Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output, operation, topic
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
Snakemake for SNPs is a flexible and user-friendly SNPs analysis workflow.
Snakemake for SNPs can be applied to both model and non-model organisms. It supports mapping RNA-Seq raw reads to the reference genome (can be downloaded from public database or can be homemade by users) and it can do both Allele Specific Expression for SNPs and obtain Differential Expressed Genes (DEGs), which in turn can be cross between them. It requires basic python programming skill for use. If you're beginner at programming, just jump on the config file and adapt it to your experiments!
If you use our pipeline you need to cite us:
WARNING: adapt the citation to our link:
NOTE: This pipeline is created in Linux and other platforms may not work out accurately.
Workflow

The usage of this workflow is described in the Snakemake Workflow Catalog .
Quick start
Clone the repository:
#git clone https://github.com/AylaScientist/Snakemake_for_SNPs.git
Create the environment:
conda create -n pipeline python=3.7
Activate the environment:
conda activate pipeline
Installation
Install the packages including the bio tools:
pip install git+https://github.com/snakemake/snakemake
conda install -c bioconda snakemake-wrapper-utils
conda install -c bioconda trimmomatic=0.39
conda install -c bioconda fastqc=0.11.9
conda install -c bioconda star=2.7.10a
conda install -c bioconda htseq=0.11.3
conda install -c bioconda picard=2.26
conda install -c bioconda gatk4=4.2.5.0
conda install -c bioconda samtools=1.16
conda install -c bioconda bcftools=1.16
conda install -c bioconda vcftools=0.1.16
conda install -c bioconda htslib=1.16
conda install -c anaconda perl=5.26.2
conda install -c anaconda pandas
conda install -c anaconda scipy
conda install -c anaconda statsmodels
conda install -c anaconda seaborn
conda install -c conda-forge matplotlib
conda install -c conda-forge py-bgzip
First test
Set the resources of the system in the file config.
gedit ~/Snakemake_for_SNPs/config/config_main.yaml
Now that the resources are adapted to your computer, run a dry run for the pipeline with the example data to build a dag of jobs
cd ~/Snakemake_for_SNPs/workflow/
snakemake -n
If this point doesn't work, please contact me: ayla.bcn@gmail.com
Run the pipeline with the desired resources.
This is an example for 4 threads at 4GB.
snakemake --use-conda --cores 4
Set up configuration for your personal project
Customize the workflow based on your need in the next file:
./config/config_main.yaml
.
In this file you should also change the species and the different databases for gene/transcript/protein/GO_function/KEGG correct annotation and mining of the data
Modify the metafiles describing your data and the experiment:
config/Experimental_design.csv
config/Experimental_groups.csv
config/Sample_names.csv
config/Samples_MAE.csv
config/samples.csv
Please note that the column names on the file "Experimental_groups.csv" should be called "Group_1" and "Group_2" for applying the Chi-square test.
For configuring your pseudogenomes
You need to chose two samples from different groups, preferably one sample from the control group and one sample from a treatment group. The SNPs from these samples will be used to construct the pseudogenomes. The codes of these two samples in the example are GF6 and KS4. In order to create the pseudogenomes of your experiment, these codes should be substituted in the next files, including the file name of the
*colnames.csv
files:
config/Pseudogenome_codes.csv
config/tbGF6_colnames.csv
config/tbKS4_colnames.csv
Very important: ADD the genome or transcriptome of your species! Here we have the genome of the Nile Tilapia in the folder
genome
in the root of the git.
Evaluation
The pipeline for SNPs has been evaluated on 4 datasets including 2 non-model organism (Nile and Mozambique tilapias). WARNING: Put here the link to the article
Code Snippets
12 13 | shell: "perl ./rules/scripts/convert2annovar.pl {input.gvcf1} -format vcf4 -allsample -withfreq -withfilter -context -out {output.o1}" |
24 25 26 | shell: "touch {output.o1} " """ |
33 34 | shell: "touch {output.o1} " |
50 51 | shell: "perl ./rules/scripts/annotate_variation.pl -geneanno {input.i1} -buildver {input.buildver} ./ -outfile {params.i2}" |
61 62 | shell: "touch {output}" |
81 82 | shell: "perl ./rules/scripts/table_annovar.pl {input.gvcf1} {input.path} -buildver {input.buildver} -out {input.i3} -remove -protocol refGene -operation g -nastring . -vcfinput" |
19 20 | script: "scripts/combinegvcfs.py" |
38 39 | script: "scripts/combinegvcfs.py" |
17 18 | script: "scripts/combinegvcfs.py" |
17 18 | script: "scripts/selectvariants.py" |
18 19 | script: "scripts/variantstotable.py" |
17 18 | script: "scripts/genotypegvcfs.py" |
17 18 | script: "scripts/genotypegvcfs.py" |
18 19 | script: "scripts/haplotypecaller.py" |
18 19 | script: "scripts/haplotypecaller.py" |
17 18 | script: "scripts/htseq.py" |
18 19 | script: "scripts/mark_duplicates.py" |
17 18 | script: "scripts/mark_duplicates.py" |
18 19 | script: "scripts/pseudogenomes.py" |
41 42 | script: "scripts/star_gi.py" |
57 58 | script: "scripts/create_genome_dictionary.py" |
69 70 | shell: "samtools faidx {input}" |
16 17 | script: "scripts/readgroups.py" |
16 17 | script: "scripts/readgroups.py" |
26 27 | script: "scripts/Tables.py" |
26 27 | script: "scripts/Tables.py" |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 | __author__ = "Aurora Campo" __copyright__ = "Copyright 2021, Aurora Campo" __email__ = "ayla.bcn@gmail.com" __license__ = "MIT" import os import pandas as pd import numpy as np from os import path from snakemake.shell import shell from snakemake_wrapper_utils.java import get_java_opts shell.executable("bash") extra = snakemake.params.get("extra") java_opts = snakemake.params.get("java_opts") log = snakemake.log_fmt_shell(stdout=False, stderr=True) """ DEL SNPs AD<10 --------------- This new function cleans the SNPs that do not have enough counts and are considered possible poor quality reads. The SNPs with AD < 3 in one of the alleles are also cleaned. """ def AD10(df, samples): # The iterator collects the index were AD from both alleles is below 10 or the AD for one allele is below 3 # Keep all this analysis for the same individual including two tissues at a time i = 0 indexes_ad10 = 0 # There is only one tissue for sample in samples: print("AD10 filter in sample ", sample) sample_r_ad = str(sample + "_R_.AD") sample_a_ad = str(sample + "_A_.AD") index_sample = df[((df[sample_a_ad] + df[sample_r_ad]) < 10)and((df[sample_a_ad] <3) | (df[sample_r_ad] <3))].index """ Uncomment this if you have a way to verify the genotypes if i == 0: #For the first sample indexes_ad10 = np.array(index_sample) #print("Number of rows to drop", len(indexes_ad10)) i = i + 1 elif i != 0:#We accumulate the indexes to drop in the next samples index_sample = np.array(index_sample) # We need to convert into an array for compare with the array ad10_index # The next is the array of the common and unique elements in both arrays (common indexes or common rows mean the indexes of the rows to drop) indexes_ad10 = np.intersect1d(indexes_ad10, index_sample) print("Number of rows to drop", len(indexes_ad10)) i = i + 1 """ df.drop(index=indexes_ad10, inplace=True) return df def main(): # Add the files av_df=snakemake.input.get("csv") ad10_df=snakemake.output[0] df_average = pd.read_csv(av_df, low_memory=False) df_average = pd.DataFrame(df_average) sample_names = pd.read_csv(snakemake.input.get("sn1")) # Create arrays of the sample names samples = sample_names['Sample_name'].values # Mine the data df_AD10 = AD10(df_average, samples) # Write the temporary file df_AD10.to_csv(ad10_df) if __name__ == '__main__': main() shell( "{log}" ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 | __author__ = "Aurora Campo" __copyright__ = "Copyright 2022, Aurora Campo" __email__ = "ayla.bcn@gmail.com" __license__ = "MIT" import os import pandas as pd import numpy as np from os import path from typing import List, Any, Generator from snakemake.shell import shell from snakemake_wrapper_utils.java import get_java_opts shell.executable("bash") extra = snakemake.params.get("extra") java_opts = snakemake.params.get("java_opts") log = snakemake.log_fmt_shell(stdout=False, stderr=True) """ ELIMINATE MONOALLELIC EXPRESSION FROM THE ALLELEIC IMBALANCE ------------------------------------------------------------ The alleles that are expressed only in one of the tissues analysed will be sent to a different path for studing the monoallelic expression Then, the alleles expressed in both tissues can be studied separately """ def frequencies (df, samples): # Calculate the allele frequencies for sample in samples: sample_r_ad = str(sample + "_R_.AD") sample_a_ad = str(sample + "_A_.AD") af_sample = str("AF_" + sample) df[af_sample] = df[sample_r_ad]/(df[sample_r_ad] + df[sample_a_ad]) df = df.fillna(0) print ("Allele frequencies calculated") return df def MAE (df, samples, samples_mae): print(os.getcwd()) #print the working path print(str(path.exists(samples_mae))) #print the working path # Collect the indexes whose allele frequencies are 0 or 1 in both tissues of the same sample. These indexes correspond # to the SNPs that are MAE for at least one sample if path.exists(samples_mae)==True: print("File ",samples_mae," was found") mae = pd.DataFrame() # Create an empty dataframe mae_ind = np.array([]) tissues = pd.read_csv(samples_mae) tissues = pd.DataFrame(tissues) first_samples = tissues.iloc[:, 0] second_samples = tissues.iloc[:, 1] i = 0 for first_sample in first_samples: print("MAE loop in sample ", first_sample, " and sample ", second_samples[i]) af1 = str("AF_" + first_sample) af2 = str("AF_" + second_samples[i]) index_af = df[((df[af1] == 0) & (df[af2] == 0)) | (df[af1] == 1) & (df[af2] == 1)].index.values mae_ind = np.append ( mae_ind , index_af ) #append all the indexes for collecting the SNPs in monoallelic expression of all the samples to be dropped i = i + 1 mae = df.iloc [mae_ind]# Using the operator .iloc[] to select multiple rows according to the index that points the monoallelic expression df_no_mae = df.drop(index = mae_ind) # using drop tp drop these rows with monoallelic expression else: print("No file ",samples_mae," was found. Please verify if your path to the Samples_MAE.csv in the config.yaml file is correct") mae = pd.DataFrame() mae_ind = np.array([]) for sample in samples: af = str("AF_" + sample) index_af = df[(df[af] == 0) | (df[af] == 1)].index.values #this is a numpy array with the indexes to drop in one sample mae_ind = np.append ( mae_ind , index_af ) #append all the indexes for collecting the SNPs in monoallelic expression of all the samples to be dropped mae = df.iloc [mae_ind]# Using the operator .iloc[] to select multiple rows according to the index that points the monoallelic expression df_no_mae = df.drop(index = mae_ind) # using drop tp drop these rows with monoallelic expression return df_no_mae, mae def main(): #PATH = os.getcwd() #os.chdir("temp") uniform = snakemake.input.get("result1") df_uni = pd.read_csv(uniform, low_memory=False) df_uni = pd.DataFrame(df_uni) #os.chdir(PATH) names = snakemake.input.get("names") sample_names = pd.read_csv(names) samples_mae = snakemake.input.get("mae") result_mae = snakemake.output.get("result_mae") result_no_mae = snakemake.output.get("result_no_mae") # Create arrays of the sample names and the pseudogenome codes samples = sample_names["Sample_name"].values # Mine the data df_af = frequencies(df_uni, samples) df_no_mae, df_mae = MAE(df_af, samples, samples_mae) df_no_mae.to_csv(result_no_mae) df_mae.to_csv(result_mae) if __name__ == '__main__': main() shell( "{log}" ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 | __author__ = "Aurora Campo" __copyright__ = "Copyright 2021, Aurora Campo" __email__ = "ayla.bcn@gmail.com" __license__ = "MIT" import os import pandas as pd import numpy as np from os import path from snakemake.shell import shell from snakemake_wrapper_utils.java import get_java_opts shell.executable("bash") extra = snakemake.params.get("extra") java_opts = snakemake.params.get("java_opts") log = snakemake.log_fmt_shell(stdout=False, stderr=True) """ COMPARE GENOTYPES AND MAKE THE AVERAGE OF COUNTS ------------------------------------------------ Now let's make the average on the counts for the reference and the alternative alleles. For each sample, select the genotype of the reference allele established by the reads mapped against PSG1 and compare it to both alternative and reference genotypes of the values in the mapping with PSG2 genome. Then proceed to make the average of the counts. The possible cases are the next: 1.- Both homozigots for the reference allele: In that case set the same genotype to both alleles and sum all the counts from both sites, making the average for two individuals. 2.- Reference and alternative allele in the SNP from the PSG1 pseudogenome are placed in the same position for the SNP from the PSG2 pseudogenome. Set the genotype to the reference and alternative alleles to the ones from the SNP in PSG1 and make the average of the counts for reference and alternative genome 3.- The reference allele in the reference pseudogenome is called as alternative allele in the alternative pseudogenome. In that case, set the genotype to the reference allele and make the average of the counts for the corresponding variant. 4.- While the mapping against the reference genome resulted in an homozygot for the reference allele, the mapping against the alternative genome resulted in an heterozygot with the alternative allele in the alternative position. The genotype of the reference allele will be set from genotype of the reference allele in the reference mapping and the alternative allele will be set from the genotype of the alternative allele in the alternative mapping. The counts of each allele will be set accordingly to this distribution, thus dividing the counts by two individuals in the reference allele. 5.- The mapping against the reference genome resulted in an homozygot for the reference allele and the mapping against the alternative genome is heterozygot. In that case, the genotype of the alternative allele is set as the reference allele on the mapping against the alternative genome. The genotypes must be set accordingly, being the reference allele the one found in the reference genome and the alternative allele the one found in the alternative genome. The average of the counts will follow this pattern, being the average in the erference allele. 6.- The mapping against the reference genome produced an heterozygot with reference and alternative alleles. The mapping against the alternative pseudogenome produced an homozygot for the reference allele. In that case, reference and alternative allele must be set according to the reference pseudogenome and the counts must be averaged for both individuals in the alternative allele. 7.- The mapping against the reference genome produced an heterozygot with reference and alternative alleles. The mapping against the alternative pseudogenome produced an homozygot for the alternative allele. In that case, reference and alternative allele must be set according to the reference pseudogenome and the counts of the alternative allele must be averaged for both individuals. 8.- The mapping against the reference genome produced an homozygot for the reference allele. The mapping against the alterantive pseudogenome produced an homozygot for the alternative allele. In that case, the reference allele is set according to the first pseudogenome and summing the counts of this reference allele and the alternative allele is set following the second pseudogenome and the counts of this alternative allele are summed. This analysis is repeated for each sample and will assign reference and alternative alleles independently. The assignation of reference and alternative alleles uniformly in all the samples will be developed in a further step of the workflow. """ # Definitions: def evaluation(df, sample, PSGs): # Evaluation of genotype and average. This is an iterator r = "_R_" a = "_A_" gt = ".GT" ad = ".AD" PSG1_code: str = PSGs[0] PSG2_code: str = PSGs[1] rPSG1_GT = int(df.columns.get_loc(str(sample + r + PSG1_code + gt))) aPSG1_GT = int(df.columns.get_loc(str(sample + a + PSG1_code + gt))) rPSG2_GT = int(df.columns.get_loc(str(sample + r + PSG2_code + gt))) aPSG2_GT = int(df.columns.get_loc(str(sample + a + PSG2_code + gt))) rPSG1_AD = int(df.columns.get_loc(str(sample + r + PSG1_code + ad))) aPSG1_AD = int(df.columns.get_loc(str(sample + a + PSG1_code + ad))) rPSG2_AD = int(df.columns.get_loc(str(sample + r + PSG2_code + ad))) aPSG2_AD = int(df.columns.get_loc(str(sample + a + PSG2_code + ad))) # Create the empty lists to collect the average variables and genotypes r_AD = [] a_AD = [] r_GT = [] a_GT = [] print("Evaluation loop in sample: ", sample) # Start iterator for i in range(len(df)): # Case 1 homozygots for the two pseudogenoes if (df.iloc[i, rPSG1_GT] == df.iloc[i, aPSG1_GT]) and (df.iloc[i, rPSG2_GT] == df.iloc[i, aPSG2_GT]) and ( df.iloc[i, rPSG1_GT] == df.iloc[i, rPSG2_GT]) and (df.iloc[i, aPSG1_GT] == df.iloc[i, aPSG2_GT]): #print("Ref GT: ", df.iloc[i, rPSG1_GT], " Counts: ", df.iloc[i, rPSG1_AD], " ", df.iloc[i, aPSG1_AD], " ", df.iloc[i, rPSG2_AD], " ", df.iloc[i, aPSG2_AD]," averaged by 2") r_GT.append(df.iloc[i, rPSG1_GT]) if (df.iloc[i, rPSG1_AD] != 0 and df.iloc[i, aPSG1_AD] !=0): x = ((((df.iloc[i, rPSG1_AD] + df.iloc[i, aPSG1_AD])/2) + df.iloc[i, rPSG2_AD] + df.iloc[i, aPSG2_AD]) / 2) elif (df.iloc[i, rPSG2_AD] != 0 and df.iloc[i, aPSG2_AD] !=0): x = ((((df.iloc[i, rPSG2_AD] + df.iloc[i, aPSG2_AD]) / 2) + df.iloc[i, rPSG1_AD] + df.iloc[i, aPSG1_AD]) / 2) elif (df.iloc[i, rPSG1_AD] != 0 and df.iloc[i, aPSG1_AD] !=0 and df.iloc[i, rPSG2_AD] != 0 and df.iloc[i, aPSG2_AD] != 0): x = ((((df.iloc[i, rPSG2_AD] + df.iloc[i, aPSG2_AD]) / 2) + (df.iloc[i, rPSG1_AD] + df.iloc[ i, aPSG1_AD])/2) / 2) else: x = ((df.iloc[i, rPSG1_AD] + df.iloc[i, rPSG2_AD] + df.iloc[i, aPSG1_AD] + df.iloc[i, aPSG2_AD]) / 2) r_AD.append(x) a_GT.append(df.iloc[i, rPSG2_GT]) y = 0 a_AD.append(y) # Case 2 Same situation Ref and Alt in both for df elif (df.iloc[i, rPSG1_GT] == df.iloc[i, rPSG2_GT]) and (df.iloc[i, aPSG1_GT] == df.iloc[i, aPSG2_GT]): r_GT.append(df.iloc[i, rPSG1_GT]) x = (df.iloc[i, rPSG1_AD] + df.iloc[i, rPSG2_AD]) / 2 r_AD.append(x) a_GT.append(df.iloc[i, aPSG1_GT]) y = (df.iloc[i, aPSG1_AD] + df.iloc[i, aPSG2_AD]) / 2 a_AD.append(y) # Case 3 Inverse situation Ref and Alt in both for df elif (df.iloc[i, rPSG1_GT] == df.iloc[i, aPSG2_GT]) and (df.iloc[i, aPSG1_GT] == df.iloc[i, rPSG2_GT]): r_GT.append(df.iloc[i, rPSG1_GT]) x = (df.iloc[i, rPSG1_AD] + df.iloc[i, aPSG2_AD]) / 2 # averaged by 2 (for each mapping method) r_AD.append(x) a_GT.append(df.iloc[i, aPSG1_GT]) y = (df.iloc[i, aPSG1_AD] + df.iloc[i, rPSG2_AD]) / 2 # averaged by 2 (for each mapping method) a_AD.append(y) # Case 4 First homozygot, second with alternative allele in second position (as alternative) elif (df.iloc[i, rPSG1_GT] == df.iloc[i, aPSG1_GT]) and (df.iloc[i, rPSG2_GT] != df.iloc[i, aPSG2_GT]) and ( df.iloc[i, rPSG1_GT] == df.iloc[i, rPSG2_GT]): # print("Ref GT: ", df.iloc[i, rPSG1_GT]," Counts: ",df.iloc[i, rPSG1_AD]," ",df.iloc[i, aPSG1_AD]," ",df.iloc[i, rPSG2_AD]," averaged by 2") r_GT.append(df.iloc[i, rPSG1_GT]) if (df.iloc[i, rPSG1_AD] != 0 and df.iloc[i, aPSG1_AD] != 0 and df.iloc[i, rPSG2_AD] != 0): #print ("WARNING: Line ",i," in sample ",sample," has three counts for the same allele. It is corrected by averaging by 3") x = (df.iloc[i, rPSG1_AD] + df.iloc[i, aPSG1_AD] + df.iloc[i, rPSG2_AD]) / 3 else: x = (df.iloc[i, rPSG1_AD] + df.iloc[i, aPSG1_AD] + df.iloc[i, rPSG2_AD]) / 2 # counts from 3 cells from # which one is 0, from 2 mapping methods (averaged by 2) r_AD.append(x) a_GT.append(df.iloc[i, aPSG2_GT]) y = df.iloc[i, aPSG2_AD] / 2 a_AD.append(y) # Case 5 First homozygot, second with alternative allele in first position (as reference) elif ((df.iloc[i, rPSG1_GT] == df.iloc[i, aPSG1_GT]) and (df.iloc[i, rPSG2_GT] != df.iloc[i, aPSG2_GT]) and ( df.iloc[i, rPSG1_GT] == df.iloc[i, aPSG2_GT])): #print("Ref GT: ", df.iloc[i, rPSG1_GT], " Counts: ", df.iloc[i, rPSG1_AD], " ", df.iloc[i, aPSG1_AD], " ",df.iloc[i, aPSG2_AD], " averaged by 2") r_GT.append(df.iloc[i, rPSG1_GT]) if (df.iloc[i, rPSG1_AD] != 0 and df.iloc[i, aPSG1_AD] != 0 and df.iloc[i, aPSG2_AD] != 0) : #print("WARNING: Line ", i, " in sample ", sample, " has three counts for the same allele. It is corrected by averaging by 3") x = (df.iloc[i, rPSG1_AD] + df.iloc[i, aPSG1_AD] + df.iloc[i, aPSG2_AD]) / 3 else: x = (df.iloc[i, rPSG1_AD] + df.iloc[i, aPSG1_AD] + df.iloc[i, aPSG2_AD]) / 2 # counts from 3 cells from which one is 0, from 2 mapping methods (averaged by 2) r_AD.append(x) a_GT.append(df.iloc[i, rPSG2_GT]) y = df.iloc[i, rPSG2_AD] / 2 a_AD.append(y) # Case 6 Second homozygot, first heterozygot with alternative allele in second position (as alternative) elif (df.iloc[i, rPSG1_GT] != df.iloc[i, aPSG1_GT]) and (df.iloc[i, rPSG2_GT] == df.iloc[i, aPSG2_GT]) and ( df.iloc[i, rPSG1_GT] == df.iloc[i, rPSG2_GT]): #print("Ref GT: ", df.iloc[i, rPSG1_GT], " Counts: ", df.iloc[i, rPSG1_AD], " ", df.iloc[i, rPSG2_AD], " ",df.iloc[i, aPSG2_AD], " averaged by 2") r_GT.append(df.iloc[i, rPSG1_GT]) if (df.iloc[i, rPSG1_AD] != 0 and df.iloc[i, rPSG2_AD] != 0 and df.iloc[i, aPSG2_AD] !=0 ): #print("WARNING: Line ", i, " in sample ", sample, " has three counts for the same allele. It is corrected by averaging by 3") x = (df.iloc[i, rPSG1_AD] + df.iloc[i, rPSG2_AD] + df.iloc[i, aPSG2_AD]) / 3 else: x = (df.iloc[i, rPSG1_AD] + df.iloc[i, rPSG2_AD] + df.iloc[i, aPSG2_AD]) / 2 # counts from 3 cells from which one is 0, from 2 mapping methods (averaged by 2) r_AD.append(x) a_GT.append(df.iloc[i, aPSG1_GT]) y = df.iloc[i, aPSG1_AD] / 2 a_AD.append(y) # Case 7 Second homozygot, first heterozygot with alternative allele in first position (as reference) elif (df.iloc[i, rPSG1_GT] != df.iloc[i, aPSG1_GT]) and (df.iloc[i, rPSG2_GT] == df.iloc[i, aPSG2_GT]) and ( df.iloc[i, aPSG1_GT] == df.iloc[i, aPSG2_GT]): #print("Alt GT: ", df.iloc[i, rPSG2_GT], " Counts: ", df.iloc[i, aPSG1_AD], " ", df.iloc[i, rPSG2_AD], " ",df.iloc[i, aPSG2_AD], " averaged by 2") r_GT.append(df.iloc[i, rPSG1_GT]) x = df.iloc[i, rPSG1_AD] / 2 r_AD.append(x) a_GT.append(df.iloc[i, rPSG2_GT]) if (df.iloc[i, aPSG1_AD] != 0 and df.iloc[i, rPSG2_AD] != 0 and df.iloc[i, aPSG2_AD] !=0): #print("WARNING: Line ", i, " in sample ", sample, " has three counts for the same allele. It is corrected by averaging by 3") y = (df.iloc[i, aPSG1_AD] + df.iloc[i, rPSG2_AD] + df.iloc[i, aPSG2_AD]) / 3 else: y = (df.iloc[i, aPSG1_AD] + df.iloc[i, rPSG2_AD] + df.iloc[i, aPSG2_AD]) / 2 # counts from 3 cells from which one is 0, from 2 mapping methods (averaged by 2) a_AD.append(y) # Case 8 Both homozygot, first for the reference allele and second for the alternative allele elif (df.iloc[i, rPSG1_GT] == df.iloc[i, aPSG1_GT]) and (df.iloc[i, rPSG2_GT] == df.iloc[i, aPSG2_GT]) and ( df.iloc[i, aPSG1_GT] != df.iloc[i, aPSG2_GT]): #print("Ref GT: ", df.iloc[i, rPSG1_GT], " Counts: ", df.iloc[i, rPSG1_AD], " ", df.iloc[i, aPSG1_AD], "averaged by 2") r_GT.append(df.iloc[i, rPSG1_GT]) x = df.iloc[i, rPSG1_AD] + df.iloc[i, aPSG1_AD] # one of these counts will be 0 so no need to average r_AD.append(x) a_GT.append(df.iloc[i, rPSG2_GT]) y = df.iloc[i, rPSG2_AD] + df.iloc[i, aPSG2_AD] # one of these counts will be 0 so no need to average a_AD.append(y) else: print("Error in the SNP on the coordinates ", df.iloc[i, "CHROM"], ", ", df.iloc[i, "POS"], ", sample num ", sample) return (r_GT, r_AD, a_GT, a_AD) def sample_average(df, samples, PSGs): cols = [] # Index of columns to be drop in the end # Create 4 columns for each averaged sample: for sample in samples: print("Sample average in sample ", sample, "\n") # Average each sample according to genotype: (r_GT, r_AD, a_GT, a_AD) = evaluation(df, sample, PSGs) # Add the new columns sample_r_GT = str(sample + "_R_.GT") sample_a_GT = str(sample + "_A_.GT") sample_r_AD = str(sample + "_R_.AD") sample_a_AD = str(sample + "_A_.AD") df[sample_r_GT] = r_GT df[sample_a_GT] = a_GT df[sample_r_AD] = r_AD df[sample_a_AD] = a_AD # Drop the columns that won't be used r = "_R_" a = "_A_" gt = ".GT" ad = ".AD" PSG1_code: str = PSGs[0] PSG2_code: str = PSGs[1] rPSG1_GT = int(df.columns.get_loc(str(sample + r + PSG1_code + gt))) aPSG1_GT = int(df.columns.get_loc(str(sample + a + PSG1_code + gt))) rPSG2_GT = int(df.columns.get_loc(str(sample + r + PSG2_code + gt))) aPSG2_GT = int(df.columns.get_loc(str(sample + a + PSG2_code + gt))) rPSG1_AD = int(df.columns.get_loc(str(sample + r + PSG1_code + ad))) aPSG1_AD = int(df.columns.get_loc(str(sample + a + PSG1_code + ad))) rPSG2_AD = int(df.columns.get_loc(str(sample + r + PSG2_code + ad))) aPSG2_AD = int(df.columns.get_loc(str(sample + a + PSG2_code + ad))) cols.append(rPSG1_GT) cols.append(aPSG1_GT) cols.append(rPSG2_GT) cols.append(aPSG2_GT) cols.append(rPSG1_AD) cols.append(aPSG1_AD) cols.append(rPSG2_AD) cols.append(aPSG2_AD) return df, cols def main(): # Add files extra = snakemake.params.get("extra") java_opts = snakemake.params.get("java_opts") log = snakemake.log_fmt_shell(stdout=False, stderr=True) df_bi = snakemake.input.get("csv") df_bi = pd.read_csv(df_bi, low_memory=False) df_bi = pd.DataFrame(df_bi) sample_names = pd.read_csv(snakemake.input.get("sn1")) PSG_codes = pd.read_csv(snakemake.input.get("psc")) # Create arrays of the sample names and the pseudogenome codes samples = sample_names['Sample_name'].values PSGs = PSG_codes['PSGs'].values df_av = snakemake.output[0] # Mine the data df_average, cols = sample_average(df_bi, samples, PSGs) # Drop the columns that are not needed df_average.drop(df_average.columns[cols], axis=1, inplace=True) df_average.to_csv(df_av) if __name__ == '__main__': main() shell( "{log}" ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 | __author__ = "Aurora Campo" __copyright__ = "Copyright 2021, Aurora Campo" __email__ = "ayla.bcn@gmail.com" __license__ = "MIT" import os import pandas as pd import numpy as np from os import path from snakemake.shell import shell from snakemake_wrapper_utils.java import get_java_opts shell.executable("bash") extra = snakemake.params.get("extra") java_opts = snakemake.params.get("java_opts") log = snakemake.log_fmt_shell(stdout=False, stderr=True) """ DEL MULTIALLELIC SITES ---------------------- Compare the genotypes for assessing the counts on each allele Set the data for the mapping against the pseudogenome of sample PSG1 because it has the variants of the reference genotype. The SNPs called by this sample are set as reference and alternative alleles for all the other samples. The tables containing the SNPs from mapping to PSG1 and PSG2 contained only biallelic sites. However multiallelic possibilities can appear if one SNP was called for a different genotpe in each of the pseudogenomes. The multiallelic sites will be deleted from this dataframe to continue the analysis with bialleleic sites only. Delete multiallelic sites: Let's start droping the multiallelic. The criteria compares if the reference allele in the SNPs resulting from mapping against PSG1 pseudogenome is different form the reference and the alternative alleles from the mapping against PSG2 pseudogenome. This is later repeated for the alternative allele. Note that the SNPs mapped against PSG1 pseudogenome have been pre-filtered for biallelic sites for all the samples. Collect the indexes where the reference allele in PSG1 is different from both alleles in the other mappings or the alternative allele in PSG1 is different from both alleles in the PSG2 mapping. """ # Make an iterator for the collection of multiallelic sites: def multiallelic_sample(df, sample, PSGs): # For obtaining the column names: r = "_R_" a = "_A_" gt = ".GT" PSG1_code: str = PSGs[0] PSG2_code: str = PSGs[1] rPSG1_GT = int(df.columns.get_loc(str(sample + r + PSG1_code + gt))) aPSG1_GT = int(df.columns.get_loc(str(sample + a + PSG1_code + gt))) rPSG2_GT = int(df.columns.get_loc(str(sample + r + PSG2_code + gt))) aPSG2_GT = int(df.columns.get_loc(str(sample + a + PSG2_code + gt))) print("Multiallelic loop in sample: ", sample) sample_index = [] for i in range(len(df)): if (((df.iloc[i, rPSG1_GT]) != df.iloc[i, rPSG2_GT]) & (df.iloc[i, rPSG1_GT] != df.iloc[i, aPSG2_GT])) | ( (df.iloc[i, aPSG1_GT] != df.iloc[i, rPSG2_GT]) & (df.iloc[i, aPSG1_GT] != df.iloc[i, aPSG2_GT])): sample_index.append(i) return sample_index # Eliminate the multiallelic sites def multiallelic(df, samples, PSGs, multi_index): for sample in samples: multiallelic_sample_index = multiallelic_sample(df, sample, PSGs) multi_index = multi_index + multiallelic_sample_index df_bi = df.drop(index=multi_index) return df_bi def main(): # Add files mdf = pd.read_csv(snakemake.input.get("csv"), low_memory=False) mdf = pd.DataFrame(mdf) sample_names = pd.read_csv(snakemake.input.get("sn1")) PSG_codes = pd.read_csv(snakemake.input.get("psc")) # Create arrays of the sample names and the pseudogenome codes samples = sample_names['Sample_name'].values PSGs = PSG_codes['PSGs'].values # Create an empty array for collect the indexes with multiallelic sites: multi_index = [] # Mine the datafiles df_bi = multiallelic(mdf, samples, PSGs, multi_index) df_bi.to_csv(snakemake.output[0]) if __name__ == '__main__': main() shell( "{log}" ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | __author__ = "Johannes Köster" __copyright__ = "Copyright 2018, Johannes Köster" __email__ = "johannes.koester@protonmail.com" __license__ = "MIT" import os from snakemake.shell import shell from snakemake_wrapper_utils.java import get_java_opts extra = snakemake.params.get("extra") java_opts = snakemake.params.get("java_opts") files=snakemake.input.gvcfs print(files) gvcfs = list(map("-V {}".format, snakemake.input.gvcfs)) print(gvcfs) log = snakemake.log_fmt_shell(stdout=True, stderr=True) shell( "gatk --java-options '{java_opts}' CombineGVCFs {extra} " "{gvcfs} " "-R {snakemake.input.ref} " "-O {snakemake.output.gvcf} {log}" ) |
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | __author__ = "Aurora Campo" __copyright__ = "Copyright 2021, Aurora Campo" __email__ = "ayla.bcn@gmail.com" __license__ = "MIT" from snakemake.shell import shell #from snakemake_wrapper_utils.java import get_java_opts extra = snakemake.params.get("extra", "") #sample = snakemake.params.get("sample") #java_opts = get_java_opts(snakemake) genome = snakemake.input[0] dictionary = snakemake.output[0] log = snakemake.log_fmt_shell(stdout=False, stderr=True) shell( "picard CreateSequenceDictionary " "REFERENCE={genome} " "OUTPUT= {dictionary} " "{log}" ) |
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | __author__ = "Johannes Köster" __copyright__ = "Copyright 2018, Johannes Köster" __email__ = "johannes.koester@protonmail.com" __license__ = "MIT" import tempfile from snakemake.shell import shell from snakemake_wrapper_utils.java import get_java_opts extra = snakemake.params.get("extra", "") java_opts = snakemake.params.get("java_opts") log = snakemake.log_fmt_shell(stdout=False, stderr=True) with tempfile.TemporaryDirectory() as tmpdir: shell( "picard CreateSequenceDictionary" " {java_opts} {extra}" " --REFERENCE {snakemake.input[0]}" " --TMP_DIR {tmpdir}" " --OUTPUT {snakemake.output[0]}" " --CREATE_INDEX true" " {log}" ) |
2 3 4 5 6 7 8 9 10 11 12 13 | __author__ = "Michael Chambers" __copyright__ = "Copyright 2019, Michael Chambers" __email__ = "greenkidneybean@gmail.com" __license__ = "MIT" from snakemake.shell import shell from snakemake_wrapper_utils.samtools import get_samtools_opts log = snakemake.log_fmt_shell(stdout=True, stderr=True) shell("samtools faidx {snakemake.input[0]} {log}") |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | __author__ = "Johannes Köster" __copyright__ = "Copyright 2018, Johannes Köster" __email__ = "johannes.koester@protonmail.com" __license__ = "MIT" import os from snakemake.shell import shell #from snakemake_wrapper_utils.java import get_java_opts extra = snakemake.params.get("extra") java_opts = snakemake.params.get("java_opts") log = snakemake.log_fmt_shell(stdout=True, stderr=True) shell( "gatk --java-options '{java_opts}' GenotypeGVCFs {extra} " "-V {snakemake.input.gvcf} " "-R {snakemake.input.ref} " "-O {snakemake.output.vcf} {log}" ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 | __author__ = "Aurora Campo" __copyright__ = "Copyright 2021, Aurora Campo" __email__ = "ayla.bcn@gmail.com" __license__ = "MIT" import os import pandas as pd import numpy as np from os import path from snakemake.shell import shell from snakemake_wrapper_utils.java import get_java_opts shell.executable("bash") extra = snakemake.params.get("extra") java_opts = snakemake.params.get("java_opts") log = snakemake.log_fmt_shell(stdout=False, stderr=True) """ ASSIGN REFERENCE AND ALTERNATIVE ALLELES UNIFORMLY IN ALL SAMPLES ----------------------------------------------------------------- Reference and alternative alleles have been assigned by sample. This function will correct it and will assign the reference and alternative alleles according to the pattern established in sample 1. """ def compare(df, sample, R_models, A_models,SNP_panel): # This iterator will construct the new columns for the samples according to the reference and alternative alleles # assigned in sample1 # Position of the sample columns sample_r_gt = int(df.columns.get_loc(str(sample + "_R_.GT"))) sample_a_gt = int(df.columns.get_loc(str(sample + "_A_.GT"))) sample_r_ad = int(df.columns.get_loc(str(sample + "_R_.AD"))) sample_a_ad = int(df.columns.get_loc(str(sample + "_A_.AD"))) # Create the empty lists to collect the average variables and genotypes r_AD = [] a_AD = [] r_GT = [] a_GT = [] print("Compare genotypes loop in sample: ", sample) # Start iterator for model genotypes for k in range(len(df)): # Set in the model the new genotypes in case the samples didn't express this allele. if R_models[k] == A_models[k] and R_models[k] == ".": # print("Previous: ", R_models[k], A_models[k], ", new: ", df.iloc[k, sample_r_gt], df.iloc[k, sample_a_gt]) R_models[k] = df.iloc[k, sample_r_gt] A_models[k] = df.iloc[k, sample_a_gt] elif R_models[k] == A_models[k] and R_models[k] == df.iloc[k, sample_r_gt]: A_models[k] = df.iloc[k, sample_a_gt] elif R_models[k] == A_models[k] and R_models[k] == df.iloc[k, sample_a_gt]: A_models[k] = df.iloc[k, sample_r_gt] # Start iterator for comparison with the new models for i in range(len(df)): if R_models[i] == df.iloc[i, sample_r_gt] and A_models[i] == df.iloc[i, sample_a_gt]: # 1 Reference and alternative are set in the same position for sample and sample1 (reference) # It applies to both samples heterozygots or both homozygots with same genotype r_AD.append(df.iloc[i, sample_r_ad]) a_AD.append(df.iloc[i, sample_a_ad]) r_GT.append(df.iloc[i, sample_r_gt]) a_GT.append(df.iloc[i, sample_a_gt]) elif A_models[i] == df.iloc[i, sample_r_gt] and R_models[i] == df.iloc[i, sample_a_gt]: # 2 Reference and alternative are set in the inverse position for sample and sample1 (reference) # It applies to both samples heterozygots or both homozygots with same genotype r_AD.append(df.iloc[i, sample_a_ad]) a_AD.append(df.iloc[i, sample_r_ad]) r_GT.append(df.iloc[i, sample_a_gt]) a_GT.append(df.iloc[i, sample_r_gt]) elif R_models[i] == df.iloc[i, sample_r_gt] and A_models[i] == df.iloc[i, sample_r_gt] and A_models[i] != \ df.iloc[i, sample_a_gt]: # 3 It applies to first sample homozygot and second sample heterozygot with the alternative allele in second r_AD.append(df.iloc[i, sample_r_ad]) a_AD.append(df.iloc[i, sample_a_ad]) r_GT.append(df.iloc[i, sample_r_gt]) a_GT.append(df.iloc[i, sample_a_gt]) elif R_models[i] != df.iloc[i, sample_r_gt] and A_models[i] != df.iloc[i, sample_r_gt] and A_models[i] == \ df.iloc[i, sample_a_gt]: # 4 It applies to first sample homozygot and second sample heterozygot with the alternative allele in first r_AD.append(df.iloc[i, sample_a_ad]) a_AD.append(df.iloc[i, sample_r_ad]) r_GT.append(df.iloc[i, sample_a_gt]) a_GT.append(df.iloc[i, sample_r_gt]) elif R_models[i] == A_models[i] and R_models[i] != df.iloc[i, sample_r_gt] and df.iloc[i, sample_r_gt] == \ df.iloc[i, sample_a_gt]: # 5 It applies to first sample homozygot for the reference allele and second sample homozygot for the # alternative allele a_AD.append(df.iloc[i, sample_r_ad] + df.iloc[i, sample_a_ad]) # One of them will be 0 r_GT.append(df.iloc[i, sample_a_gt]) a_GT.append(df.iloc[i, sample_a_gt]) r_AD.append(0) elif R_models[i] != A_models[i] and R_models[i] == df.iloc[i, sample_r_gt] and df.iloc[i, sample_r_gt] == \ df.iloc[i, sample_a_gt]: # 6 It applies to first sample heterozygot and second sample homozygot for the reference allele r_GT.append(df.iloc[i, sample_r_gt]) a_GT.append(df.iloc[i, sample_r_gt]) r_AD.append(df.iloc[i, sample_r_ad] + df.iloc[i, sample_r_ad]) # One of them will be 0 a_AD.append(0) elif R_models[i] != A_models[i] and A_models[i] == df.iloc[i, sample_a_gt] and df.iloc[i, sample_r_gt] == \ df.iloc[i, sample_a_gt]: # 7 It applies to first sample heterozygot and second sample homozygot for the alternative allele a_AD.append(df.iloc[i, sample_r_ad] + df.iloc[i, sample_a_ad]) # One of them will be 0 r_GT.append(df.iloc[i, sample_a_gt]) a_GT.append(df.iloc[i, sample_a_gt]) r_AD.append(0) elif R_models[i] == df.iloc[i, sample_r_gt] and A_models[i] == df.iloc[i, sample_r_gt] and df.iloc[ i, sample_r_gt] == df.iloc[i, sample_a_gt]: # 8 It applies to first sample homozygot for the reference allele and second sample homozygot for the # reference allele too r_AD.append(df.iloc[i, sample_r_ad] + df.iloc[i, sample_a_ad]) # One of them will be 0 r_GT.append(df.iloc[i, sample_r_gt]) a_GT.append(df.iloc[i, sample_r_gt]) a_AD.append(0) elif R_models[i] == A_models[i] and R_models[i] == ".": # 9 SNP not expressed in the sample1 as reference gentoype r_AD.append(df.iloc[i, sample_r_ad]) a_AD.append(df.iloc[i, sample_a_ad]) r_GT.append(df.iloc[i, sample_r_gt]) a_GT.append(df.iloc[i, sample_a_gt]) print(i) elif df.iloc[i, sample_r_gt] == df.iloc[i, sample_a_gt] and df.iloc[i, sample_r_gt] == ".": # 10 SNP not expressed in the sample to evaluate r_AD.append(0) a_AD.append(0) r_GT.append(".") a_GT.append(".") else: print("ERROR: Comparison of genotypes of sample ", sample, " provided an error for the SNP in the row ", i, " with genotypes ", df.iloc[i, sample_a_gt], ", ", df.iloc[i, sample_r_gt], ". You must check if the evaluation of this case is correct") # Make a dataframe with the model genotypes SNP_panel["Reference allele"] = R_models SNP_panel["Alternative allele"] = A_models SNP_panel.to_csv(snakemake.output.get("result2")) print("Result 2, SNP panel, written in disk") genotype_models = pd.DataFrame(data=[R_models, A_models]).T genotype_models.to_csv(snakemake.output.get("result3")) print("Results 3, Genotype models, written in disk") return r_AD, a_AD, r_GT, a_GT, R_models, A_models def genotype(df, samples): # Make the new df and prepare the first columns of the SNP_panel: df_uni = df.iloc[:, 1:10] SNP_panel = df.iloc[:, 1:10] # Determines the genotypes for sample1 and calls the function to compare genotypes j = 0 for sample in samples: j = j + 1 if j == 1: # If we are in the first sample we set the reference R_models = df[str(sample + "_R_.GT")].to_numpy() A_models = df[str(sample + "_A_.GT")].to_numpy() # Collection the name of the samples sample_r_gt = str(sample + "_R_.GT") sample_a_gt = str(sample + "_A_.GT") sample_r_ad = str(sample + "_R_.AD") sample_a_ad = str(sample + "_A_.AD") # Assign the list to the column name df_uni[sample_r_gt] = df[str(sample + "_R_.GT")] df_uni[sample_a_gt] = df[str(sample + "_A_.GT")] df_uni[sample_r_ad] = df[str(sample + "_R_.AD")] df_uni[sample_a_ad] = df[str(sample + "_A_.AD")] else: # If we already passed the first sample (r_ad, a_ad, r_gt, a_gt, R_models, A_models) = compare(df, sample, R_models, A_models, SNP_panel) # Collection the name of the samples sample_r_gt = str(sample + "_R_.GT") sample_a_gt = str(sample + "_A_.GT") sample_r_ad = str(sample + "_R_.AD") sample_a_ad = str(sample + "_A_.AD") # Assign the list to the column name df_uni[sample_r_gt] = r_gt df_uni[sample_a_gt] = a_gt df_uni[sample_r_ad] = r_ad df_uni[sample_a_ad] = a_ad #df_uni.drop(['Unnamed: 0', 'Unnamed: 0.1', 'Unnamed: 0.1.1', 'Unnamed: 0_x'], axis=1) return df_uni def main(): # Add the files ad10_df=snakemake.input.get("csv") geno_df=snakemake.output.get("result1") result2=snakemake.output.get("result2") result3=snakemake.output.get("result3") df_ad10 = pd.read_csv(ad10_df, low_memory=False) df_ad10 = pd.DataFrame(df_ad10) sample_names = pd.read_csv(snakemake.input.get("sn1")) # Create arrays of the sample names samples = sample_names['Sample_name'].values # Mine the datafiles df_uni = genotype(df_ad10, samples) #drop the useless columns: df_uni.to_csv(geno_df) print("Final file, Uniform SNPs, written in disk") if __name__ == '__main__': main() shell( "{log}" ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | __author__ = "Aurora Campo" __copyright__ = "Cpoyright 2020, Aurora Campo, modified from Copyright 2018, Johannes Köster" __email__ = "ayla.bcn@gmail.com; johannes.koester@protonmail.com" __license__ = "MIT" import os from snakemake.shell import shell #from snakemake_wrapper_utils.java import get_java_opts extra = snakemake.params.get("extra") java_opts = snakemake.params.get("java_opts") known = snakemake.input.get("known", "") if known: known = "--dbsnp " + known bams = snakemake.input.bam if isinstance(bams, str): bams = [bams] bams = list(map("-I {}".format, bams)) log = snakemake.log_fmt_shell(stdout=True, stderr=True) shell( "gatk --java-options '{java_opts}' HaplotypeCaller {extra} " "-R {snakemake.input.ref} {bams} " "-ERC GVCF " "-O {snakemake.output.gvcf} {known} {log}" ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | __author__ = "Aurora Campo" __copyright__ = "Copyright 2021, Aurora Campo" __email__ = "ayla.bcn@gmail.com" __license__ = "MIT" from snakemake.shell import shell #from snakemake_wrapper_utils.java import get_java_opts input = snakemake.input.get("bam") ref = snakemake.input.get("annotation") output = snakemake.output[0] extra = snakemake.params.get("extra") log = snakemake.log_fmt_shell(stdout=False, stderr=True) shell( "htseq-count " "{extra} " "{input} " "{ref} " "> {output} " "{log}" ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | __author__ = "Aurora Campo" __copyright__ = "Copyright 2020, Aurora Campo modified from Copyright 2016, Johannes Köster" __email__ = "ayla.bcn@gmail.com" __license__ = "CC" from snakemake.shell import shell #from snakemake_wrapper_utils.java import get_java_opts log = snakemake.log_fmt_shell(stdout=True, stderr=True) extra = snakemake.params.get("extra") java_opts = snakemake.params.get("java_opts") shell( "picard MarkDuplicates " # Tool and its subcommand "{java_opts} " # Automatic java option "{extra} " # User defined parmeters "INPUT={snakemake.input} " # Input file "OUTPUT={snakemake.output.bam} " # Output bam "METRICS_FILE={snakemake.output.metrics} " # Output metrics "{log}" # Logging ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | __author__ = "Aurora Campo" __copyright__ = "Copyright 2021, Aurora Campo" __email__ = "ayla.bcn@gmail.com" __license__ = "MIT" import os import pandas as pd import numpy as np from os import path from snakemake.shell import shell from snakemake_wrapper_utils.java import get_java_opts shell.executable("bash") extra = snakemake.params.get("extra") java_opts = snakemake.params.get("java_opts") log = snakemake.log_fmt_shell(stdout=False, stderr=True) """ MERGE THE DATAFRAMES ----------------------- The format of the table is the same for both dataframes. Columns from 1 to 6 are: CHROM: Chromosome, POS: position, Gene.refGene: Gene_ID Func.refGene: Annotation of the function for this SNP ExonicFunc.refGene: Annotation of the function if this SNP is exonic AF: Allele frequency estimated for all the samples From column 7th till the end there will be 4 columns for each sample. The structure of the column name is as follows: NAME (determined by the sample name) _R or _A (reference or alternative allele) _??? (The pseudogenome code) .AD (allele depth) .GT (Genotype) The next step is to merge the two dataframes on the common chromosome and position: """ # Read the files csv1=snakemake.input.get("csv1") csv2=snakemake.input.get("csv2") merged_df=snakemake.output[0] PSG1 = pd.read_csv(csv1, low_memory=False) PSG2 = pd.read_csv(csv2, low_memory=False) PSG1 = pd.DataFrame(PSG1) PSG2 = pd.DataFrame(PSG2) # Merge df = pd.merge(PSG1, PSG2, on=('CHROM', 'POS')) df.to_csv(merged_df, sep=',') print('Files merged') shell( "{log}" ) |
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | __author__ = "Aurora Campo" __copyright__ = "Copyright 2021, Aurora Campo, modified from git" __git__= "https://github.com/johanzi/make_pseudogenome" __email__ = "ayla.bcn@gmail.com" __license__ = "MIT" from snakemake.shell import shell #from snakemake_wrapper_utils.java import get_java_opts input = snakemake.input.get("vcf") extra = snakemake.params.get("extra") ref = snakemake.input.get("ref") pseudo = snakemake.output.get("pseudo") log = snakemake.log_fmt_shell(stdout=False, stderr=True) shell( "bcftools consensus " "{input} " "--sample {extra} " "--fasta-ref {ref} " "> {pseudo} " "{log}" ) |
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 | __author__ = "Aurora Campo" __copyright__ = "Copyright 2021, Aurora Campo" __email__ = "ayla.bcn@gmail.com" __license__ = "MIT" """ python 3.7 @autor : Ayla @version : 1.0 @date : September 2021 This script is a quality control of the data filtered by the script "ASE_workflow.py". These SNPs are unbiased and biallelic, and the monoallelic expression (MAE) has been discarded. This script will plot the distribution of the data in general and for each experimental group. It needs a file with the name of the experimental group as the acronyms used in the sample name. For example: The sample number 1 corresponds to the gills exposed to freshwater The two experimental factors are "gills" (G) and "freshwater" (F) Then the sample is called "1GF" and the group name will be called "GF" This script also needs a csv file with the first column naming the experimental groups and the next columns with the sample names of each sample in a group """ import pandas as pd import os import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import StrMethodFormatter from snakemake.shell import shell from snakemake_wrapper_utils.java import get_java_opts shell.executable("bash") extra = snakemake.params.get("extra") java_opts = snakemake.params.get("java_opts") log = snakemake.log_fmt_shell(stdout=False, stderr=True) """ ALLELE FREQUENCIES ------------------ Compute allele frequencies for each allele and later for each experimental group. """ def frequencies(df, samples): """ :param df: dataframe with unbiased SNP counts without allele frequencies :param samples: list of strings including the sample names :return: dataframe with the allele frequencies by sample """ # Calculate the allele frequencies for sample in samples: sample_r_ad = str(sample + "_R_.AD") sample_a_ad = str(sample + "_A_.AD") af_sample = str("AF_" + sample) df[af_sample] = df[sample_r_ad] / (df[sample_r_ad] + df[sample_a_ad]) df = df.fillna(0) # To fill cases where there are no counts and therefore AF is divided by 0 print("Allele frequencies by sample calculated") return df def allele_freqs(group_names, df): # Calculate the allele frequency for each experimental group in order to make a plot of each group: for group_name in group_names: af_group = "AF_" + group_name x_name = af_group + "_x" y_name = af_group + "_y" print(x_name) print(y_name) x = df.loc[:, df.columns.str.contains("([0-9])+" + group_name + "_R_.AD", regex=True)] y = df.loc[:, df.columns.str.contains("([0-9])+" + group_name + "_A_.AD", regex=True)] df[x_name] = x.sum(axis=1) df[y_name] = y.sum(axis=1) df[af_group] = df[x_name]/(df[x_name] + df[y_name]) #df.drop(columns=x_name, inplace=True) #df.drop(columns=y_name, inplace=True) df = df.fillna(0) print("Allele frequencies by experimental group calculated") return df def plot(df, group_names): # Plot all the histograms with the allele frequencies for group_name in group_names: af_group = "AF_" + group_name # Possibility 1 # df.hist(column=af_group, bins=100, grid=False, figsize=(8,10), layout=(1,1), sharex=True, color='#86bf91', zorder=2, rwidth=0.9) # Possibility 3 previous in the script hist_data = df[af_group].values plt.hist(hist_data, 100, density=False, facecolor='#86bf91') plt.xlabel('Allele frequency') plt.ylabel('Frequency') plt.title(af_group) plt.grid(True) axes = plt.gca() axes.set_ylim([0, 15000]) # plt.show() # Get the path PATH = os.getcwd () os.chdir("results") plt.savefig(group_name + "_AF_mapping_bias.svg") os.chdir(PATH) plt.clf () def main(): # Import the files df = pd.read_csv(snakemake.input.get("i1")) sample_names = pd.read_csv(snakemake.input.get("sn1")) # Create arrays of the sample names samples = sample_names['Sample_name'].values groups_df = pd.read_csv(snakemake.input.get("i2")) # Create a numpy array with the name of each group group_names = list(groups_df.columns[0]) # Mine the data df_af = frequencies(df, samples) df_qc = allele_freqs(group_names, df_af) # Copy the quality control file for further calculation of the stats df_qc.to_csv(snakemake.output.get("results")) # Plot the histograms plot(df_qc, group_names) if __name__ == '__main__': main() shell( "{log}" ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | __author__ = "Aurora Campo" __copyright__ = "Copyright 2020, Aurora Campo modified from Copyright 2016, Johannes Köster" __email__ = "ayla.bcn@gmail.com" __license__ = "MIT" from snakemake.shell import shell #from snakemake_wrapper_utils.java import get_java_opts extra = snakemake.params.get("extra") java_opts = snakemake.params.get("java_opts") shell( "picard AddOrReplaceReadGroups {java_opts} {snakemake.params} " "I={snakemake.input} " "O={snakemake.output} &> {snakemake.log}" ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | __author__ = "Johannes Köster" __copyright__ = "Copyright 2018, Johannes Köster" __email__ = "johannes.koester@protonmail.com" __license__ = "MIT" from snakemake.shell import shell #from snakemake_wrapper_utils.java import get_java_opts extra = snakemake.params.get("extra") java_opts = snakemake.params.get("java_opts") log = snakemake.log_fmt_shell(stdout=True, stderr=True) shell( "gatk --java-options '{java_opts}' SelectVariants " "-R {snakemake.input.ref} " "-V {snakemake.input.vcf} " "{extra} " "-O {snakemake.output.vcf} {log}" ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | __author__ = "Aurora Campo" __copyright__ = "Copyright 2021, Aurora Campo" __email__ = "ayla.bcn@gmail.com" __license__ = "MIT" import os from snakemake.shell import shell from snakemake_wrapper_utils.java import get_java_opts extra = snakemake.params.get("extra") java_opts = snakemake.params.get("java_opts") input = snakemake.input.get("bam") ref = snakemake.input.get("ref") output = snakemake.output.get("bam") log = snakemake.log_fmt_shell(stdout=True, stderr=True) shell( "gatk --java-options '{java_opts}' SplitNCigarReads {extra} " "-R {ref} " "-I {input} " "-O {output} " "{log}" ) |
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | __author__ = "Aurora Campo" __copyright__ = "Copyright 2021, Aurora Campo" __email__ = "ayla.bcn@gmail.com" __license__ = "MIT" from snakemake.shell import shell #from snakemake_wrapper_utils.java import get_java_opts input = snakemake.input[0] threads = snakemake.params.get("threads") annotation = snakemake.params.get("annotation") dir = snakemake.params.get("dir") read_length = int(snakemake.params.get("read_length"))-1 log = snakemake.log_fmt_shell(stdout=False, stderr=True) shell( "STAR " "--runThreadN {threads} " "--runMode genomeGenerate " "--genomeDir {dir} " "--genomeFastaFiles {input} " "--sjdbGTFfile {annotation} " "--sjdbOverhang {read_length} " #ReadLength-1 "{log}" ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 | __author__ = "Aurora Campo" __copyright__ = "Copyright 2020, Aurora Campo, modified from Copyright 2016, Johannes Köster" __email__ = "ayla.bcn@gmail.com" __license__ = "MIT" import os from snakemake.shell import shell extra = snakemake.params.get("extra", "") threads = snakemake.params.get("threads") log = snakemake.log_fmt_shell(stdout=True, stderr=True) index = snakemake.input.get("index") outprefix = snakemake.params.get("filename") fq1 = snakemake.input.get("fastq1") fq2 = snakemake.input.get("fastq2") index_dir = index.rsplit('/', 1)[0] #retains all the string before the last character "/" assert fq1 is not None, "input-> fq1 is a required input parameter" fq1 = ( [snakemake.input.fastq1] if isinstance(snakemake.input.fastq1, str) else snakemake.input.fastq1 ) if fq2: fq2 = ( [snakemake.input.fastq2] if isinstance(snakemake.input.fastq2, str) else snakemake.input.fastq2 ) assert len(fq1) == len( fq2 ), "input-> equal number of files required for fq1 and fq2" input_str_fq1 = ",".join(fq1) input_str_fq2 = ",".join(fq2) if fq2 is not None else "" input_str = " ".join([input_str_fq1, input_str_fq2]) if fq1[0].endswith(".gz"): readcmd = "--readFilesCommand zcat" else: readcmd = "" shell( "STAR " "{extra} " "--runThreadN {threads} " "--genomeDir {index_dir} " "--readFilesIn {fq1} {fq2} " #{input_str} for single ends "{readcmd} " "--outFileNamePrefix {outprefix} " "--outStd Log " "--twopassMode Basic " "--quantMode GeneCounts " "--outSAMattrIHstart 0 " "--alignSoftClipAtReferenceEnds No " "--limitBAMsortRAM 300647556788 " "--outBAMsortingThreadN 2 " "--outSAMstrandField intronMotif " "--outFilterIntronMotifs RemoveNoncanonical " "--outSAMattributes All " "--outFilterScoreMinOverLread 0 " "--outFilterMatchNminOverLread 0 " "--outFilterMatchNmin 0 " "--outFilterMismatchNmax 2 " "--outSAMtype BAM SortedByCoordinate " "{log}" ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 | __author__ = "Aurora Campo" __copyright__ = "Copyright 2020, Aurora Campo, modified from Copyright 2016, Johannes Köster" __email__ = "ayla.bcn@gmail.com" __license__ = "MIT" import os from snakemake.shell import shell extra = snakemake.params.get("extra", "") threads = snakemake.params.get("threads") log = snakemake.log_fmt_shell(stdout=True, stderr=True) index = snakemake.input.get("index") outprefix = snakemake.params.get("filename") fq1 = snakemake.input.get("fastq1") fq2 = snakemake.input.get("fastq2") index_dir = index.rsplit('/', 1)[0] #retains all the string before the last character "/" assert fq1 is not None, "input-> fq1 is a required input parameter" fq1 = ( [snakemake.input.fastq1] if isinstance(snakemake.input.fastq1, str) else snakemake.input.fastq1 ) if fq1[0].endswith(".gz"): readcmd = "--readFilesCommand zcat" else: readcmd = "" shell( "STAR " "{extra} " "--runThreadN {threads} " "--genomeDir {index_dir} " "--readFilesIn {fq1} " "{readcmd} " "--outFileNamePrefix {outprefix} " "--outStd Log " "--twopassMode Basic " "--quantMode GeneCounts " "--outSAMattrIHstart 0 " "--alignSoftClipAtReferenceEnds No " "--limitBAMsortRAM 300647556788 " "--outBAMsortingThreadN 2 " "--outSAMstrandField intronMotif " "--outFilterIntronMotifs RemoveNoncanonical " "--outSAMattributes All " "--outFilterScoreMinOverLread 0 " "--outFilterMatchNminOverLread 0 " "--outFilterMatchNmin 0 " "--outFilterMismatchNmax 2 " "--outSAMtype BAM SortedByCoordinate " "{log}" ) |
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 | import pandas as pd from scipy import stats from scipy.stats import chisquare import scipy as sc import matplotlib.pyplot as plt import os import statsmodels.stats as smt from statsmodels.stats import multitest from snakemake.shell import shell from snakemake_wrapper_utils.java import get_java_opts shell.executable("bash") extra = snakemake.params.get("extra") java_opts = snakemake.params.get("java_opts") log = snakemake.log_fmt_shell(stdout=False, stderr=True) def chi_test(df, af_samples, experiment, exp): # Collect the row of the experiment where the design is described design = exp[exp["Test_ID"].str.match(experiment)].iloc[0] group1 = design["Group_1"] group2 = design["Group_2"] # Collect the columns of the dataframe that will go into the test: group1_samples = [i for i in af_samples if group1 in i] group2_samples = [i for i in af_samples if group2 in i] if len(group1_samples) > len(group2_samples): print("WARNING: CHI2 Test for ", experiment, " not possible with the group distribution.\nThe number of samples will adjust for performing the test") # Pop the extra samples: to_pop = len(group1_samples) - len(group2_samples) for j in range(to_pop): group1_samples.pop(j) cols_control = df[df.columns[df.columns.isin(group1_samples)]] cols_exp = df[df.columns[df.columns.isin(group2_samples)]] # Initialize the lists for collecting the statstics chi_group2 = [] p_chi_group2 = [] stat_chi_group2 = [] # Perform the test for i in range(len(df)): chi_group2.append(chisquare(cols_exp.iloc[i,], f_exp=cols_control.iloc[i,])) p_chi_group2.append(chi_group2[i].pvalue) stat_chi_group2.append(chi_group2[i].statistic) # add the multitest also multi = smt.multitest.multipletests(p_chi_group2, alpha=0.05, method='bonferroni', is_sorted=False, returnsorted=False) # Append the p-values pvalue = experiment + "_CHI_p-val" pfdr = experiment + "_CHI_p-fdr" df[pvalue] = p_chi_group2 df[pfdr] = multi[1] elif len(group1_samples) < len(group2_samples): print("WARNING: CHI2 Test for ", experiment, " not possible with the group distribution.\nThe number of samples will adjust for performing of the test") # Pop the extra samples to_pop = len(group2_samples) - len(group1_samples) for j in range(to_pop): group2_samples.pop(j) cols_control = df[df.columns[df.columns.isin(group1_samples)]] cols_exp = df[df.columns[df.columns.isin(group2_samples)]] # Initialize the lists for collecting the statstics chi_group2 = [] p_chi_group2 = [] stat_chi_group2 = [] # Perform the test for i in range(len(df)): chi_group2.append(chisquare(cols_exp.iloc[i,], f_exp=cols_control.iloc[i,])) p_chi_group2.append(chi_group2[i].pvalue) stat_chi_group2.append(chi_group2[i].statistic) # add the multitest also multi = smt.multitest.multipletests(p_chi_group2, alpha=0.05, method='bonferroni', is_sorted=False, returnsorted=False) # Append the p-values pvalue = experiment + "_CHI_p-val" pfdr = experiment + "_CHI_p-fdr" df[pvalue] = p_chi_group2 df[pfdr] = multi[1] elif (len(group1_samples) < 5) | (len(group2_samples) < 5): print("The number of counts for ", experiment," is too low and the chi_square test cannot be performed") print("The number of samples in each group must be at least 5") else: cols_control = df[df.columns[df.columns.isin(group1_samples)]] cols_exp = df[df.columns[df.columns.isin(group2_samples)]] # Initialize the lists for collecting the statstics chi_group2 = [] p_chi_group2 = [] stat_chi_group2 = [] # Perform the test for i in range(len(df)): chi_group2.append(chisquare(cols_exp.iloc[i,], f_exp=cols_control.iloc[i,])) p_chi_group2.append(chi_group2[i].pvalue) stat_chi_group2.append(chi_group2[i].statistic) # add the multitest also multi = smt.multitest.multipletests(p_chi_group2, alpha=0.05, method='bonferroni', is_sorted=False, returnsorted=False) # Append the p-values pvalue = experiment + "_CHI_p-val" pfdr = experiment + "_CHI_p-fdr" df[pvalue] = p_chi_group2 df[pfdr] = multi[1] return df def chi_square(df, samples, exp, experiments): # Create the strings corresponding to the allele frequency in each sample global df_chi af_samples = [] for sample in samples: af_sample = "AF_" + sample af_samples.append(af_sample) # Elements for the test for experiment in experiments: df_chi = chi_test(df, af_samples, experiment, exp) print("Chi^2 test performed if possible on all the experiments\nOtherwise, Fisher test will be used for the final report of the results.") return df_chi def fisher_test(df, samples, exp, experiment): # Prepare the strings for the column names design = exp[exp["Test_ID"].str.match(experiment)].iloc[0] group1 = design["Group_1"] group2 = design["Group_2"] # Collect the columns of the dataframe that will go into the test: group1_samples = [i for i in samples if group1 in i] group2_samples = [i for i in samples if group2 in i] r = "_R_.AD" a = "_A_.AD" if len(group1_samples) == len(group2_samples): # Perform the test k = 0 # Iterator for the samples in group 2 for group1_sample in group1_samples: p_fisher = [] stat_fisher = [] for i in range(len(df)): # sample names and positions control_r = df.iloc[i, int(df.columns.get_loc(group1_sample + r))] control_a = df.iloc[i, int(df.columns.get_loc(group1_sample + a))] exp_r = df.iloc[i, int(df.columns.get_loc(group2_samples[k] + r))] exp_a = df.iloc[i, int(df.columns.get_loc(group2_samples[k] + a))] # test oddsratio, pvalue = stats.fisher_exact([[exp_r, exp_a], [control_r, control_a]]) stat_fisher.append(oddsratio) p_fisher.append(pvalue) # add the multitest also multi = smt.multitest.multipletests(p_fisher, alpha=0.05, method='fdr_bh', is_sorted=False, returnsorted=False) # Make columns of the dataframe with the results fisher_pval = experiment + "_Fisher_p-val" fisher_fdr = experiment + "_Fisher_p-fdr" df[fisher_pval] = pd.Series(p_fisher, index = df.index) df[fisher_fdr] = pd.Series(multi[1], index = df.index) k = (k + 1) elif len(group1_samples) > len(group2_samples): print("WARNING: Fisher Test for ", experiment, " not possible with the group distribution.\nThe number of samples will adjust for performing of the test") # Pop the extra samples to_pop = len(group1_samples) - len(group2_samples) for j in range(to_pop): group1_samples.pop(j) # Perform the test k = 0 # Iterator for the samples in group 2 for group1_sample in group1_samples: p_fisher = [] stat_fisher = [] for i in range(len(df)): # sample names and positions control_r = df.iloc[i, int(df.columns.get_loc(group1_sample + r))] control_a = df.iloc[i, int(df.columns.get_loc(group1_sample + a))] exp_r = df.iloc[i, int(df.columns.get_loc(group2_samples[k] + r))] exp_a = df.iloc[i, int(df.columns.get_loc(group2_samples[k] + a))] # test oddsratio, pvalue = stats.fisher_exact([[exp_r, exp_a], [control_r, control_a]]) stat_fisher.append(oddsratio) p_fisher.append(pvalue) # add the multitest also multi = smt.multitest.multipletests(p_fisher, alpha=0.05, method='fdr_bh', is_sorted=False, returnsorted=False) # Make columns of the dataframe with the results fisher_pval = experiment + "_" + group1_sample + group2_samples[k] + "_Fisher_p-val" fisher_fdr = experiment + "_" + group1_sample + group2_samples[k] + "_Fisher_p-fdr" df[fisher_pval] = pd.Series(p_fisher, index=df.index) df[fisher_fdr] = pd.Series(multi[1], index=df.index) k = k + 1 else: print("WARNING: Fisher Test for ", experiment, " not possible with the group distribution.\nThe number of samples will adjust for performing of the test") # Pop the extra samples to_pop = len(group2_samples) - len(group1_samples) for j in range(to_pop): group2_samples.pop(j) # Perform the test k = 0 # Iterator for the samples in group 2 for group1_sample in group1_samples: p_fisher = [] stat_fisher = [] for i in range(len(df)): # sample names and positions control_r = df.iloc[i, int(df.columns.get_loc(group1_sample + r))] control_a = df.iloc[i, int(df.columns.get_loc(group1_sample + a))] exp_r = df.iloc[i, int(df.columns.get_loc(group2_samples[k] + r))] exp_a = df.iloc[i, int(df.columns.get_loc(group2_samples[k] + a))] # test oddsratio, pvalue = stats.fisher_exact([[exp_r, exp_a], [control_r, control_a]]) stat_fisher.append(oddsratio) p_fisher.append(pvalue) # add the multitest also multi = smt.multitest.multipletests(p_fisher, alpha=0.05, method='fdr_bh', is_sorted=False, returnsorted=False) # Make columns of the dataframe with the results fisher_pval = experiment + "_" + group1_sample + group2_samples[k] + "_Fisher_p-val" fisher_fdr = experiment + "_" + group1_sample + group2_samples[k] + "_Fisher_p-fdr" df[fisher_pval] = pd.Series(p_fisher, index=df.index) df[fisher_fdr] = pd.Series(multi[1], index=df.index) k = k + 1 return df def Fisher(df, samples, exp, experiments): for experiment in experiments: df_fisher = fisher_test(df, samples, exp, experiment) print("Fisher exact test successfully performed on all the experiments") return df_fisher def binomial(df,samples): r = "_R_.AD" a = "_A_.AD" for sample in samples: pval = [] fdr_pval = [] for i in range(len(df)): # Get the values of the rows ref = df.iloc[i, int(df.columns.get_loc(sample + r))] alt = df.iloc[i, int(df.columns.get_loc(sample + a))] total_reads = ref + alt # Perform the test binom = (sc.stats.binom_test(ref, total_reads, 0.5, alternative='two-sided')) pval.append(binom) # add the multitest also multi = smt.multitest.multipletests(pval, alpha=0.05, method='fdr_bh', is_sorted=False, returnsorted=False) col_name_binom = sample + "_Binomial_pvalue" col_name_multi = sample + "Binomial_fdr_pvalue" df[col_name_binom] = pd.Series(pval, index=df.index) df[col_name_multi] = pd.Series(multi[1], index=df.index) print("Binomial test successfully performed on all the experiments") return df def main (): # Import the files exp = pd.read_csv(snakemake.input.get("i1")) sample_names = pd.read_csv(snakemake.input.get("i3")) df_qc = pd.read_csv(snakemake.input.get("i4")) groups_df = pd.read_csv(snakemake.input.get("i2")) # Create a numpy array of arrays with the samples of each group and the total samples of the experiment groups = groups_df.values # Create a numpy array with the name of each group group_names = list(groups_df["Group"]) # Create arrays of the sample names samples = sample_names["Sample_name"].values # Create an array with the name of each experimental test experiments = list(exp["Test_ID"]) """ STATISTICAL TESTS ----------------- We implement: Chi² test for allele specific expression in each experimental group based in allele frequencies Binomial test for allelic imbalance in each sample based in allele counts Fisher exact test for allele specific expression in samples from the same individual based in allele counts A Bonferroni one-step correction will be applied to the p-values of the chi-square test and a Benjamini-Hochberg non-negative test will be applied to the Fisher and Binomial tests respectively. Chi-square test for conditions based on allele frequencies ---------------------------------------------------------- In this test we compare the allele frequencies in allelic imbalance according to the experimental design described in the file "Experimental_design.csv". It is possible to test more than one factor but it will compare them by pairs, being the "group1" the control group and the "group2" the experimental. The function used is "chisquare" from the package scipy: scipy.stats.chisquare(f_obs, f_exp=None, ddof=0, axis=0)[source]¶ Calculate a one-way chi-square test. The chi-square test tests the null hypothesis: the categorical data has the expected frequencies. Parameters f_obsarray_like Observed frequencies in each category. f_exparray_like, optional Expected frequencies in each category. By default the categories are assumed to be equally likely. ddofint, optional “Delta degrees of freedom”: adjustment to the degrees of freedom for the p-value. The p-value is computed using a chi-squared distribution with k - 1 - ddof degrees of freedom, where k is the number of observed frequencies. The default value of ddof is 0. axisint or None, optional The axis of the broadcast result of f_obs and f_exp along which to apply the test. If axis is None, all values in f_obs are treated as a single data set. Default is 0. Returns chisqfloat or ndarray The chi-squared test statistic. The value is a float if axis is None or f_obs and f_exp are 1-D. pfloat or ndarray The p-value of the test. The value is a float if ddof and the return value chisq are scalars. Chi-square for each described test ---------------------------------- This test will compare the differences between the two experimental groups described in the test. For this, the dataframe can't have allele frequencies equal to 0 for all the members of the experimental group. The formula needs the next variables: sampling size expected probability (reference allele frequency from control group) observed probability (reference allele frequency from the experimental group) NOTE: The number of samples in the control and experimental groups have to be the same. Otherwise the script will pop the extra samples in the biggest group. Also the number of samples in each group must be at least 5 Now let's perform the test. """ #os.chdir("temp") df_chi = chi_square(df_qc, samples, exp, experiments) df_chi.to_csv(snakemake.output.get("o1")) """ Fisher exact test for ASE ------------------------- This test is based on the read counts of each allele, including alternative and reference alleles. """ df_fisher = Fisher(df_chi, samples, exp, experiments) df_fisher.to_csv(snakemake.output.get("o2")) """ Binomial test ------------- The binomial test will determine the allelic imbalance in each sample by comparing the counts of the reference allele with the total counts of the SNP. This test does not compare experimental groups, but each sample. Perform the binomial tests in the read counts of the reference allele (it can be done by experimental group or by individual)(x) over the total number of reads in this group (as before, it can be done by experimental group or by individual) (n). For this analysis, the expected frequency is 0.5 and the observed allele frequency is determined for the reference allele in each individual or for the control group (p). This test will provide the p-values for the significant differences of the groups. The formula is extracted from Wikipedia and adapted to each test. In python the formula is scipy.stats.binom_test (x,n,p, alternative "two-sided"). """ df_binomial = binomial(df_fisher, samples) #os.chdir(cwd) df_binomial.to_csv(snakemake.output.get("o3")) print("Analyzed data available in " + snakemake.output.get("o3")) if __name__ == '__main__' : main() |
30
of
scripts/Stats.py
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | __author__ = "Aurora Campo" __copyright__ = "Copyright 2021, Aurora Campo, modified from git" __git__= "https://github.com/johanzi/make_pseudogenome" __email__ = "ayla.bcn@gmail.com" __license__ = "MIT" from snakemake.shell import shell #from snakemake_wrapper_utils.java import get_java_opts vcf = snakemake.input.get("vcf") out = snakemake.output.get("vcf") outvcf = out.split(".")[0] outvcfgz = outvcf + ".gz" log = snakemake.log_fmt_shell(stdout=False, stderr=True) shell( # Subset by keeping positions with GQ >= 30 and DP >=5 # Not keeping indels "vcftools " "--vcf {vcf} " "--remove-indels " "--minGQ 30 " "--minDP 5 " "--recode " "--recode-INFO-all " "--out {outvcf} " "{log}" ) |
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 | import pandas as pd import numpy as np import os from os import path from snakemake import shell log = snakemake.log_fmt_shell(stdout=False, stderr=True) def main(): """ Input the files and convert them into data frames """ # Read the dataframe and convert it into pandas dataframe. tb stands for table: tb1_colnames = pd.read_csv ( snakemake.input.get("tb_colnames") ) tb1_cols = tb1_colnames['Col_names'].values print("Cols read") #tb1 = pd.read_csv(snakemake.input.get("table"), sep = "\,|/|\t", header=None, engine = "python") tb1 = pd.read_csv(snakemake.input.get("table"), sep = "\,|/|\t", names = tb1_cols, engine = "python") print("Table read") tb1 = pd.DataFrame ( tb1 ) tb1.drop ( tb1.index[:1], inplace=True ) tb1.to_csv ( snakemake.output.get("csv") ) print("Table with correct column names is created for each pseudogenome in the folder called \"variants\".") print("Please verify the order of the samples on the new .csv table is the same as in the header of the .table file") if __name__ == '__main__': main() shell( "{log}" ) |
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 | import pandas as pd import numpy as np import os from os import path from matplotlib import pyplot as plt from math import pi from scipy.stats import uniform from scipy.stats import randint import seaborn as sns from snakemake.shell import shell from snakemake_wrapper_utils.java import get_java_opts shell.executable("bash") extra = snakemake.params.get("extra") java_opts = snakemake.params.get("java_opts") log = snakemake.log_fmt_shell(stdout=False, stderr=True) def GO_graph (df_stats,experiments): # This function plots the GO terms that show SNPs in ASE. It also produces a table with the genes and SNPs in ASE #tests=["test1","test2","test3","test4"] tests=experiments for test in tests : test_name = str(test) + "_CHI_p-fdr" if test_name in df_stats: # Table 7 index_exp = df_stats[(df_stats[test_name] >= 0.05)].index index_nan = df_stats[df_stats[test_name].isnull ()].index df_sig = df_stats.drop ( index=index_exp ) # Collect the significant SNPs in a table for this experiment df_exp = df_sig.drop ( index=index_nan ) # Drop the empty values for the tests genes_sig = df_exp["Gene_ID"].unique () results = { 'SNPs in ASE': [len(df_exp)], 'Genes containing ASE': [len(genes_sig)]} df_results = pd.DataFrame (results, columns = ['SNPs in ASE','Genes containing ASE']) PATH = os.getcwd() os.chdir("results") df_results.to_csv(test_name + "_basic_results_chi_square.csv") df_exp.to_csv(test_name + "_ASE_description_chi_square.csv") os.chdir(PATH) # GO terms analysis mega_dict = pd.read_csv ( snakemake.input.get("i1"), low_memory=False ) df_func = pd.merge ( df_stats, mega_dict, on='Gene_ID', how='right' ) df_func.to_csv ( snakemake.output.get("o1") ) GO_dict = pd.read_csv ( snakemake.input.get("i2"), low_memory=False ) df_GO = pd.merge(df_exp,GO_dict, on = "Genebank", how = "left") GO_counts = df_GO['GO term accession'].value_counts () GO_counts = pd.DataFrame(GO_counts) GO_counts.columns = ['Frequency'] GO_most = GO_counts.head(15) # Pie chart sizes = [] labels = GO_most.index.values sizes.append (GO_most['Frequency'].tolist() ) fig1, ax1 = plt.subplots () ax1.pie ( sizes[0], labels=labels, autopct='%1.1f%%', shadow=True, startangle=90 ) ax1.axis ( 'equal' ) # Equal aspect ratio ensures that pie is drawn as a circle. PATH = os.getcwd () os.chdir("results") filename = test_name + "_GO_pie_chart_chi_square.svg" plt.savefig ( filename ) plt.clf() os.chdir(PATH) else: test_name = str(test) + "_Fisher_p-fdr" # Table 7 index_exp = df_stats[(df_stats[test_name] >= 0.05)].index index_nan = df_stats[df_stats[test_name].isnull ()].index df_sig = df_stats.drop ( index=index_exp ) # Collect the significant SNPs in a table for this experiment df_exp = df_sig.drop ( index=index_nan ) # Drop the empty values for the tests genes_sig = df_exp["Gene_ID"].unique () results = { 'SNPs in ASE': [len(df_exp)], 'Genes containing ASE': [len(genes_sig)]} df_results = pd.DataFrame (results, columns = ['SNPs in ASE','Genes containing ASE']) PATH = os.getcwd() os.chdir("results") df_results.to_csv(test_name + "_basic_results_fisher_test.csv") df_exp.to_csv(test_name + "_ASE_description_fisher_test.csv") os.chdir(PATH) # GO terms analysis mega_dict = pd.read_csv ( snakemake.input.get("i1"), low_memory=False ) df_func = pd.merge ( df_stats, mega_dict, on='Gene_ID', how='right' ) df_func.to_csv ( snakemake.output.get("o1") ) GO_dict = pd.read_csv ( snakemake.input.get("i2"), low_memory=False ) df_GO = pd.merge(df_exp,GO_dict, on = "Genebank", how = "left") GO_counts = df_GO['GO term accession'].value_counts () GO_counts = pd.DataFrame(GO_counts) GO_counts.columns = ['Frequency'] GO_most = GO_counts.head(15) # Pie chart sizes = [] labels = GO_most.index.values sizes.append (GO_most['Frequency'].tolist() ) fig1, ax1 = plt.subplots () ax1.pie ( sizes[0], labels=labels, autopct='%1.1f%%', shadow=True, startangle=90 ) ax1.axis ( 'equal' ) # Equal aspect ratio ensures that pie is drawn as a circle. PATH = os.getcwd () os.chdir("results") filename = test_name + "_GO_pie_chart_fisher_test.svg" plt.savefig ( filename ) plt.clf() os.chdir(PATH) def tables_1_2(df_stats, experiments): # The columns will be the type of polymorphism, the GO terms and the relative values of these annotations. One row # correspond to a different test. # Initialize the tables and the columns that will be in table 1 and table 2: all_treatment_snp = pd.DataFrame () df_polymorphism = pd.DataFrame () df_stats = df_stats.fillna ( 1 ) # to drop rows with empty values for experiment in experiments: # Initalize the intermediate table: col_name = str ( experiment ) + "_CHI_p-fdr" if col_name in df_stats: index_exp = df_stats[(df_stats[col_name] >= 0.05)].index df_exp = df_stats.drop ( index=index_exp ) # Collect the significant SNPs in a table for this experiment df_new = pd.DataFrame () df_new[col_name] = df_exp["SNP_ID"] # Table 1 all_treatment_snp = pd.concat ( [all_treatment_snp, df_new], axis=1 ) # Table 2 func_refgene = df_exp['Func.refGene_x'].value_counts () exonicfunc_refgene = df_exp['ExonicFunc.refGene_x'].value_counts () polymorphism_exp = pd.Series ( func_refgene.append ( exonicfunc_refgene ) ) df_polymorphism = pd.concat ( [df_polymorphism, polymorphism_exp.to_frame ().T] ) df_polymorphism.rename ( index={0: col_name}, inplace=True ) # add row name that is the column of the origin else: col_name = str ( experiment ) + "_Fisher_p-fdr" index_exp = df_stats[(df_stats[col_name] >= 0.05)].index df_exp = df_stats.drop ( index=index_exp ) # Collect the significant SNPs in a table for this experiment df_new = pd.DataFrame () df_new[col_name] = df_exp["SNP_ID"] # Table 1 all_treatment_snp = pd.concat ( [all_treatment_snp, df_new], axis=1 ) # Table 2 func_refgene = df_exp['Func.refGene_x'].value_counts () exonicfunc_refgene = df_exp['ExonicFunc.refGene_x'].value_counts () polymorphism_exp = pd.Series ( func_refgene.append ( exonicfunc_refgene ) ) df_polymorphism = pd.concat ( [df_polymorphism, polymorphism_exp.to_frame ().T] ) df_polymorphism.rename ( index={0: col_name}, inplace=True ) # add row name that is the column of the origin # Table 1: all_treatment_snp.to_csv ( snakemake.output.get("o3") ) # Table 2: df_polymorphism = df_polymorphism.fillna ( 0 ) df_polymorphism.to_csv ( snakemake.output.get("o4") ) # Radar chart for all treatents : # subset SNP Function and Exonic SNP Function categories_exo = list ( df_polymorphism )[11:20] # It avoids the category "." that is non-informative print("Categories exo: ", categories_exo) df_pol_fun = df_polymorphism[2:9] df_pol_exo = df_polymorphism[categories_exo] # Polymorphism function by treatment: categories = list ( df_pol_fun )[0:] # For function of SNP 1:9. Exonic function is from 10:20 print(categories) values_list = [] angles_list = [] treatments = df_pol_fun.index.values fig, ax = plt.subplots ( nrows=1, ncols=1, figsize=(8, 8), subplot_kw=dict ( polar=True ) ) for i in range ( len ( df_pol_fun ) ): values = df_pol_fun[i:(i + 1)].values.flatten ().tolist () values += values[:1] # repeat the first value to close the circular graph values_list.append ( values ) angles = [n / float ( len ( categories ) ) * 2 * pi for n in range ( len ( categories ) )] angles += angles[:1] angles_list.append ( angles ) ax.plot ( angles_list[i], values_list[i], linewidth=1, linestyle='solid', label=treatments[i] ) ax.fill ( angles_list[i], values_list[i], alpha=0.4 ) plt.xticks ( angles[:-1], categories, color='grey', size=12 ) plt.yticks ( np.arange ( 1, 6 ), ['1', '2', '3', '4', '5'], color='grey', size=12 ) plt.ylim ( 0, 800 ) ax.set_rlabel_position ( 30 ) plt.legend ( loc='upper right', bbox_to_anchor=(0.1, 0.1) ) #plt.show () PATH = os.getcwd () os.chdir("results") plt.savefig("Polymorphism_function_by_treatment_radar_chart.svg") os.chdir(PATH) plt.clf () # Polymorphism exonic function: categories = list ( df_pol_exo )[0:] # For function of SNP 1:9. Exonic function is from 10:20 values_list = [] angles_list = [] treatments = df_pol_exo.index.values fig, ax = plt.subplots ( nrows=1, ncols=1, figsize=(8, 8), subplot_kw=dict ( polar=True ) ) for i in range ( len ( df_pol_exo ) ): values = df_pol_exo[i:(i + 1)].values.flatten ().tolist () values += values[:1] # repeat the first value to close the circular graph values_list.append ( values ) angles = [n / float ( len ( categories ) ) * 2 * pi for n in range ( len ( categories ) )] angles += angles[:1] angles_list.append ( angles ) ax.plot ( angles_list[i], values_list[i], linewidth=1, linestyle='solid', label=treatments[i] ) ax.fill ( angles_list[i], values_list[i], alpha=0.4 ) plt.xticks ( angles[:-1], categories, color='grey', size=12 ) plt.yticks ( np.arange ( 1, 6 ), ['1', '2', '3', '4', '5'], color='grey', size=12 ) plt.ylim ( 0, 400 ) ax.set_rlabel_position ( 30 ) plt.legend ( loc='upper right', bbox_to_anchor=(0.1, 0.1) ) PATH = os.getcwd () os.chdir("results") plt.savefig("Polymorphism_exonic_function_by_treatment.svg") os.chdir(PATH) plt.clf () # Pie charts : labels = df_polymorphism.columns styles = list ( plt.style.available ) for i in range ( (df_polymorphism.shape[0]) ): sizes = [] # Using iloc to access the values of # the current row denoted by "i" plt.style.use ( styles[5] ) sizes.append ( list ( df_polymorphism.iloc[i, :] ) ) fig1, ax1 = plt.subplots () ax1.pie ( sizes[0], labels=labels, autopct='%1.1f%%', shadow=True, startangle=90 ) ax1.axis ( 'equal' ) # Equal aspect ratio ensures that pie is drawn as a circle. #plt.show () PATH = os.getcwd () os.chdir("results") filename = df_polymorphism.index.values[i] + "_pie_chart.svg" plt.savefig(filename) os.chdir(PATH) plt.clf () def heatmap(df, group_names): # This heatmap illustrates the allele frequencies for the genomic positions for identifying regions in AI af_groups = [] for group_name in group_names: af_group = "AF_" + group_name af_groups.append ( af_group ) htmap = df[af_groups] sns.heatmap ( htmap, cmap='YlGnBu' ) #plt.show () PATH = os.getcwd () os.chdir("results") plt.savefig("Heatmap.svg") os.chdir(PATH) plt.clf () def table5(df_stats): # This part of the analysis have to be adapted to the different strings on each genome identifying chromosomes and scaffolds index_scf = df_stats[df_stats['CHROM'].str.match ( r'^NC_' )].index # Substitute the chain NC_ by the pattern on the genome of the organism you work with df_scf = df_stats.drop ( index_scf ) intronic_scf = df_scf["Func.refGene_x"].value_counts () exonic_scf = df_scf["ExonicFunc.refGene_x"].value_counts () index_chrom = df_stats[df_stats['CHROM'].str.match ( r'^NW_' )].index # Substitute the chain NW_ by the pattern on the genome of the organism you work with df_chrom = df_stats.drop ( index_chrom ) intronic_chrom = df_chrom["Func.refGene_x"].value_counts () exonic_chrom = df_chrom["ExonicFunc.refGene_x"].value_counts () print("Intronic chrom: ",intronic_chrom) print("Exonic chrom: ", exonic_chrom) # Create pandas DataFrame. data = { 'Intronic': [sum ( intronic_chrom ) - intronic_chrom["exonic"], sum ( intronic_scf ) - intronic_scf["exonic"]], 'Exonic': [sum ( exonic_chrom ) - exonic_chrom["."], sum ( exonic_scf ) - exonic_scf["."]]} table5 = pd.DataFrame ( data, index=["Chromosome", "Scaffold"] ) table5["Intronic %"] = table5["Intronic"] * 100 / (table5["Intronic"] + table5["Exonic"]) table5["Exonic %"] = table5["Exonic"] * 100 / (table5["Intronic"] + table5["Exonic"]) table5.to_csv ( snakemake.output.get("o5") ) def Manhattan_plot(df_stats, experiments): # This function builds a Manhattan plot #plt.rcParams.update ( {'font.size': 10} ) for experiment in experiments: index_chrom = df_stats[df_stats['CHROM'].str.match ( r'^NW_' )].index df_chrom = df_stats.drop ( index_chrom ) df = pd.DataFrame ( {"SNP": df_chrom["SNP_ID"], "pvalue": df_chrom[str ( experiment ) + "_CHI_p-val"], "Chromosome": df_chrom["CHROM"]} ) # -log_10(pvalue) df['minuslog10pvalue'] = -np.log10 ( df.pvalue ) df.Chromosome = df.Chromosome.astype ( 'category' ) df = df.sort_values ( 'Chromosome' ) # How to plot gene vs. -log10(pvalue) and colour it by chromosome? df['ind'] = range ( len ( df ) ) df_grouped = df.groupby ( 'Chromosome' ) fig = plt.figure () ax = fig.add_subplot ( 111 ) colors = ( "#a7414a", "#696464", "#00743f", "#563838", "#6a8a82", "#a37c27", "#5edfff", "#282726", "#c0334d", "#c9753d") # colors = ['red', 'green', 'blue', 'yellow'] x_labels = [] x_labels_pos = [] for num, (name, group) in enumerate ( df_grouped ): group.plot ( kind='scatter', x='ind', y='minuslog10pvalue', color=colors[num % len ( colors )], ax=ax ) x_labels.append ( name ) x_labels_pos.append ( (group['ind'].iloc[-1] - (group['ind'].iloc[-1] - group['ind'].iloc[0]) / 2) ) ax.set_xticks ( x_labels_pos ) ax.set_xticklabels ( x_labels ) ax.set_xlim ( [0, len ( df )] ) ax.set_ylim ( [0, 2] ) ax.set_xlabel ( 'Chromosome' ) #plt.show () PATH = os.getcwd () os.chdir("results") plt.savefig(experiment + "_Manhattan_plot.svg") os.chdir(PATH) plt.clf () def main(): """ Read the files """ df_stats = pd.DataFrame ( pd.read_csv ( snakemake.input.get("i3") ) ) sample_names = pd.DataFrame ( pd.read_csv ( snakemake.input.get("i4")) ) groups_df = pd.DataFrame ( pd.read_csv ( snakemake.input.get("i5") ) ) exp = pd.DataFrame ( pd.read_csv ( snakemake.input.get("i6") ) ) # Rename the key Gene ID and add the Genebank accessions for further analysis df_stats.rename ( columns={"Gene.refGene_x": "Gene_ID"}, inplace=True ) # Read the dictionaries and merge with the df: dict = pd.read_csv ( snakemake.input.get("i7") ) df_stats = df_stats.merge ( dict, on='Gene_ID', how='left' ) # Create a numpy array of arrays with the samples of each group and the total samples of the experiment groups = groups_df.values # Create a numpy array with the name of each group group_names = list ( groups_df.columns[0] ) # Create arrays of the sample names samples = sample_names["Sample_name"].values # Create an array with the name of each experimental test experiments = list ( exp["Test_ID"] ) """ SNP_ID and dictionary """ # Create a column for SNP_ID df_stats["SNP_ID"] = df_stats.index SNP_dictionary = df_stats[['SNP_ID', 'CHROM', 'POS', 'Gene_ID', 'Func.refGene_x', 'ExonicFunc.refGene_x']] SNP_dictionary.to_csv ( snakemake.output.get("o2") ) """ Physiological function: This table will include a column for each treatment (CHI²) and a row for each GO function. The cell content will be the % of SNPs in each GO function for treatment. Table 7 """ GO_graph ( df_stats, experiments ) """ 1 Treatment table: one column for the SNP_IDs from each treatment (significant for each CHI²). The number of columns will vary with each experimental setup This table will be used for a Venn diagram 2 Types of polymorphism by test: the columns will be the type of polymorphism, the GO terms and the relative values of these annotations. One row correspond to a different Chi² test. """ tables_1_2 ( df_stats, experiments ) """ 5 Compare the % of intronic and exonic SNPs (from the total SNPs) in Scaffolds and in Chromosomes. The columns will be intronic and exonic and there will be two rows: Chromosomes and Scaffolds. PLOT HEATMAP ------------ Use the csv file produced in the control quality for plotting the allele frequencies of each experimental group. The matrix has to be specific for allele frequencies per group and Chromosome position. Now make a general comparison between treatments. Most of the colors in these graphs are or 0 or 1, since they correspond to the allelic imbalance with significance. """ heatmap ( df_stats, group_names ) table5 ( df_stats ) """ MANHATTAN PLOT -------------- A Mannhattan plot for each test for ASE SNPs will be performed. """ Manhattan_plot ( df_stats, experiments ) if __name__ == '__main__': main () |
59
of
scripts/Tables.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | __author__ = "Aurora Campo" __copyright__ = "Copyright 2021, Aurora Campo" __email__ = "ayla.bcn@gmail.com" __license__ = "MIT" import os from snakemake.shell import shell from snakemake_wrapper_utils.java import get_java_opts # Get the variables #extra = snakemake.params.get("extra") java_opts = get_java_opts(snakemake) log = snakemake.log_fmt_shell(stdout=True, stderr=True) trimmer =snakemake.params.get("trimmer") threads = snakemake.threads input_r1 = snakemake.input.get("r1") input_r2 = snakemake.input.get("r2") output_r1 = snakemake.output.get("r1") output_r2 = snakemake.output.get("r2") output_r1_unp = snakemake.output.get("r1_unpaired") output_r2_unp = snakemake.output.get("r2_unpaired") path = snakemake.params.get("path") shell( "java -XX:ParallelGCThreads={threads} {java_opts} -jar {path} PE "#-threads {threads} {java_opts} "#"{extra} " "-phred64 " "-validatePairs " "./{input_r1} " "./{input_r2} " "./{output_r1} " "./{output_r1_unp} " "./{output_r2} " "./{output_r2_unp} " "{trimmer} "#"ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10:8:TRUE" "{log}" ) |
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | __author__ = "Aurora Campo" __copyright__ = "Copyright 2022, Aurora Campo" __email__ = "ayla.bcn@gmail.com" __license__ = "MIT" import os from snakemake.shell import shell from snakemake_wrapper_utils.java import get_java_opts # Get the variables #extra = snakemake.params.get("extra") java_opts = get_java_opts(snakemake) log = snakemake.log_fmt_shell(stdout=True, stderr=True) trimmer =snakemake.params.get("trimmer") threads = snakemake.params.get("threads") input_r1 = snakemake.input.get("r1") print(input_r1) output_r1 = snakemake.output.get("r1") path = snakemake.params.get("path") shell( "java -XX:ParallelGCThreads={threads} {java_opts} -jar {path} SE "#-threads {threads} {java_opts} "#"{extra} " "-phred64 " "./{input_r1} " "./{output_r1} " "{trimmer} "#"ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10:8:TRUE" "{log}" ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 | __author__ = "Aurora Campo" __copyright__ = "Copyright 2021, Aurora Campo" __email__ = "ayla.bcn@gmail.com" __license__ = "MIT" import os import pandas as pd import numpy as np from os import path from os.path import exists from snakemake.shell import shell from snakemake_wrapper_utils.java import get_java_opts shell.executable("bash") """ FILTER SNPs that are wrongly called by using the SNPs from the genome call. """ extra = snakemake.params.get("extra") java_opts = snakemake.params.get("java_opts") log = snakemake.log_fmt_shell(stdout=False, stderr=True) def main(): # Input the files and convert them into data frames SNPs2val = snakemake.input.get("result1") valid = snakemake.output.get("result4") error = snakemake.output.get("error") SNPs2val = pd.read_csv(SNPs2val, low_memory=False) SNPs2val = pd.DataFrame(SNPs2val) # if str(os.path.exists("config/AD_GT_counts_bi_DNA.csv"))==True: geno_df = pd.read_csv("config/AD_GT_counts_bi_DNA.csv", low_memory=False) geno_df = pd.DataFrame(geno_df) coincident = pd.merge(SNPs2val, geno_df, how="inner", on=["CHROM", "POS"]) print("SNPs retrieved from the pipeline: ",len(SNPs2val),"; Valid SNPs: ", len(coincident)) coincident.to_csv(valid) error = ((len(SNPs2val) - len(coincident)) * 100) / len(SNPs2val) print("Error: ", error) data = np.array([["SNPs retrived from the pipeline",len(SNPs2val)], ["Valid SNPs",len(coincident)], ["Error in SNP calling",error]]) # {"SNPs retrived from the pipeline":len(SNPs2val),"Valid SNPs":len(coincident),"Error in SNP calling":error} df = pd.DataFrame(data) df.to_csv(error) else: SNPs2val=coincident coincident.to_csv(valid) print("Error: You need to call the SNPs from DNA in order to get the data for validation.") text_file = open(error, "w") text_file.write("Error: You need to call the SNPs from DNA in order to get the data for validation.") text_file.close() if __name__ == '__main__': main() shell( "{log}" ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | __author__ = "Aurora Campo" __copyright__ = "Copyright 2020, Aurora Campo" __email__ = "ayla.bcn@gmail.com" __license__ = "CC" from snakemake.shell import shell from snakemake_wrapper_utils.java import get_java_opts extra = snakemake.params.get("extra", "") java_opts = get_java_opts(snakemake) log = snakemake.log_fmt_shell(stdout=True, stderr=True) shell( "gatk --java-options '{java_opts}' " "VariantsToTable " "-R {snakemake.input.ref} " "-V {snakemake.input.vcf} " "{extra} " "-O {snakemake.output.vcf} {log}" ) |
17 18 | script: "scripts/selectvariants.py" |
19 20 | script: "scripts/splitncigarreads.py" |
19 20 | script: "scripts/splitncigarreads.py" |
19 20 | script: "scripts/star_gi.py" |
37 38 | script: "scripts/createsequencedictionary.py" |
55 56 | script: "scripts/faidx.py" |
27 28 | script: "scripts/star.py" |
28 29 | script: "scripts/star.py" |
24 25 | script: "scripts/star_se.py" |
25 26 | script: "scripts/star_se.py" |
19 20 | script: "scripts/qc.py" |
43 44 | script: "scripts/Stats.py" |
67 68 | script: "scripts/Stats.py" |
13 14 | script: "scripts/subset_ref_vcf.py" |
9 10 11 12 13 | run: shell("sed 's/|/\//g' {input.table1} > {params.char} ") shell("awk 'seen[$1,$2]++' {params.char} > {params.multi}") #Collect SNPs with same chromosome and position thus are multiallelic by duplication of CHROM and POS columns 1 and 2 shell("awk -F'\t' 'NR==FNR{{a[$1,$2]++;next}} !(a[$1,$2])' {params.multi} {params.char} > {output.table1} ") # Eliminate the rows collected as multiallelic previously shell("rm {params.char} {params.multi}") # Eliminate intermediary files |
30 31 | script: "scripts/table2df_step2.py" |
24 25 | script: "scripts/trimmomatic_pe.py" |
20 21 | script: "scripts/trimmomatic_se.py" |
18 19 | shell: "validatesamfile.py" |
17 18 | script: "scripts/variantstotable.py" |
17 18 | script: "scripts/mergedataframes.py" |
38 39 | script: "scripts/biallelicsites.py" |
59 60 | script: "scripts/average.py" |
80 81 | script: "scripts/ad10.py" |
102 103 | script: "scripts/genotype.py" |
123 124 | script: "scripts/ASE_workflow_MAE.py" |
147 148 | script: "scripts/valid.py" |
Support
- Future updates
Related Workflows





