript_name)[1]})) now<-Sys.time() message('[',now,'][Message] done') message('[',now,'][Message] storing to file') writeGzFile(x = data.frame(V1=vals,V2=rownames(gbm), V3="Gene Expression"), file =file.path(opt$output,"features.tsv.gz"),has_colnames=FALSE) if (opt$biotype) { now<-Sys.time() message('[',now,'][Message] extracting biotypes') bios<-do.call(c,lapply(rownames(gbm),function(x) {unique(gtf_df[transcript_id == x]$transcript_type)[1]})) now<-Sys.time() message('[',now,'][Message] done') trns_df<-data.frame(V1=vals,V2=rownames(gbm), V3=bios) message('[',now,'][Message] retrieving uniprot ids') entrez_df<-as.data.frame(uniprot_id_mapping_table(trns_df$V2, from="enst", to="uniprot", chunk_size = NULL)) trns_df$V4 <- entrez_df$To[match(trns_df$V2, entrez_df$From)] now<-Sys.time() message('[',now,'][Message] done') message('[',now,'][Message] querying uniprot db for features') #query routine up <- UniProt.ws(taxId=9606) kt<-"UniProtKB" columns<-c("cc_subcellular_location","ft_transmem","xref_ensembl") res<-select(up,trns_df$V4,columns,kt) res_df<-as.data.frame(res) now<-Sys.time() message('[',now,'][Message] done') message('[',now,'][Message] matching informations and storing to file') #subcellular location trns_df$V5<-res_df$Subcellular.location..CC.[match(trns_df$V4, res_df$From)] #transmembrane trns_df$V6<-res_df$Transmembrane[match(trns_df$V4, res_df$From)] #ensembl_ids trns_df$V7<-res_df$Ensembl[match(trns_df$V4, res_df$From)] #to None to facilitate downstream analysis in python trns_df[is.na(trns_df)] <- "None" colnames(trns_df)<-c("transcript_name", "transcript_id", "transcript_type", "protein_id", "cc_subcellular_location", "ft_transmem", "xref_ensembl") #write writeGzFile(x = trns_df, file =file.path(opt$output,"biotypes.tsv.gz"), has_colnames=TRUE) } } now<-Sys.time() message('[',now,'][Message] done') message('[',now,'][Message] storing cell barcodes to file') #barcodes writeGzFile(x = data.frame(V1=paste0(colnames(gbm), "-1")), file=file.path(opt$output,"barcodes.tsv.gz"), has_colnames=FALSE) now<-Sys.time() message('[',now,'][Message] done') |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Created: 1yr ago
Updated: 1yr ago
Maitainers:
public
URL:
https://github.com/davidebolo1993/smk_sc_lr
Name:
smk_sc_lr
Version:
1
Accessed: 73
Downloaded:
0
Copyright:
Public Domain
License:
GNU General Public License v3.0
Keywords:
- Future updates
Related Workflows

ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...

Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...

snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...

ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics

RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...

This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...