Snakemake pipeline for 16S, 18S and ITS metagenomics using qiime2
Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output, operation, topic
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .

This workflow performs microbiome analysis using QIIME2 and PICRUSt2 for functional annotation. Functional annotation is only performed for 16S amplicon sequences.
Please note the following:
-
I analyze my data with qiime2 version 2020.6 so that's what I have tested this pipeline with.
-
I have not tested the pipeline using deblur or vsearch even though I have implemented them, so use these methods at your own risk. I have tested the dada2 pipeline and it works great. Hence, I advice you run the dada2 pipeline.
-
I provide 3 Snakefiles: Snakefile (16S, 18S and ITS), Snakefile.16S (16S and 18S) and Snakefile.ITS (ITS alone).
-
I will be be happy to fix any bug that you migth find, so please feel free to reach out to me at obadbotanist@yahoo.com
Please do not forget to cite the authors of the tools used.
The Pipeline does the following:
-
It renames your input files (optional) so that it conforms with the required input format i.e. 01.raw_data/{SAMPLE}_R{1|2}.fastq.gz for paired-end or 01.raw_data/{SAMPLE}.fastq.gz for single-end reads
-
Quality checks and summarizes the input reads using FASTQC and MultiQC
-
Imports the reads into Qiime2
-
Quality checks the input artifact using Qiime2
-
Trims the imported arfifact for primers and adaptors using cutadapt implemented in qiime2
-
Quality checks the trimmed input artifact using Qiime2
-
Denoises (filtering, chimera checking and ASV table generation) the reads using dada2 (default)
-
Asigns taxonomy to the representative sequences using sci-kit learn and your provided database. see the folder Create__DB for a pipeline that can be used to create the required databases
-
Excludes singletons and non-target taxa such as Mitochondria, Chloroplast etc. The taxa to be filtered can be set from within the Snakefile file by editing the "taxa2filter" variable.
-
Excludes rare ASV i.e. ASVs with sequences less than 0.005% of the total number of sequences (Navas-Molina et al. 2013)
-
Builds a phylogenetic tree
-
Generates sample and group taxa plots
-
Performs core diversity analysis i.e alpha and betadiversity analysis along with the related statistical tests
-
Performs differential abundance testing using ANCOM
-
Perform functional anaotation using PICRUSt2 for 16S sequences.
Authors
- Olabiyi Obayomi (@olabiyi)
Before you start, make sure you have miniconda, qiime2, picrust2 and snakemake installed. You can optionally install my bioinfo environment which contains snakemake and many other useful bioinformatics tools.
STEP 1: Install miniconda and qiime 2 (optional)
See instructions on how to do so here
STEP 2: Install picrust2 (optional)
See instuctions on how to do so here
STEP 3: Install Snakemake in a separate conda environment or install my bioinfo environment which contains snakemake(optional)
Install Snakemake using conda :
conda create -c bioconda -c conda-forge -n snakemake snakemake
For installation details, see the instructions in the Snakemake documentation .
Step 4: Obtain a copy of this workflow
git clone https://github.com/olabiyi/sankemake-workflow-qiime2.git
Step 5: Configure workflow
Configure the workflow according to your needs by editing the files in the
config/
folder. Adjust
config.yaml
to configure the workflow execution, and
samples.tsv
to specify your sample setup. Make sure your sample.tsv file does not contain any error as this could lead to potentially losing all of your data when renaming the files.
Step 6: Install bioinfo environment (Optional)
If you would like to use my bioinfo environment:
conda env create -f envs/bioinfo.yaml
Step 7: Running the pipeline
Activate the conda environment containing snakemake
source activate bioinfo
Set-up the mapping file and raw data directories
[ -d 00.mapping/ ] || mkdir 00.mapping/
[ -d 01.raw_data/ ] || mkdir 01.raw_data/
Move your raw data to the 01.raw_data directory
# Delete anything that may be present in the rawdata directory
rm -rf mkdir 01.raw_data/*
# Move your read files to the rawa data directory - Every sample in its own directory - see the example in this repo
mv location/rawData/16S/* 01.raw_data/
Create metadata files
You need two metadata files: a general metadata file called metadata.tsv and a treatment-treatment.tsv file. Thes files can be createda nd editted with excel. Make sure to save the names as metadata.tsv and treatment-metadata.tsv . The treatment-metadata is used for makeing grouped bar plots while the metadata.tsv is used for corediversity analysis and general statistics. Please see the examples provided in this repository for specific formats.
Create the required MANIFEST FILE
# Get the sample names. This assumes that the folders in the 01.raw_data/ directory are named by sample.
SAMPLES=($(ls -1 01.raw_data/ | grep -Ev "MANIFEST|seq" - |sort -V))
# Get sample names for "samples" field in the config file
(echo -ne '[';echo ${SAMPLES[*]} | sed -E 's/ /, /g' | sed -E 's/(\w+)/"\1"/g'; echo -e ']')
# Generate the MANIFEST file
(echo "sample-id,absolute-filepath,direction"; \
for SAMPLE in ${SAMPLES[*]}; do echo -ne "${SAMPLE},$PWD/01.raw_data/${SAMPLE}/${SAMPLE}_R1.fastq.gz,forward\n${SAMPLE},$PWD/01.raw_data/${SAMPLE}/${SAMPLE}_R2.fastq.gz,reverse\n";done) \
> 01.raw_data/MANIFEST
Create config/sample.tsv file
(echo -ne "SampleID\tType\tOld_name\tNew_name\n"; \
for SAMPLE in ${SAMPLES[*]}; do echo -ne "${SAMPLE}\tForward\t01.raw_data/${SAMPLE}/${SAMPLE}_R1.fastq.gz\t01.raw_data/${SAMPLE}/${SAMPLE}_R1.fastq.gz\n${SAMPLE}\tReverse\t01.raw_data/${SAMPLE}/${SAMPLE}_R2.fastq.gz\t01.raw_data/${SAMPLE}/${SAMPLE}_R2.fastq.gz\n";done) \
> config/sample.tsv
gzip fastq files if they are not already gziped as required by this pipeline. It also helps to save disk memory.
find 01.raw_data/ -type f -name '*.fastq' -exec gzip {} \;
Executing the Workflow
import reads and check their quality to determine trunc lengths for dada2
snakemake -pr --cores 10 --keep-going "04.QC/trimmed_reads_qual_viz.qzv" "04.QC/raw_reads_qual_viz.qzv"
Denoise reads - chimera removal, reads merging, quality trimming and ASV feature table generation take a good look at 05.Denoise_reads/denoise_stats.qzv to see if you didn't lose too many reads and if the reads merged well. If the denoizing was not sucessful, adjust the parameters you set for dada2 and then re-run
snakemake -pr --cores 15 --keep-going "05.Denoise_reads/denoise_stats.qzv" "05.Denoise_reads/table_summary.qzv" "05.Denoise_reads/representative_sequences.qzv"
Filter taxa - Examine "08.Filter_feature_table/taxa_filtered_table.qzv" to determine the threshold for filtering out rare taxa
snakemake -pr --cores 15 --keep-going "06.Assign_taxonomy/taxonomy.qzv" "07.Build_phylogenetic_tree/rooted-tree.qza" "08.Filter_feature_table/taxa_filtered_table.qzv"
Filter rare taxa and make relative abundance bar plots
snakemake -pr --cores 15 --keep-going "08.Filter_feature_table/filtered_table.qzv" "09.Taxa_bar_plots/group-bar-plot.qzv" "09.Taxa_bar_plots/samples-bar-plots.qzv"
Get the rarefation depth for diversity analysis after viewing "08.Filter_feature_table/filtered_table.qzv" and run the complete pipeline
snakemake -pr --cores 15 --keep-going
Export the following files for downstream analysis with R Scripts
-
05.Denoise_reads/denoise_stats.qza -> Denoising statistics
-
06.Assign_taxonomy/taxonomy.qza -> Taxonomy assignments of the representative sequences
-
07.Build_phylogenetic_tree/rooted-tree.qza -> Phylogenetic tree for phylogenetic alphadiversity measurements
-
08.Filter_feature_table/filtered_table.qza -> ASV table
-
10.Diversity_analysis_{RAREFACTION_DEPTH}/bray_curtis_pcoa_results.qza -> Bray Curtis pcoa results
-
10.Diversity_analysis_{RAREFACTION_DEPTH}/bray_curtis_distance_matrix.qza -> Bray Curtis distance matrix
-
15.Function_annotation/picrust2_out_pipeline/pathways_out -> Picrust2 pathway output
-
15.Function_annotation/picrust2_out_pipeline/KO_metagenome_out -> Picrust2 KO / genes output
Code Snippets
100 101 102 103 104 105 106 107 | shell: """ [ -d logs/ ] || mkdir -p logs/ cd logs/ for RULE in {RULES}; do [ -d ${{RULE}}/ ] || mkdir -p ${{RULE}}/ done """ |
123 124 125 | run: for old,new in zip(metadata.Old_name,metadata.New_name): shell("[ -f {new} ] || mv {old} {new}".format(old=old, new=new)) |
133 134 135 | run: for old,new in zip(metadata.Old_name,metadata.New_name): shell("mv {old} {new}".format(old=old, new=new)) |
155 156 157 158 159 160 161 162 163 164 165 | shell: """ set +u {params.conda_activate} {params.PERL5LIB} set -u {params.program} --outdir {params.out_dir}/ \ --threads {params.threads} {input.forward} {input.rev} """ |
182 183 184 185 186 187 188 189 190 191 192 193 | shell: """ set +u {params.conda_activate} {params.PERL5LIB} set -u {params.program} \ --interactive \ -f {params.out_dir} \ -o {params.out_dir} """ |
211 212 213 214 215 216 217 218 219 220 221 222 | shell: """ set +u {params.conda_activate} set -u qiime tools import \ --type 'SampleData[PairedEndSequencesWithQuality]' \ --input-path {input.manifest_file} \ --output-path {output} \ --input-format PairedEndFastqManifestPhred33 """ |
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 | shell: """ set +u {params.conda_activate} set -u qiime cutadapt trim-paired \ --i-demultiplexed-sequences {input} \ --p-cores {params.cores} \ --p-front-f {params.forward_primer} \ --p-front-r {params.reverse_primer} \ --o-trimmed-sequences {output} \ --verbose """ |
264 265 266 267 268 269 270 271 272 273 274 275 | shell: """ set +u {params.conda_activate} set -u qiime tools import \ --type 'SampleData[SequencesWithQuality]' \ --input-path {input.manifest_file} \ --output-path {output} \ --input-format SingleEndFastqManifestPhred33 """ |
286 287 288 289 290 291 292 293 294 295 296 297 298 299 | shell: """ set +u {params.conda_activate} set -u qiime cutadapt trim-single \ --i-demultiplexed-sequences {input} \ --p-cores {params.cores} \ --p-front {params.forward_primer} \ --o-trimmed-sequences {output} \ --verbose """ |
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 | shell: """ {params.conda_activate} [ -d {params.out_dir} ] || mkdir -p {params.out_dir} # Merge reads then delete unnecessary files {params.program} \ -f {input.forward} \ -r {input.rev} \ -j {params.threads} \ -o {params.out_dir}/{wildcards.sample} \ -m {params.max} \ -n {params.min} \ -t {params.min_trim} > {log} 2>&1 rm -rf \ {params.out_dir}/{wildcards.sample}.discarded.fastq \ {params.out_dir}/{wildcards.sample}.unassembled.forward.fastq \ {params.out_dir}/{wildcards.sample}.unassembled.reverse.fastq mv {params.out_dir}/{wildcards.sample}.assembled.fastq {params.out_dir}/{wildcards.sample}.fastq # gzip to save memory gzip {params.out_dir}/{wildcards.sample}.fastq """ |
400 401 402 403 404 405 406 407 408 409 410 411 | shell: """ set +u {params.conda_activate} set -u qiime tools import \ --type 'SampleData[SequencesWithQuality]' \ --input-path {input.manifest_file} \ --output-path {output} \ --input-format SingleEndFastqManifestPhred33 """ |
422 423 424 425 426 427 428 429 430 431 432 433 434 | shell: """ set +u {params.conda_activate} set -u qiime cutadapt trim-single \ --i-demultiplexed-sequences {input} \ --p-cores {params.cores} \ --p-front {params.forward_primer} \ --o-trimmed-sequences {output} \ --verbose """ |
449 450 451 452 453 454 455 456 457 458 459 460 | shell: """ set +u {params.conda_activate} set -u qiime tools import \ --type 'SampleData[PairedEndSequencesWithQuality]' \ --input-path {input.manifest_file} \ --output-path {output} \ --input-format PairedEndFastqManifestPhred33 """ |
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 | shell: """ set +u {params.conda_activate} set -u qiime vsearch join-pairs \ --i-demultiplexed-seqs {input} \ --p-truncqual {params.trunc_qual} \ --p-minlen {params.min_len} \ --p-maxns {params.min_ns} \ --p-minmergelen {params.men_merge_len} \ --p-maxmergelen {params.max_merge_len} \ --o-joined-sequences {output} """ |
494 495 496 497 498 499 500 501 502 503 504 505 506 | shell: """ set +u {params.conda_activate} set -u qiime cutadapt trim-single \ --i-demultiplexed-sequences {input} \ --p-cores {params.cores} \ --p-front {params.forward_primer} \ --o-trimmed-sequences {output} \ --verbose """ |
525 526 527 528 529 530 531 532 533 534 535 | shell: """ set +u {params.conda_activate} set -u qiime demux summarize \ --p-n 10000 \ --i-data {input} \ --o-visualization {output} """ |
548 549 550 551 552 553 554 555 556 557 558 | shell: """ set +u {params.conda_activate} set -u qiime demux summarize \ --p-n 10000 \ --i-data {input} \ --o-visualization {output} """ |
568 569 570 571 572 573 574 575 576 577 578 | shell: """ set +u {params.conda_activate} set -u qiime demux summarize \ --p-n 10000 \ --i-data {input} \ --o-visualization {output} """ |
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 | shell: """ set +u {params.conda_activate} set -u MODE={params.mode} if [ ${{MODE}} == "paired" ];then # Paired end qiime dada2 denoise-paired \ --i-demultiplexed-seqs {input} \ --o-table {output.table} \ --o-representative-sequences {output.rep_seqs} \ --o-denoising-stats {output.stats} \ --p-trunc-len-f {params.trun_len_forward} \ --p-trunc-len-r {params.trun_len_reverse} \ --p-trim-left-f {params.trim_len_forward} \ --p-trim-left-r {params.trim_len_reverse} \ --p-max-ee-f {params.max_forward_err} \ --p-max-ee-r {params.max_reverse_err} \ --p-n-threads {params.threads} else # Single end qiime dada2 denoise-single \ --i-demultiplexed-seqs {input} \ --o-table {output.table} \ --o-representative-sequences {output.rep_seqs} \ --o-denoising-stats {output.stats} \ --p-trunc-len {params.trun_len_forward} \ --p-trim-left {params.trim_len_forward} \ --p-max-ee {params.max_forward_err} \ --p-n-threads {params.threads} fi """ |
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 | shell: """ set +u {params.conda_activate} set -u # Initial quality filtering process based on quality scores qiime quality-filter q-score \ --i-demux {input} \ --o-filtered-sequences {output.filtered_reads} \ --o-filter-stats {output.filter_stats} # Tabulate the filter statistics qiime metadata tabulate \ --m-input-file {output.filter_stats} \ --o-visualization {output.filter_stats_viz} # # Next, the Deblur workflow is applied using the qiime deblur denoise-16S method. # This method requires one parameter that is used in quality filtering, # --p-trim-length n which truncates the sequences at position n. # In general, the Deblur developers recommend setting this value to a length # where the median quality score begins to drop too low qiime deblur denoise-16S \ --i-demultiplexed-seqs {output.filtered_reads} \ --p-trim-length {params.trunc_length} \ --o-representative-sequences {params.rep_seqs} \ --o-table {ouput.table} \ --p-sample-stats \ --o-stats {output.stats} """ |
704 705 706 707 708 709 710 711 712 713 | shell: """ set +u {params.conda_activate} set -u qiime feature-table summarize \ --i-table {input} \ --o-visualization {output} """ |
724 725 726 727 728 729 730 731 732 733 | shell: """ set +u {params.conda_activate} set -u qiime feature-table tabulate-seqs \ --i-data {input} \ --o-visualization {output} """ |
745 746 747 748 749 750 751 752 753 754 755 | shell: """ set +u {params.conda_activate} set -u # Visualize dada2 denoise stats qiime metadata tabulate \ --m-input-file {input} \ --o-visualization {output} """ |
765 766 767 768 769 770 771 772 773 774 775 | shell: """ set +u {params.conda_activate} set -u # Visualize deblur stats qiime deblur visualize-stats \ --i-deblur-stats {output.stats} \ --o-visualization {output} """ |
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 | shell: """ set +u {params.conda_activate} set -u # Assign taxonomy qiime feature-classifier classify-sklearn \ --i-classifier {input.classifier} \ --i-reads {input.rep_seqs} \ --o-classification {output.raw} \ --p-n-jobs {params.threads} # Tabulate taxonomy qiime metadata tabulate \ --m-input-file {output.raw} \ --o-visualization {output.viz} """ |
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 | shell: """ set +u {params.conda_activate} set -u # Run the make phylogenetic tree pipeline # 1. Perform multiple sequence alignment with mafft # 2. Mask alignment # 3. Make tree with fastree # 4. Root the tree qiime phylogeny align-to-tree-mafft-fasttree \ --i-sequences {input} \ --o-alignment {output.alignment} \ --o-masked-alignment {output.masked_alignment} \ --o-tree {output.unrooted_tree} \ --o-rooted-tree {output.rooted_tree} \ --p-n-threads {params.threads} """ |
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 | shell: """ set +u {params.conda_activate} set -u # Remove singletons qiime feature-table filter-features \ --i-table {input} \ --p-min-frequency 2 \ --o-filtered-table {output.table_raw} qiime feature-table summarize \ --i-table {output.table_raw} \ --o-visualization {output.table_viz} """ |
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 | shell: """ set +u {params.conda_activate} set -u # Filter out non-target assigments if [ {params.amplicon} == "ITS" ]; then # Retain only Fungi sequences qiime taxa filter-table \ --i-table {input.table} \ --i-taxonomy {input.taxonomy} \ --p-include {params.taxa2exclude} \ --o-filtered-table {output.table_raw} else # Filter out non-target assigments qiime taxa filter-table \ --i-table {input.table} \ --i-taxonomy {input.taxonomy} \ --p-exclude {params.taxa2exclude} \ --o-filtered-table {output.table_raw} fi # To figure out the total number of sequences ("Total freqency") # to be used to determine the minuminum frequency for filtering out # rare taxa. to calculate the multiply the total number of sequences # by 0.005 qiime feature-table summarize \ --i-table {output.table_raw} \ --o-visualization {output.table_viz} """ |
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 | shell: """ set +u {params.conda_activate} set -u # Removing rare otus / features with abundance less the 0.005% qiime feature-table filter-features \ --i-table {input} \ --p-min-frequency {params.minumum_frequency} \ --o-filtered-table {output.table_raw} qiime feature-table summarize \ --i-table {output.table_raw} \ --o-visualization {output.table_viz} """ |
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 | shell: """ set +u {params.conda_activate} set -u # Samples bar plot qiime taxa barplot \ --i-table {input.table} \ --i-taxonomy {input.taxonomy} \ --m-metadata-file {input.metadata} \ --o-visualization {output} """ |
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 | shell: """ set +u {params.conda_activate} set -u # Group feature table by group in metadata file qiime feature-table group \ --i-table {input.table} \ --p-axis sample \ --m-metadata-file {input.metadata} \ --m-metadata-column '{params.category}' \ --p-mode {params.mode} \ --o-grouped-table {output.grouped_table} # Grouped bar plot qiime taxa barplot \ --i-table {output.grouped_table} \ --i-taxonomy {input.taxonomy} \ --m-metadata-file {params.metadata} \ --o-visualization {output.bar_plot} """ |
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 | shell: """ set +u {params.conda_activate} set -u qiime diversity core-metrics-phylogenetic \ --p-sampling-depth {params.depth} \ --i-table {input.table} \ --i-phylogeny {input.tree} \ --m-metadata-file {input.metadata} \ --p-n-jobs-or-threads 'auto' \ --output-dir core_diversity/ && \ mv core_diversity/* {diversity_dir}/ && \ rm -rf core_diversity/ """ |
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 | shell: """ set +u {params.conda_activate} set -u qiime diversity alpha-rarefaction \ --p-max-depth {params.depth} \ --i-table {input.table} \ --i-phylogeny {input.tree} \ --m-metadata-file {input.metadata} \ --o-visualization {output} """ |
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 | shell: """ set +u {params.conda_activate} set -u for metric in {alpha_diversity_metrics}; do qiime diversity alpha-group-significance \ --i-alpha-diversity {diversity_dir}/${{metric}}_vector.qza \ --m-metadata-file {input.metadata} \ --o-visualization {diversity_dir}/alpha_${{metric}}_significance.qzv done """ |
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 | shell: """ set +u {params.conda_activate} set -u for distance in {distance_matrices}; do qiime diversity beta-group-significance \ --i-distance-matrix {diversity_dir}/${{distance}}_distance_matrix.qza \ --m-metadata-file {input.metadata} \ --m-metadata-column {params.category} \ --o-visualization {diversity_dir}/beta_${{distance}}_significance.qzv done """ |
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 | shell: """ set +u {params.conda_activate} set -u TAXON_LEVELS=(2 3 4 5 6) for TAXON_LEVEL in ${{TAXON_LEVELS[*]}}; do # Collapse ASV table at a taxonomy level of interest qiime taxa collapse \ --i-table {input.table} \ --i-taxonomy {input.taxonomy} \ --p-level ${{TAXON_LEVEL}} \ --o-collapsed-table {params.out_dir}/L${{TAXON_LEVEL}}-filtered_table.qza done """ |
1231 1232 1233 | shell: "cp {input} {params.out_dir}/ && " "mv {params.out_dir}/{params.basename} {output}" |
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 | shell: """ set +u {params.conda_activate} set -u qiime composition add-pseudocount \ --i-table {input} \ --o-composition-table {output} """ |
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 | shell: """ set +u {params.conda_activate} set -u # Apply ANCOM to identify ASV/OTUs that differ in abundance qiime composition ancom \ --i-table {input.table} \ --m-metadata-file {input.metadata} \ --m-metadata-column {params.category} \ --o-visualization {output} """ |
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 | shell: """ set +u {params.conda_activate} set -u # Export feature table qiime tools export \ --input-path {input.feature_table} \ --output-path {params.out_dir}/ # Export representative sequences qiime tools export --input-path {input.rep_seqs} --output-path {params.out_dir}/ && \ mv {params.out_dir}/dna-sequences.fasta {output.rep_seqs} # Export taxonomy qiime tools export \ --input-path {input.taxonomy_table} \ --output-path {params.out_dir}/ # ---------------------- Add taxonomy to feature table ------------------------ # # Creating a TSV BIOM table biom convert \ -i {params.out_dir}/feature-table.biom \ -o {params.out_dir}/feature-table.tsv \ --to-tsv # Next, we’ll need to modify the exported taxonomy file’s header before using it with BIOM software. # Before modifying that file, make a copy: cp {params.out_dir}/taxonomy.tsv {params.out_dir}/biom-taxonomy.tsv # Change the first line of biom-taxonomy.tsv (i.e. the header) to this: # Note that you’ll need to use tab characters in the header since this is a TSV file. #OTUID taxonomy confidence (echo "#OTUID taxonomy confidence"; sed -e '1d' {params.out_dir}/biom-taxonomy.tsv) \ > {params.out_dir}/tmp.tsv && \ rm -rf {params.out_dir}/biom-taxonomy.tsv && \ mv {params.out_dir}/tmp.tsv {params.out_dir}/biom-taxonomy.tsv # Finally, add the taxonomy data to your .biom file: biom add-metadata \ -i {params.out_dir}/feature-table.biom \ -o {params.out_dir}/feature-table-with-taxonomy.biom \ --observation-metadata-fp {params.out_dir}/biom-taxonomy.tsv \ --sc-separated taxonomy # Creating a TSV BIOM table biom convert \ -i {params.out_dir}/feature-table-with-taxonomy.biom \ -o {params.out_dir}/feature-table-with-taxonomy.biom.tsv \ --to-tsv """ |
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 | shell: """ set +u {params.conda_activate} set -u # Remove the temporary output directory if it already exists [ -d picrust2_out_pipeline/ ] && rm -rf picrust2_out_pipeline/ # ---- Run picrust2 pipeline for function annotation -------- # picrust2_pipeline.py \ -s {input.rep_seqs} \ -i {input.feature_table} \ -o picrust2_out_pipeline/ \ -p {params.threads} && \ mv picrust2_out_pipeline/* {params.out_dir}/ && \ rmdir picrust2_out_pipeline/ """ |
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 | shell: """ set +u {params.conda_activate} set -u # ----- Annotate your enzymes, KOs and pathways by adding a description column ------# # EC add_descriptions.py -i {input.ec} -m EC -o {output.ec} # Metacyc Pathway add_descriptions.py -i {input.pathway} -m METACYC -o {output.pathway} # KO add_descriptions.py -i {input.ko} -m KO -o {output.ko} # Unizip the metagenome contribution files - these files describe the micribes contribution the function profiles #find {params.outdir} -type f -name "*contrib.tsv.gz" -exec gunzip {{}} \; """ |
1452 1453 1454 1455 1456 | shell: """ # Create an empty file mkdir -p {params.outdir} && touch {output.ko} """ |
Support
- Future updates
Related Workflows





