Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories output, operation
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
snakemake_PE_RNAseq
This pepeline is inspired by crazyhottommy . test generate workflow plot
snakemake --dag 2> /dev/null | dot -T png > workflow.png
the flow is as following
test2
run
## dry run first
snakemake -np
if no errors, preceed below.
snakemake -j -np 99 --cluster '/Snakefile-sbatch.py'
Code Snippets
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | library(ballgown) library(magrittr) args <- commandArgs(trailingOnly = TRUE) sampleids = args[1:length(args)-1] output = args[length(args)] print(sampleids) ## generate the expression table for each sample bg <- ballgown(samples = sampleids , meas='FPKM') print('process sample data') print(sampleNames(bg)) gene_expression = ballgown::gexpr(bg) gene_table = tibble::as.tibble(gene_expression) gene_table$geneid = rownames(gene_expression) geneID = tibble::tibble(genename = ballgown::geneNames(bg) , geneid =ballgown::geneIDs(bg) ) %>% dplyr::filter(! genename =='.' ) %>% dplyr::distinct() gene_table <- dplyr::inner_join(gene_table ,geneID ) readr::write_csv(gene_table, path = output) |
56 57 58 59 60 61 | shell: """ cutadapt -e 0.12 -a CTGTCTCTTATACACATCT -A CTGTCTCTTATACACATCT -j 6 -m 30 \ -o {output[0]} -p {output[1]} \ {input.r1} {input.r2} > {log} """ |
70 71 72 73 74 | shell: """ module load fastqc fastqc -o 02_fqc -f fastq --noextract {input} 2> {log} """ |
87 88 89 90 91 92 93 94 95 96 | shell: """ {hisat} -p {threads} \ --dta \ -x {STARINDEX} \ -1 {input[0]} \ -2 {input[1]} \ -S {output} \ &> {log} """ |
111 112 113 114 115 | shell: """ module load samtools samtools sort -@ {threads} -T {output}.tmp -o {output} {input} 2> {log} """ |
124 125 126 127 128 | shell: """ module load samtools samtools index {input} 2> {log} """ |
139 140 141 142 143 | shell: """ # -p for paried-end, counting fragments rather reads {stringtie} -e -B -p {threads} -G {gtf} -o {output[0]} {input} """ |
155 156 157 158 159 | shell: """ # no window smoothing is done, for paired-end, bamCoverage will extend the length to the fragement length of the paired reads bamCoverage -b {input[0]} --binSize 100 --effectiveGenomeSize 2864785220 --skipNonCoveredRegions --normalizeUsing RPKM -p {threads} -o {output[0]} 2> {log} """ |
175 176 177 178 | shell: """ multiqc 02_fqc 00_log -o 07_multiQC -d -f -v -n multiQC_log 2> {log} """ |
184 185 186 187 | shell: """ Rscript ballgown.R {input} {output} """ |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Created: 1yr ago
Updated: 1yr ago
Maitainers:
public
URL:
https://github.com/yuxuth/snake_hisat_cutadapt
Name:
snake_hisat_cutadapt
Version:
1
Downloaded:
0
Copyright:
Public Domain
License:
None
Keywords:
- Future updates
Related Workflows

ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...

Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...

snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...

ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics

RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...

This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...