Snakemake workflow for metagenomic analysis of rumen samples from sheep
Snakemake workflow for metagenomic analysis of rumen samples from sheep
Code Snippets
58 59 | shell: 'cat {input.read1} {input.read2} > {output.mergedReads}' |
74 75 76 77 78 79 | shell: 'fastqc ' '-o results/fastqc/ ' '-q ' '-t {threads} ' '{input.fastq}' |
90 91 92 93 94 95 96 | shell: 'multiqc ' '-n results/ReadsMultiQCReportRawData ' '-s ' '-f ' '--interactive ' '{input.fastqc}' |
123 124 125 126 127 128 129 130 131 132 133 134 | shell: 'kneaddata ' '--unpaired {input.fastq} ' '-t {threads} ' '--log-level INFO ' '--log {log} ' '--trimmomatic /home/kima/conda-envs/biobakery/share/trimmomatic-0.39-2 ' '--sequencer-source TruSeq3 ' # to identify correct adapter sequences '-db /bifo/scratch//2022-AK-MBIE-Rumen-MG/ref/ARS_UI_Ramb_v2 ' '-db /bifo/scratch//2022-AK-MBIE-Rumen-MG/ref/SILVA_128_LSUParc_SSUParc_ribosomal_RNA ' '-o results/kneaddata && ' 'seqkit stats -j 12 -a results/kneaddata/{wildcards.samples}*.fastq > {output.readStats}' |
147 148 149 150 151 152 | shell: 'fastqc ' '-o results/fastqcKDR/ ' '-q ' '-t {threads} ' '{input.fastqc}' |
162 163 164 165 166 167 168 | shell: 'multiqc ' '-n results/ReadsMultiQCReportKneadData ' '-s ' '-f ' '--interactive ' '{input.fastqc}' |
187 188 189 190 191 192 193 194 | shell: 'kraken2 ' '--use-names ' '--db /dataset/2022-BJP-GTDB/scratch/2022-BJP-GTDB/kraken/GTDB ' '-t {threads} ' '--report {output.k2ReportGTDB} ' '--report-minimizer-data ' '{input.KDRs} > {output.k2OutputGTDB}' |
209 210 211 212 213 214 215 216 217 218 | shell: 'bracken ' '-d /dataset/2022-BJP-GTDB/scratch/2022-BJP-GTDB/kraken/GTDB ' '-i {input.k2ReportGTDB} ' '-o {output.bOutput} ' '-w {output.bReport} ' '-r 240 ' # average read length '-l S ' # SPECIES '-t 10 ' # remove low abundance species (noise) '&> {log} ' |
233 234 235 236 237 238 239 240 241 242 | shell: 'bracken ' '-d /dataset/2022-BJP-GTDB/scratch/2022-BJP-GTDB/kraken/GTDB ' '-i {input.k2ReportGTDB} ' '-o {output.bOutput} ' '-w {output.bReport} ' '-r 240 ' # average read length '-l G ' # GENUS '-t 10 ' # remove low abundance species (noise) '&> {log} ' |
254 255 256 257 | shell: 'combine_bracken_outputs.py ' '--files /bifo/scratch/2022-AK-MBIE-Rumen-MG/Snakemake-Metagenomics/results/brackenSpecies/*.bracken ' '-o results/countMatrices/bracken_species.report' |
268 269 270 271 | shell: 'combine_bracken_outputs.py ' '--files /bifo/scratch/2022-AK-MBIE-Rumen-MG/Snakemake-Metagenomics/results/brackenGenus/*.bracken ' '-o results/countMatrices/bracken_genus.report' |
291 292 293 294 295 296 297 298 299 300 301 302 | shell: 'humann3 ' '--memory-use minimum ' '--threads {threads} ' '--bypass-nucleotide-search ' '--search-mode uniref50 ' '--protein-database /bifo/scratch/2022-AK-MBIE-Rumen-MG/ref/humann3/unirefECFilt ' '--input-format fastq ' '--output results/humann3protein ' '--input {input.KDRs} ' '--output-basename {wildcards.samples} ' '--o-log {log}' |
312 313 314 315 316 | shell: 'humann_join_tables ' '-i /bifo/scratch/2022-AK-MBIE-Rumen-MG/Snakemake-Metagenomics/results/humann3Uniref50EC ' '--file_name genefamilies.tsv ' '-o results/countMatrices/humann3_gene_families.tsv' |
326 327 328 329 330 | shell: 'humann_join_tables ' '-i /bifo/scratch/2022-AK-MBIE-Rumen-MG/Snakemake-Metagenomics/results/humann3Uniref50EC ' '--file_name pathabundance.tsv ' '-o results/countMatrices/humann3_path_abundance.tsv' |
340 341 342 343 344 | shell: 'humann_regroup_table ' '-i {input} ' '-c /bifo/scratch/2022-AK-MBIE-Rumen-MG/ref/humann3/utility_mapping/map_level4ec_uniref50.txt.gz ' '-o {output}' |
354 355 356 357 358 | shell: 'humann_rename_table ' '-i {input} ' '-n ec ' '-o {output}' |
368 369 370 371 372 | shell: 'humann_regroup_table ' '-i {input} ' '-c /bifo/scratch/2022-AK-MBIE-Rumen-MG/ref/humann3/utility_mapping/map_ko_uniref50.txt.gz ' '-o {output}' |
382 383 384 385 386 | shell: 'humann_rename_table ' '-i {input} ' '-n kegg-orthology ' '-o {output}' |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Created: 1yr ago
Updated: 1yr ago
Maitainers:
public
URL:
https://github.com/alexmingikim/Snakemake-Metagenomics
Name:
snakemake-metagenomics
Version:
1
Downloaded:
0
Copyright:
Public Domain
License:
None
Keywords:
- Future updates
Related Workflows

ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...

Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...

snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...

ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics

RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...

This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...