A Snakemake based modular Workflow that facilitates RNA-Seq analyses with a special focus on splicing
Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output, operation, topic
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
About
A Snakemake based modular Workflow that facilitates RNA-Seq analyses with a special focus on the exploration of differential splicing behaviours.
Table of contents
SnakeSplice Modules
The given parent workflow is a wrapper workflow, which includes the following sub-workflows (called modules): \
-
Module1: Quality Control, Preprocessing and Alignment
-
Module2: Gene Fusion Detection
-
Module3: Transcript Quantification & Expression Analysis
-
Module4: Splice Pattern Analysis
Software Requirements
-
Conda: Conda Webpage
-
Snakemake: Snakemake Webpage
-
For PEP required:
-
peppy is required and can be installed via Conda:
conda install -c conda-forge peppy
-
eido required is required and can be installed via Conda:
conda install -c conda-forge eido
-
Usage
Input Data
The input data for this workflow is provided via a sample sheet (default location:
input_data/input_samples.csv
),
whereby the structure of the sample sheet is defined by the PEP (file
pep/pep_schema_config.yaml
) file.
General structure of the sample sheet
The sample sheet is a tabular file, which consists of the following columns:
Column | Description | Required |
---|---|---|
sample_name | Name/ID of the sample | YES |
sample_directory | Path to the directory, where the sample data (FASTQ-files) are located. This information is only used if the FASTQ-files are needed. | YES (depending on tool selection) |
read1 | Name of the FASTQ-file for read1 sequences | YES (depending on tool selection) |
read2 | Name of the FASTQ-file for read2 sequences | YES (depending on tool selection) |
control | true or false (if true, the sample is treated as control sample) | YES |
condition | Name of the condition (e.g. treatment group) | YES |
protocol | Name of the protocol (e.g. RNAseq-PolyA). This information is not yet used... | NO |
stranded | No, if library is unstranded, yes if library is stranded, reverse if library is reverse stranded | YES |
adaptors_file | Path to the file, which contains the adaptors for the sample | YES (depending on tool selection) |
additional_comment | Additional comment for the sample | NO |
Note
: Currently, the entries for the columns
protocol
and
additional_comment
are not used.
Note
: The entries "read1", read2" and "adaptors_file" are marked as mandatory, as they are needed for the execution of the alignment workflow. However, if the user has already aligned the samples, these columns can be either filled with dummy data (make sure the references files exist!), or one can manipulate the PEP-file (path:
pep/pep_schema_config.yaml
) to make these columns optional.
Starting with FASTQ files
SnakeSplice supports the execution of the workflow starting with FASTQ files.
In this case, the sample sheet has to be filled with the information about the FASTQ files (see above).
Note
: The FASTQ files have to be located in the same directory, which is specified in the column
sample_directory
of the sample sheet.
Starting with BAM files
SnakeSplice also supports the execution of the workflow starting with BAM files.
In this case the location and further information of the BAM-files have to be specified in the respective configuration files (path:
config_files/config_moduleX.yaml
).\
Reference files
Some tools require reference files, which need to be user-provided.
The location of these reference files have to be specified in the respective configuration files (path:
config_files/config_moduleX.yaml
).
Our recommendation : We recommend to use the same reference files for all samples, as the reference files are not adjusted to the samples.
Reference genome and gene annotation file
We recommend an analysis set reference genome. Its advantages over other common forms of reference genomes can
be read
here
.
Such a reference genome can be downloaded from the UCSC Genome Browser.
-
Download a suitable FASTA-file of reference genome (e.g. analysis set reference genome for hg19): Example link for hg19 reference genome
-
Further annotation files can be downloaded from the UCSC Genome Browser. Example link for hg19 gene annotation file
-
Some tools explicitly require ENSEMBL-based annotations: ENSEMBL Downloads
Configurations
The respective workflow settings can be adjusted via the configuration files, which
are placed in the directory
config_files
.
In this folder is a
config_main.yaml
-file, which holds the general settings for the
workflow.
Additionally, every sub-workflow/module has its own
config_module{X}_{module_name}.yaml
-file, which lists the settings for the
respective sub-workflow.
Main Configuration File -
config_files/config_main.yaml
This configuration file holds the general settings for this master workflow. It consists of 2 parts:
-
Module switches -
module_swiches
:
Here, the user can switch on/off the sub-workflows/modules, which should be executed. Note : Submodule 1 has to be run first alone, as the output of this submodule is used as input for the other submodules. Subsequently, the other modules can be run in (almost) any order. -
Module output directory names -
module_output_dir_names
:
Every submodule saves their output in a separate sub-directory of the main output directoryoutput
.
The names of these sub-directories can be adjusted here.
Specific Module Configuration Files
Every submodule has its own configuration file, which holds the settings for the respective submodule.
The configuration files are located in the directory
config_files
and have the following naming scheme:
config_module{X}_{module_name}.yaml
, where
X
is the number of the submodule and
module_name
is the name of the submodule.
The configuration files are structured in the following way:
-
switch variables -
switch_variables
: Here, the user can switch on/off the different steps of the submodule. -
output directories -
output_directories
: Here, the user can adjust the names of the output directories per tool. -
bam files attributes -
bam_files_attributes
: Some tools require additional information about the BAM files, which are not provided in the sample sheet. This information can be specified here. -
tool-specific settings -
tool_specific_settings
: Here, the user can adjust the settings for the different tools, which are used in the submodule.
Configure the execution of SnakeSplice
Since the execution of SnakeSplice is based on Snakemake, the user can configure the execution of SnakeSplice via the command line or via a profile configuration file.
Command line
The user can configure the execution of SnakeSplice via the command line.
Details regarding the configuration of Snakemake via the command line can be found
here
.
Predefined configuration profiles
A profile configuration file can be used to summarize all desired settings for the snakemake execution.
SnakeSplice comes with two predefined profile configuration files, which can be found in the directory
config_files/profiles
.
-
profile_config_local.yaml
:\ A predefined profile configuration file for the execution on a local machine. -
profile_config_cluster.yaml
:\ A predefined profile configuration file for the execution on a cluster (using SLURM).
This workflow offers a predefined profile configuration file for the execution on a cluster (using SLURM).
The respective setting options are listed and explained below.
Note
: Go to the bottom of this file to find out, how to execute Snakemake using this profile-settings file.
Command line argument | Default entry | Description |
---|---|---|
--use-conda
|
True | Enables the use of conda environments (and Snakemake wrappers) |
--keep-going
|
True | Go on with independent jobs, if one job fails |
--latency-wait
|
60 | Wait given seconds if an output file of a job is not present after the job finished. |
--rerun-incomplete
|
True | Rerun all jobs where the output is incomplete |
--printshellcmds
|
True | Printout shell commands that will be executed |
--jobs
|
50 | Number of jobs / rules to run (maximal) in parallel |
--default-resources
|
[cpus=1, mem_mb=2048, time_min=60] | Default resources for each job (can be overwritten in the rule definition) |
--resources
|
[cpus=100, mem_mb=500000] | Resource constraints for the whole workflow |
--cluster
|
"sbatch -t {resources.time_min} --mem={resources.mem_mb} -c {resources.cpus} -o logs_slurm/{rule}.%j.out -e logs_slurm/{rule}.%j.out --mail-type=FAIL --mail-user=user@mail.com" | Cluster command for the execution on a cluster (here: SLURM) |
Execution
Steps for simple execution of SnakeSplice
-
Activate Conda-Snakemake environment
conda activate snakemake
-
Execute Workflow (you can adjust the passed number of cores to your desire...)
snakemake -s Snakefile --cores 4 --use-conda
-
Run Workflow in background
rm nohup.out && nohup snakemake -s Snakefile --cores 4 --use-conda &
Visualization & Dry Runs
-
Visualize DAG of jobs
snakemake --dag | dot -Tsvg > dag.svg
-
Dry run -> Get overview of job executions, but no real output is generated
snakemake -n -r --cores 4
Cluster: Execute Snakemake workflow on a HPC cluster
-
Adjust settings in profile-settings file (e.g. here in
profiles/profile_cluster/config.yaml
). -
Execute workflow
mkdir -p logs_slurm && rm nohup.out || true && nohup snakemake --profile profiles/profile_cluster &
Monitor execution stats on a HPC cluster with SLURM
sacct -a --format=JobID,User,Group,Start,End,State,AllocNodes,NodeList,ReqMem,MaxVMSize,AllocCPUS,ReqCPUS,CPUTime,Elapsed,MaxRSS,ExitCode -j <job-ID>
Explanation:
-
-a
: Show jobs for all users -
--format=JobID...
: Format output
Kill cluster jobs
killall -TERM snakemake
Node stats on SLURM cluster
sinfo -o "%n %e %m %a %c %C"
Report creation
After the successful execution of SnakeSplice, a self-contained HTML-report can be generated.
The report can be generated by executing the following command:
snakemake --report report.html
Code Snippets
41 42 | script: "../../scripts/create_report_html_files.R" |
63 64 65 66 67 | shell: "python {params.script} " "--input_gtf_file {input} " "--output_gtf_file {output} " "--log_file {log}" |
80 81 | shell: "sort -k1,1 -k4,4n -k5,5nr {input.gtf_file} > {output.sorted_gtf_file} 2> {log}" |
106 107 | shell: "alfa -a {input.gtf_file} -g {params.alfa_genome_index_name} -o {output.output_index_dir} -p {threads} 2> {log}" |
148 149 150 151 152 153 | shell: "alfa -g {params.alfa_genome_index_name} " "--bam {input.input_bam_file} {wildcards.sample_id} " "-o {output[0]} " "--processors {threads} " "2> {log}" |
194 195 | script: "../scripts/alfa_summary_analysis.py" |
27 28 | wrapper: "v1.21.4/bio/bamtools/stats" |
42 43 | wrapper: "v1.21.4/bio/bamtools/stats" |
54 55 | shell: "tail -n 13 {input} | head -n 12 | cut -f 1 > {output} 2> {log}" |
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 | run: import pandas as pd # Open all TSV-files of input, transpose them and merge them into one dataframe # Keep filename as row name df_list = [] for file in input: current_df = pd.read_csv(file, sep=":\s*", engine="python", header=None, index_col=0) current_df = current_df.transpose() current_df["BAM-file"] = os.path.basename(file) df_list.append(current_df) # Finalize column order and output merged dataframe output_df = pd.concat(df_list, axis=0) cols = output_df.columns.tolist() final_cols = cols[-1:] + cols[:-1] output_df = output_df[final_cols] output_df.to_csv(output[0], sep="\t", index=False) |
113 114 | script: "../../../scripts/create_report_html_files.R" |
26 27 28 29 30 | shell: "mkdir -p {params.output_dir} && " "wget -O {output.output_file}.gz {params.ensembl_all_cdna_fasta_file_link};" "cd {params.output_dir};" "gunzip {params.gz_file}" |
44 45 46 47 48 | shell: "mkdir -p {params.output_dir} && " "wget -O {output.output_file}.gz {params.ensembl_gtf_file_link} && " "cd {params.output_dir};" "gunzip {params.gz_file}" |
69 70 71 72 73 | shell: "check_strandedness " "--transcripts {input.transcripts_file} " "--gtf {input.annotation_file} " "--reads_1 {input.r1} --reads_2 {input.r2} > {output[0]} 2> {log};" |
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 | run: # Iterate over all input files and read lines 9-13 and put them into a pandas table # Then save table into CSV-file import pandas as pd col0_key = "sample" col1_key = "Fraction of reads failed to determine strandedness" col2_key = "Fraction of reads explained by FR" col3_key = "Fraction of reads explained by RF" col4_key = "Summary" col5_key = "Conclusion" col6_key = "stranded-value" table = pd.DataFrame(columns=[col0_key, col1_key, col2_key, col3_key, col4_key, col5_key]) for sample_file in input: sample_name = sample_file.split("/")[-1].split(".")[0] with open(sample_file, "r") as f: lines = f.readlines() # Add row to table row = pd.DataFrame([[sample_name, lines[-5].split(":")[1].strip(), lines[-4].split(":")[1].strip(), lines[-3].split(":")[1].strip(), lines[-2].strip(), lines[-1].strip()]], columns=[col0_key, col1_key, col2_key, col3_key, col4_key, col5_key]) table = table.append(row, ignore_index=True) # Add column with annotations for the sample configuration file table[col6_key] = "ERROR: strandedness could not be determined" # "no" for unstranded data table.loc[table[col5_key].str.contains("unstranded"), col6_key] = "no" # If the conclusion contains "RF/fr-firststrand" then set the value to "reverse", otherwise to "yes" table.loc[table[col5_key].str.contains("RF/fr-firststrand"), col6_key] = "reverse" table.loc[table[col5_key].str.contains("FR/fr-secondstrand"), col6_key] = "yes" table.to_csv(output[0], index=False) |
144 145 | script: "../../../scripts/create_report_html_files.R" |
158 159 160 | shell: "rm -rf ./stranded_test_*; " "rm -rf ./kallisto_index; " |
50 51 52 53 54 | shell: "multiBamSummary bins --minMappingQuality {params.min_map_quality} {params.region} " "--verbose --numberOfProcessors {threads} --bamfiles {input.bam_file_paths} " "--outFileName {output.compressed_numpy_array} --outRawCounts {output.raw_read_counts_file} " "2> {log}" |
82 83 | shell: "plotPCA -in {input} -o {output[0]} --plotTitle \"{params.plot_title}\" {params.extras} 2> {log}" |
21 22 | wrapper: "0.79.0/bio/fastqc" |
39 40 | wrapper: "0.79.0/bio/fastqc" |
31 32 33 34 | shell: "wget {params.minikraken2_v1_db_link};" "tar -xvzf {params.download_file};" "mv {params.download_file} {output.db_dir};" |
69 70 71 72 73 | shell: "kraken2 --use-names --threads {threads} --db {params.kraken2_db} " "--report {output.kraken2_report} " "--paired {input.r1} {input.r2} " "> {output.kraken2_kmer_mapping} 2> {log}" |
57 58 | wrapper: "v0.86.0/bio/multiqc" |
28 29 30 31 32 33 | shell: "mkdir -p {params.olego_dir};" "cd {params.olego_dir};" "git clone {params.olego_url};" "cd olego;" "make" |
55 56 | shell: "{params.olego_installation_dir}/olegoindex {input} 2> {log}" |
84 85 86 | shell: "{params.olego_installation_dir}/olego -v -t {threads} -r {params.r} -M {params.M} -o {output} " "{params.ref_index} {input[0]} 2> {log}" |
109 110 | shell: "perl {params.olego_installation_dir}/mergePEsam.pl -v {input[0]} {input[1]} {output} 2> {log}" |
127 128 | wrapper: "v1.14.0/bio/samtools/view" |
149 150 | wrapper: "v1.14.0/bio/samtools/sort" |
169 170 | wrapper: "v1.14.0/bio/samtools/index" |
191 192 | shell: "perl {params.olego_installation_dir}/sam2bed.pl -v --use-RNA-strand {input} {output} 2> {log}" |
208 209 | shell: "perl {params.olego_installation_dir}/bed2junc.pl {input} {output} 2> {log}" |
27 28 | wrapper: "0.80.2/bio/star/index" |
69 70 | wrapper: "v1.21.0/bio/star/align" |
82 83 | shell: "mv {input} {output}" |
104 105 | wrapper: "v1.21.0/bio/samtools/sort" |
124 125 | wrapper: "v1.14.0/bio/samtools/index" |
61 62 | wrapper: "v1.12.2/bio/trimmomatic/pe" |
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | import os if __name__ == '__main__': # input input_bam_files = snakemake.input.bam_files # output output_dir = snakemake.output[0] # log file log_file = snakemake.log[0] # params alfa_genome_index_name = snakemake.params.alfa_genome_index_name nr_processes = snakemake.threads # Creates a string of bam-files and their respective labels. # Format: BAM_FILE1 LABEL1 [BAM_FILE2 LABEL2 …] bam_files_and_labels = " ".join(["{0} {1}".format(bam_file, bam_file.replace(".sorted.bam", "").split("/")[-1]) for bam_file in input_bam_files]) command = "alfa -g {alfa_genome_index_name} "\ "--bam {bam_files_with_labels} "\ "-o {output_dir} "\ "--processors {threads} "\ "2> {log}".format(alfa_genome_index_name=alfa_genome_index_name, bam_files_with_labels=bam_files_and_labels, output_dir=output_dir, threads=nr_processes, log=log_file) os.system(command) # execute command |
48 49 | wrapper: "v1.12.0/bio/arriba" |
66 67 68 69 70 71 72 73 74 75 76 77 78 79 | run: import pandas as pd import os # Concat all input fusion files, and add a column with the sample_id as first column df = pd.concat([pd.read_csv(f, sep="\t").assign(sample_id=os.path.basename(f).split(".")[0]) for f in input.fusions]) # Place sample_id as first column cols = df.columns.tolist() cols = cols[-1:] + cols[:-1] df = df[cols] # Save the summary table df.to_csv(output.summary, sep="\t", index=False) |
110 111 | script: "../../../scripts/create_report_html_files.R" |
56 57 | script: "../scripts/deseq2/gene_set_enrichment_analysis.R" |
100 101 | script: "../../../scripts/create_report_html_files.R" |
154 155 | script: "../scripts/deseq2/gene_set_enrichment_analysis.R" |
198 199 | script: "../../../scripts/create_report_html_files.R" |
26 27 28 29 30 31 32 | shell: "samtools view -h {input} | " "awk 'BEGIN {{OFS=\"\t\"}} {{" "split($6,C,/[0-9]*/); split($6,L,/[SMDIN]/); " "if (C[2]==\"S\") {{$10=substr($10,L[1]+1); $11=substr($11,L[1]+1)}}; " "if (C[length(C)]==\"S\") {{L1=length($10)-L[length(L)-1]; $10=substr($10,1,L1); $11=substr($11,1,L1); }}; " "gsub(/[0-9]*S/,\"\",$6); print}}' - >{output}" |
76 77 78 79 80 81 82 83 84 85 86 | shell: 'cufflinks ' '--num-threads {threads}' ' --library-type {params.library_type}' ' --GTF-guide {params.gtf_file}' # use reference transcript annotation to guide assembly, but also includes novel transcripts ' --frag-bias-correct {params.ref_seq} ' # use bias correction - reference fasta required ' --min-isoform-fraction {params.min_isoform_fraction}' # suppress transcripts below this abundance level (compared with major isoform of the gene) ' --min-frags-per-transfrag {params.min_frags_per_transfrag}' # assembled transfrags supported by fewer than this many aligned RNA-Seq fragments are ignored ' --output-dir {params.output_dir} ' '{params.extra_options}' # additional options '{input}' |
101 102 103 | run: with open(output.all_transcriptome_assemblies_file, 'w') as out: print(*input, sep="\n", file=out) |
125 126 127 128 129 130 | shell: 'cuffmerge -o {params.output_dir}' ' -g {params.gtf_file} ' ' -s {params.ref_seq} ' ' -p {threads} ' '{input}' |
209 210 211 212 213 214 215 216 217 | shell: 'cuffdiff ' '--num-threads {threads} ' '--output-dir {params.output_dir} ' '--labels {params.labels} ' '--frag-bias-correct {params.ref_seq} ' '{params.extra_options} ' '{input.merged_cufflinks_transcriptomes_gtf} ' '{params.ctrl_replicates} ' |
267 268 | script: "../../../scripts/create_report_html_files.R" |
33 34 | script: "../scripts/cummerbund_script.R" |
46 47 | script: "../scripts/deseq2/gene_expression_analysis_with_deseq2.R" |
90 91 | script: "../scripts/deseq2/gene_expression_analysis_with_deseq2.R" |
100 101 102 103 104 105 106 107 108 109 110 111 | run: import pandas as pd df = pd.read_csv(input.deseq2_results, sep=",") # filter for significant results (adjusted p-value < 0.10) df = df[df["padj"] < 0.10] # rename first column df = df.rename(columns={df.columns[0]: "subject"}) # write to file df = df.sort_values(by=["padj"]) df.to_csv(output[0], sep=",", index=False) |
148 149 | script: "../../../scripts/create_report_html_files.R" |
185 186 | script: "../../../scripts/create_report_html_files.R" |
22 23 | script: "../scripts/deseq2/create_deseq_dataset_object.R" |
71 72 | script: "../scripts/deseq2/explore_deseq_dataset.R" |
118 119 | script: "../scripts/deseq2/explore_deseq_dataset.R" |
21 22 | wrapper: "v1.19.2/bio/kallisto/index" |
85 86 | wrapper: "v1.19.2/bio/kallisto/quant" |
106 107 108 109 110 111 112 113 114 115 116 117 118 | run: all_controls_table = pep.sample_table[pep.sample_table["sample_name"].isin(params.control_samples)] all_condition_table = pep.sample_table[pep.sample_table["sample_name"].isin(params.condition_samples)] # Create a table with all samples all_samples_table =all_controls_table.append(all_condition_table) # Add the quant.sf files to the table results_dir_path = os.path.dirname(input.quant_dirs[0]) abundance_file_path = os.path.join(results_dir_path, "quant_results_{sample_id}", "abundance.h5") all_samples_table["kallisto_results_file"] = \ all_samples_table.apply(lambda row: abundance_file_path.replace("{sample_id}", row["sample_name"]), axis=1) # Save output table |
30 31 32 33 34 | shell: "python {params.script} " "--input_gtf_file {input} " "--output_gtf_file {output} " "--log_file {log}" |
78 79 80 81 82 83 84 85 | shell: "htseq-count " "-n {threads} " "--format {params.format} " "--order {params.order} " "--stranded {params.stranded} " "--additional-attr {params.add_attribute} " "{input.bam_file} {input.gtf_file} >{output.count_file} 2>{log}" |
104 105 | script: "../scripts/outrider/merge_htseq_count_files.R" |
156 157 | script: "../scripts/outrider/outrider_create_analysis_object.R" |
204 205 | script: "../scripts/outrider/outrider_explore_results.R" |
237 238 | script: "../../../scripts/create_report_html_files.R" |
23 24 | wrapper: "v1.19.2/bio/salmon/decoys" |
63 64 | wrapper: "v1.19.2/bio/salmon/index" |
112 113 | wrapper: "v1.19.2/bio/salmon/quant" |
132 133 134 135 136 137 138 139 140 141 142 143 144 145 | run: all_controls_table = pep.sample_table[pep.sample_table["sample_name"].isin(params.control_samples)] all_condition_table = pep.sample_table[pep.sample_table["sample_name"].isin(params.condition_samples)] # Create a table with all samples all_samples_table =all_controls_table.append(all_condition_table) # Add the quant.sf files to the table results_dir_path = os.path.dirname(os.path.dirname(input.quant_files[0])) quant_file_path = os.path.join(results_dir_path, "quant_results_{sample_id}", "quant.sf") all_samples_table["salmon_results_file"] = \ all_samples_table.apply(lambda row: quant_file_path.replace("{sample_id}", row["sample_name"]), axis=1) # Save output table all_samples_table.to_csv(output.annotation_table, sep="\t", index=False) |
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 | library("cummeRbund") global_statistics_and_qc <- function(cuff_obj, output_dir) { # ---- Global Statistics and Quality Control ----------- # Dispersion explained: # https://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0550-8 # https://www.biostars.org/p/167688/ # https://support.bioconductor.org/p/75260/ # ------------- 1. Dispersion ---------------- # -> visualizes the estimated overdispersion for each sample # uses cufflinks emitted data (mean counts, variance, & dispersion) # -> http://cole-trapnell-lab.github.io/cufflinks/cuffdiff/ genes.disp<-dispersionPlot(genes(cuff_obj)) pdf(file=file.path(output_dir, "cummerbund_figures/dispersion_genes.pdf")) plot(genes.disp) # Plot is displayed dev.off() cuff_obj.disp<-dispersionPlot(cuff_obj) pdf(file=file.path(output_dir, "dispersion_cuff.pdf")) plot(cuff_obj.disp) # Plot is displayed dev.off() # ------ 2. Distributions of FPKM scores across samples ---------- # 2.1.) csDensity plots dens<-csDensity(genes(cuff_obj)) pdf(file=file.path(output_dir, "fpkm_density_genes.pdf")) plot(dens) dev.off() dens<-csDensity(isoforms(cuff_obj)) pdf(file=file.path(output_dir, "fpkm_density_isoforms.pdf")) plot(dens) dev.off() # 2.2.) Boxplots b<-csBoxplot(genes(cuff_obj)) pdf(file=file.path(output_dir, "fpkm_density_boxplot_genes.pdf")) plot(b) dev.off() b<-csBoxplot(isoforms(cuff_obj)) pdf(file=file.path(output_dir, "fpkm_density_boxplot_isoforms.pdf")) plot(b) dev.off() # 2.3.) Matrix of pairwise scatterplots s<-csScatterMatrix(genes(cuff_obj)) pdf(file=file.path(output_dir, "fpkm_density_matrix_genes.pdf")) plot(s) dev.off() s<-csScatterMatrix(isoforms(cuff_obj)) pdf(file=file.path(output_dir, "fpkm_density_matrix_isoforms.pdf")) plot(s) dev.off() # 2.4.) Volcano plots -> Explore relationship between fold-change and significance v<-csVolcanoMatrix(genes(cuff_obj)) pdf(file=file.path(output_dir, "cs_volcano_matrix_genes.pdf")) plot(v) dev.off() v<-csVolcanoMatrix(isoforms(cuff_obj)) pdf(file=file.path(output_dir, "cs_volcano_matrix_isoforms.pdf")) plot(v) dev.off() } analyse_differential_expression <- function(cuff_obj, output_dir) { # ------ Differential expression ------------- # 1.) genes # all gene.diff <- diffData(genes(cuff_obj)) write.csv(gene.diff, file.path(output_dir, "gene_diff.csv"), row.names=F) # only significant -> with gene names sig_gene_ids <- getSig(cuff_obj,level="genes",alpha=0.05) if (NROW(sig_gene_ids) > 0) { sigFeatures <- getFeatures(cuff_obj,sig_gene_ids,level="genes") sigData <- diffData(sigFeatures) sigData <- subset(sigData, (significant == 'yes')) names <- featureNames(sigFeatures) sigOutput <- merge(names, sigData, by.x="tracking_id", by.y="gene_id") # Patch the merged table to have the original name for the ID column. # This is always the first column for the examples we've seen. colnames(sigOutput)[1] <- "gene_id" write.table(sigOutput, file.path(output_dir, "gene_diff_only_significant.tsv"), sep='\t', row.names = F, col.names = T, quote = F) } else { sink(file.path(output_dir, "gene_diff_only_significant.tsv")) cat("No significantly differently expressed genes detected") sink() } # 2.) isoforms # all isoform.diff <- diffData(isoforms(cuff_obj)) write.csv(isoform.diff, file.path(output_dir, "isoform_diff.csv"), row.names=F) # only significant -> with gene names sig_isoforms_ids <- getSig(cuff_obj, level="isoforms", alpha=0.05) if (NROW(sig_isoforms_ids) > 0) { sigFeatures <- getFeatures(cuff_obj, sig_isoforms_ids, level="isoforms") sigData <- diffData(sigFeatures) sigData <- subset(sigData, (significant == 'yes')) names <- featureNames(sigFeatures) sigOutput <- merge(names, sigData, by.x="tracking_id", by.y="isoform_id") # Patch the merged table to have the original name for the ID column. # This is always the first column for the examples we've seen. colnames(sigOutput)[1] <- "gene_id" write.table(sigOutput, file.path(output_dir, "isoform_diff_only_significant.tsv"), sep='\t', row.names = F, col.names = T, quote = F) } else { sink(file.path(output_dir, "isoform_diff_only_significant.tsv")) cat("No significantly differently expressed isoforms detected") sink() } } create_count_matrices <- function(cuff_obj, output_dir) { " Create count matrices for genes and isoforms " # ------------- CSV files ---------------- # access feature lvl data gene.features <- annotation(genes(cuff_obj)) write.csv(gene.features, file.path(output_dir, "gene_features.csv"), row.names = FALSE) gene.fpkm <- fpkm(genes(cuff_obj)) write.csv(gene.fpkm, file.path(output_dir, "gene_fpkm.csv"), row.names = FALSE) # raw and normalized (on sequencing depth?) fragment counts gene.counts <- count(genes(cuff_obj)) write.csv(gene.counts, file.path(output_dir, "gene_counts.csv"), row.names = FALSE) # -- isoforms isoform.features <- annotation(isoforms(cuff_obj)) write.csv(isoform.features, file.path(output_dir, "isoform_features.csv"), row.names = FALSE) isoform.fpkm <- fpkm(isoforms(cuff_obj)) write.csv(isoform.fpkm, file.path(output_dir, "isoform_fpkm.csv"), row.names = FALSE) isoform.counts <- count(isoforms(cuff_obj)) write.csv(isoform.counts, file.path(output_dir, "isoform_counts.csv"), row.names = FALSE) # ----------- create PDFs ----------- # FPKM matrices gene.fpkm.matrix<-fpkmMatrix(genes(cuff_obj)) pdf(file=file.path(output_dir, "fpkm_matrix_genes.pdf")) plot(gene.fpkm.matrix) dev.off() isoform.fpkm.matrix<-fpkmMatrix(isoforms(cuff_obj)) pdf(file=file.path(output_dir, "fpkm_matrix_isoforms.pdf")) plot(isoform.fpkm.matrix) dev.off() # Count matrices gene.count.matrix<-countMatrix(genes(cuff_obj)) pdf(file=file.path(output_dir, "count_matrix_genes.pdf")) plot(gene.count.matrix) dev.off() isoforms.count.matrix<-countMatrix(isoforms(cuff_obj)) pdf(file=file.path(output_dir, "count_matrix_isoforms.pdf")) plot(isoforms.count.matrix) dev.off() } single_gene_analysis <- function(cuff_obj, gene_of_interest_id, output_dir) { " Detailed analysis of a single gene of interest" # IV) ---- Single gene ----------- myGeneId <- gene_of_interest_id myGene<-getGene(cuff_obj,myGeneId) header <- paste("Single Gene", arg_gene, ":", sep=" ") capture.output(myGene, file=file.path(output_dir, "analysis_output.txt"), append = TRUE) output_file_genes <- file.path(output_dir, paste(arg_gene, "_gene_fpkm.csv", sep="")) write.csv(fpkm(myGene), output_file_genes, row.names = FALSE) output_file_isoforms <- file.path(output_dir, paste(arg_gene, "_isoforms_fpkm.csv", sep="")) write.csv(fpkm(isoforms(myGene)), output_file_isoforms, row.names = FALSE) # Plots gl <- expressionPlot(myGene) output_file_1 <- file.path(output_dir, paste("expressionPlot_singleGene_", arg_gene, ".pdf", sep="")) pdf(file=output_file_1) plot(gl) dev.off() # Expression plot of all isoforms of a single gene with FPKMs exposed gl.iso.rep <- expressionPlot(isoforms(myGene)) output_file_2 <- file.path(output_dir, paste("expressionPlot_isoforms_singleGene_", arg_gene, ".pdf", sep="")) pdf(file=output_file_2) plot(gl.iso.rep) dev.off() # Expression plot of all CDS for a single gene with FPKMS exposed gl.cds.rep<-expressionPlot(CDS(myGene)) output_file_3 <- file.path(output_dir, paste("expressionPlot_cds_singleGene_", arg_gene, ".pdf", sep="")) pdf(file=output_file_3) plot(gl.cds.rep) dev.off() # Detailed feature graph trackList<-list() myStart<-min(features(myGene)$start) myEnd<-max(features(myGene)$end) myChr<-unique(features(myGene)$seqnames) genome<-arg_genome ideoTrack <- IdeogramTrack(genome = genome, chromosome = myChr) trackList<-c(trackList,ideoTrack) # appending ideoTrack -> chromosome axtrack<-GenomeAxisTrack() trackList<-c(trackList,axtrack) # appending axtrack -> genome-Axis genetrack<-makeGeneRegionTrack(myGene) trackList<-c(trackList,genetrack) # appending genetrack -> the mapping results biomTrack<-BiomartGeneRegionTrack(genome=genome,chromosome=as.character(myChr), start=myStart,end=myEnd,name="ENSEMBL",showId=T) trackList<-c(trackList,biomTrack) # Biomart transcripts conservation <- UcscTrack(genome = genome, chromosome = myChr, track = "Conservation", table = "multiz100way",from = myStart-2000, to = myEnd+2000, trackType = "DataTrack",start = "start", end = "end", data = "score",type = "hist", window = "auto", col.histogram = "darkblue",fill.histogram = "darkblue", ylim = c(-3.7, 4),name = "Conservation") trackList<-c(trackList,conservation) # conservation # Plot detailed graph: Chromosome on top... pdf(file.path(output_dir, "detailed_track.pdf")) plotTracks(trackList,from=myStart-2000,to=myEnd+2000) dev.off() } # ----------- Main ----------- main <- function() { # Inputs cufflinks_merged_transcriptome_assemblies_gtf <- snakemake@input["merged_cufflinks_transcriptome_assemblies_gtf"] # Params cufflinks_output_files_dir <- snakemake@params["cufflinks_output_files_dir"] genome_build <- snakemake@params["original_genome_build"] chosen_genes_of_interest <- snakemake@params[["chosen_genes_of_interest"]] # Output directory cummerbund_output_dir <- snakemkae@output[["cummerbund_output_dir"]] cummerbund_summary_results <- snakemake@output[["cummerbund_summary_results"]] # read results -> create SQLite db # Rebuild is important: Create always new database cuff_obj <- readCufflinks(dir=cufflinks_output_files_dir, gtfFile=cufflinks_merged_transcriptome_assemblies_gtf, genome=genome_build, rebuild=T) capture.output(cuff_obj, file=file.path(cummerbund_output_dir, cummerbund_summary_results), append = FALSE) # Global statistics and qc global_statistics_and_qc(cuff_obj, cummerbund_output_dir) # Count matrices create_count_matrices(cuff_obj, cummerbund_output_dir) # Single gene analysis for (gene_of_interest in chosen_genes_of_interest) { single_gene_analysis(cuff_obj, gene_of_interest, cummerbund_output_dir) } } # Execute main main() |
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 | library("BiocParallel") # Load data library("tximeta") # Import transcript quantification data from Salmon library("tximport") # Import transcript-level quantification data from Kaleidoscope, Sailfish, Salmon, Kallisto, RSEM, featureCounts, and HTSeq library("rhdf5") library("SummarizedExperiment") library("magrittr") # Pipe operator library("DESeq2") # Differential gene expression analysis # Plotting libraries library("pheatmap") library("RColorBrewer") library("ggplot2") # Mixed library("PoiClaClu") library("glmpca") library("apeglm") library("genefilter") library("AnnotationDbi") library("org.Hs.eg.db") # ---------------- Loading read/fragment quantification data from Salmon output ---------------- load_in_salmon_generated_counts <- function(annotation_table_file) { # ----------------- 1. Load annotation ----------------- # Columns: 1. names, 2. files, 3. condition, 4. additional information annotation_table <- read.csv(file=annotation_table_file, sep="\t") annotation_data <- data.frame( names=annotation_table[,"sample_name"], files=file.path(annotation_table[,"salmon_results_file"]), condition=annotation_table[,"condition"], add_info=annotation_table[,"additional_comment"] ) # Replace None in condition column with "Control" annotation_data$condition[annotation_data$condition=="None"] <- "Control" annotation_data$condition[annotation_data$condition==""] <- "Control" # ----------------- 2. Load into Bioconductor experiment objects ----------------- # Summarized experiment: Imports quantifications & metadata from all samples -> Each row is a transcript se <- tximeta(annotation_data) # Summarize transcript-level quantifications to the gene level -> reduces row number: Each row is a gene # Includes 3 matrices: # 1. counts: Estimated fragment counts per gene & sample # 2. abundance: Estimated transcript abundance in TPM # 3. length: Effective Length of each gene (including biases as well as transcript usage) gse <- summarizeToGene(se) # ----------------- 3. Load experiments into DESeq2 object ----------------- # SummarizedExperiment # assayNames(gse) # Get all assays -> counts, abundance, length, ... # head(assay(gse), 3) # Get count results for first 3 genes # colSums(assay(gse)) # Compute sums of mapped fragments # rowRanges(gse) # Print rowRanges: Ranges of individual genes # seqinfo(rowRanges(gse)) # Metadata of sequences (chromosomes in our case) gse$condition <- as.factor(gse$condition) gse$add_info <- as.factor(gse$add_info) # Use relevel to make sure untreated is listed first gse$condition %<>% relevel("Control") # Concise way of saying: gse$condition <- relevel(gse$condition, "Control") # Construct DESeqDataSet from gse if (gse$add_info %>% unique %>% length >1) { # Add info column with more than 1 unique value print("More than 1 unique value in add_info column") # TODO Need to make sure to avoid: # the model matrix is not full rank, so the model cannot be fit as specified. # One or more variables or interaction terms in the design formula are linear # combinations of the others and must be removed. # dds <- DESeqDataSet(gse, design = ~condition + add_info) print("However, simple DESeq2 analysis will be performed without add_info column") dds <- DESeqDataSet(gse, design = ~condition) } else { print("Only 1 unique value in add_info column") dds <- DESeqDataSet(gse, design = ~condition) } return(dds) } # ---------------- Loading read/fragment quantification data from RSEM output ---------------- load_in_rsem_generated_counts <- function(annotation_table_file) { # ----------------- 1. Load annotation ----------------- annotation_table <- read.csv(file=annotation_table_file, sep="\t") files <- file.path(annotation_table[,"rsem_results_file"]) # For sample.genes.results: txIn= FALSE & txOut= FALSE # For sample.isoforms.results: txIn= TRUE & txOut= TRUE # Check: https://bioconductor.org/packages/devel/bioc/vignettes/tximport/inst/doc/tximport.html txi.rsem <- tximport(files, type = "rsem", txIn = FALSE, txOut = FALSE) annotation_data <- data.frame(condition=factor(annotation_table[,"condition"]), add_info=factor(annotation_table[,"additional_comment"]) ) rownames(annotation_data) <- annotation_table[,"sample_name"] # Construct DESeqDataSet from tximport if (annotation_data$add_info %>% unique %>% length >1) { # Add info column with more than 1 unique value # dds <- DESeqDataSetFromTximport(txi.rsem, annotation_data, ~condition + add_info) dds <- DESeqDataSetFromTximport(txi.rsem, annotation_data, ~condition) } else { dds <- DESeqDataSetFromTximport(txi.rsem, annotation_data, ~condition) } return(dds) } load_in_kallisto_generated_counts <- function(annotation_table_file) { # ----------------- 1. Load annotation ----------------- annotation_table <- read.csv(file=annotation_table_file, sep="\t") files <- file.path(annotation_table[,"kallisto_results_file"]) txi.kallisto <- tximport(files, type = "kallisto", txOut = TRUE) annotation_data <- data.frame(condition=factor(annotation_table[,"condition"]), add_info=factor(annotation_table[,"additional_comment"]) ) rownames(annotation_data) <- annotation_table[,"sample_name"] # Construct DESeqDataSet from tximport if (annotation_data$add_info %>% unique %>% length >1) { # Add info column with more than 1 unique value # dds <- DESeqDataSetFromTximport(txi.kallisto, annotation_data, ~condition + add_info) dds <- DESeqDataSetFromTximport(txi.kallisto, annotation_data, ~condition) } else { dds <- DESeqDataSetFromTximport(txi.kallisto, annotation_data, ~condition) } return(dds) } # ----------------- Main function ----------------- main_function <- function(){ threads <- snakemake@threads[[1]] register(MulticoreParam(workers=threads)) # Snakemake variables annotation_table_file <- snakemake@input[["annotation_table_file"]] output_file <- snakemake@output[["deseq_dataset_r_obj"]] count_algorithm <- snakemake@params[["count_algorithm"]] # Load annotation table & Salmon data into a DESeq2 object if (count_algorithm == "salmon") { dds <- load_in_salmon_generated_counts(annotation_table_file) } else if (count_algorithm == "kallisto") { dds <- load_in_kallisto_generated_counts(annotation_table_file) } else if (count_algorithm == "rsem") { dds <- load_in_rsem_generated_counts(annotation_table_file) } else { stop("Count algorithm not supported!") } # Remove rows that have no or nearly no information about the amount of gene expression print(paste(c("Number of rows before filtering out counts with values <1", nrow(dds)))) keep <- rowSums(counts(dds)) > 1 # Counts have to be greater than 1 dds <- dds[keep,] print(paste(c("Number of rows after filtering out counts with values <1", nrow(dds)))) # Save deseq dataset object saveRDS(dds, output_file) } # ----------------- Run main function ----------------- main_function() |
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 | library("BiocParallel") # Load data library("tximeta") # Import transcript quantification data from Salmon library("tximport") # Import transcript-level quantification data from Kaleidoscope, Sailfish, Salmon, Kallisto, RSEM, featureCounts, and HTSeq library("rhdf5") library("SummarizedExperiment") library("magrittr") # Pipe operator library("DESeq2") # Differential gene expression analysis # Plotting libraries library("pheatmap") library("RColorBrewer") library("ggplot2") # Mixed library("PoiClaClu") library("glmpca") library("apeglm") library("genefilter") library("AnnotationDbi") library("org.Hs.eg.db") # ---------------- DESeq2 explorative analysis ---------------- run_deseq2_explorative_analysis <- function(dds, output_files) { # ----------- 4.2 Variance stabilizing transformation and the rlog ------------- # Problem: PCA depends mostly on points with highest variance # -> For gene-counts: Genes with high expression values, and therefore high variance # are the ones the PCA is mostly depending on # Solution: Apply stabilizing transformation to variance # -> transform data, so it becomes more homoskedastic (expected amount of variance the same across different means) # 1. Variance stabilizing transformation: VST-function -> fast for large datasets (> 30n) # 2. Regularized-logarithm transformation or rlog -> Works well on small datasets (< 30n) # The transformed values are no longer counts, and are stored in the assay slot. # 1. VST # transformed_dds <- vst(dds, blind = FALSE) # head(assay(transformed_dds), 3) # 2. rlog transformed_dds <- rlog(dds, blind=FALSE) # ----------- A. Sample distances ------------- # ----------- A.1 Euclidian distances ------------- # Sample distances -> Assess overall similarity between samples # dist: takes samples as rows and genes as columns -> we need to transpose sampleDists <- dist(t(assay(transformed_dds))) # Heatmap of sample-to-sample distances using the transformed values # Uses euclidian distance between samples sampleDistMatrix <- as.matrix(sampleDists) rownames(sampleDistMatrix) <- paste(transformed_dds$names, transformed_dds$condition, sep = " - " ) colnames(sampleDistMatrix) <- paste(transformed_dds$names, transformed_dds$condition, sep = " - " ) colors <- colorRampPalette( rev(brewer.pal(9, "Blues")) )(255) jpeg(output_files[1], width=800, height=800) pheatmap(sampleDistMatrix, clustering_distance_rows = sampleDists, clustering_distance_cols = sampleDists, col = colors, main = "Heatmap of sample-to-sample distances (Euclidian) after normalization") dev.off() # ----------- A.2 Poisson distances ------------- # Use Poisson distance # -> takes the inherent variance structure of counts into consideration # The PoissonDistance function takes the original count matrix (not normalized) with samples as rows instead of # columns -> so we need to transpose the counts in dds. poisd <- PoissonDistance(t(counts(dds))) # heatmap samplePoisDistMatrix <- as.matrix(poisd$dd) rownames(samplePoisDistMatrix) <- paste(transformed_dds$names, transformed_dds$condition, sep=" - ") colnames(samplePoisDistMatrix) <- paste(transformed_dds$names, transformed_dds$condition, sep=" - ") jpeg(output_files[2], width=800, height=800) pheatmap(samplePoisDistMatrix, clustering_distance_rows = poisd$dd, clustering_distance_cols = poisd$dd, col = colors, main = "Heatmap of sample-to-sample distances (Poisson) without normalization") dev.off() # ------------ 4.4 PCA plot ------------------- # ----------------- 4.4.1 Custom PCA plot -------------- # Build own plot with ggplot -> to distinguish subgroups more clearly # Each unique combination of treatment and cell-line has unique color # Use function that is provided with DeSeq2 pcaData <- plotPCA(transformed_dds, intgroup = c("condition", "add_info"), returnData=TRUE) percentVar <- round(100 * attr(pcaData, "percentVar")) print("Creating custom PCA plot") jpeg(output_files[3], width=800, height=800) customPCAPlot <- ggplot(pcaData, aes(x=PC1, y=PC2, color=condition, shape=add_info, label=name)) + geom_point(size =3) + geom_text(check_overlap=TRUE, hjust=0, vjust=1) + xlab(paste0("PC1: ", percentVar[1], "% variance")) + ylab(paste0("PC2: ", percentVar[2], "% variance")) + coord_fixed() + ggtitle("PCA on transformed (rlog) data with subgroups (see shapes)") print(customPCAPlot) dev.off() # ----------------- 4.4.2 Generalized PCA plot -------------- # Generalized PCA: Operates on raw counts, avoiding pitfalls of normalization print("Creating generalized PCA plot") gpca <- glmpca(counts(dds), L=2) gpca.dat <- gpca$factors gpca.dat$condition <- dds$condition gpca.dat$add_info <- dds$add_info jpeg(output_files[4], width=800, height=800) generalizedPCAPlot <- ggplot(gpca.dat, aes(x=dim1, y=dim2, color=condition, shape=add_info, label=rownames(gpca.dat))) + geom_point(size=2) + geom_text(check_overlap=TRUE, hjust=0.5,vjust=1) + coord_fixed() + ggtitle("glmpca - Generalized PCA of samples") print(generalizedPCAPlot) dev.off() } # ----------------- Main function ----------------- main_function <- function(){ threads <- snakemake@threads[[1]] register(MulticoreParam(workers=threads)) # Snakemake variables deseq_dataset_obj <- snakemake@input[["deseq_dataset_r_obj"]] output_file_paths <- snakemake@params[["output_file_paths"]] # Load deseq dataset object dds <- readRDS(deseq_dataset_obj) # Run explorative analysis run_deseq2_explorative_analysis(dds, output_file_paths) } # ----------------- Run main function ----------------- main_function() |
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 | library("BiocParallel") # Load data library("tximeta") # Import transcript quantification data from Salmon library("tximport") # Import transcript-level quantification data from Kaleidoscope, Sailfish, Salmon, Kallisto, RSEM, featureCounts, and HTSeq library("rhdf5") library("SummarizedExperiment") library("magrittr") # Pipe operator library("DESeq2") # Differential gene expression analysis # Plotting libraries library("pheatmap") library("RColorBrewer") library("ggplot2") # Mixed library("PoiClaClu") library("glmpca") library("apeglm") library("ashr") library("genefilter") library("AnnotationDbi") library("org.Hs.eg.db") library("ReportingTools") # For creating HTML reports # ---------------- Helper functions ---------------- savely_create_deseq2_object <- function(dds) { ### Function to create a DESeq2 object -> Handles errors that can appear due to parallelization ### Input: dds object (DESeq dataset object) ### Output: dds object (DESeq2 object) # ------------- 5. Run the differential expression analysis --------------- # The respective steps of this function are printed out # 1. Estimation of size factors: Controlling for differences # in the sequencing depth of the samples # 2. Estimation of dispersion values for each gene & fitting a generalized # linear model print("Creating DESeq2 object") # Try to create the DESeq2 object with results in Parallel create_obj_parallelized <- function(){ print("Creating DESeq2 object in parallel") dds <- DESeq2::DESeq(dds, parallel=TRUE) return(list("dds"=dds, "run_parallel"=TRUE)) } # Try to create the DESeq2 object with results in Serial create_obj_not_parallelized <- function(error){ print("Error in parallelized DESeq2 object creation"); print(error) print("Creating DESeq2 object not in parallel") dds <- DESeq2::DESeq(dds, parallel=FALSE) return(list("dds"=dds, "run_parallel"=FALSE)) } result_list <- tryCatch(create_obj_parallelized(), error=create_obj_not_parallelized) print("DESeq2 object created!") return(result_list) } rename_rownames_with_ensembl_id_matching <- function(dds_object, input_algorithm) { " Extracts Ensembl-Gene-IDs from rownames of SummarizedExperiment object and renames rownames with Ensembl-Gene-IDs. " print("Gene annotations") if (input_algorithm == "salmon") { # Ensembl-Transcript-IDs at first place gene_ids_in_rows <- substr(rownames(dds_object), 1, 15) } else if (input_algorithm == "kallisto") { # Ensembl-Transcript-IDs at second place (delimeter: "|") gene_ids_in_rows <- sapply(rownames(dds_object), function(x) strsplit(x, '\\|')[[1]], USE.NAMES=FALSE)[2,] gene_ids_in_rows <- sapply(gene_ids_in_rows, function(x) substr(x, 1, 15), USE.NAMES=FALSE) } else { stop("Unknown algorithm used for quantification") } # Set new rownames rownames(dds_object) <- gene_ids_in_rows return(dds_object) } add_gene_symbol_and_entrez_id_to_results <- function(result_object, with_entrez_id=FALSE) { " Adds gene symbols and entrez-IDs to results object. " gene_ids_in_rows <- rownames(result_object) # Add gene symbols # Something breaks here when setting a new column name result_object$symbol <- AnnotationDbi::mapIds(org.Hs.eg.db::org.Hs.eg.db, keys=gene_ids_in_rows, column="SYMBOL", keytype="ENSEMBL", multiVals="first") if (with_entrez_id) { # Add ENTREZ-ID result_object$entrez <- AnnotationDbi::mapIds(org.Hs.eg.db::org.Hs.eg.db, keys=gene_ids_in_rows, column="ENTREZID", keytype="ENSEMBL", multiVals="first") } return(result_object) } # ---------------- DESeq2 analysis ---------------- explore_deseq2_results <- function(dds, false_discovery_rate, output_file_paths, run_parallel=FALSE, used_algorithm) { # Results: Metadata # 1. baseMean: Average/Mean of the normalized count values divided by size factors, taken over ALL samples # 2. log2FoldChange: Effect size estimate. Change of gene's expression # 3. lfcSE: Standard Error estimate for log2FoldChange # 4. Wald statistic results # 5. Wald test p-value -> p value indicates the probability that a fold change as strong as the observed one, or even stronger, would be seen under the situation described by the null hypothesis. # 6. BH adjusted p-value print("Creating DESeq2 results object") results_obj <- results(dds, alpha=false_discovery_rate, parallel=run_parallel) capture.output(summary(results_obj), file=output_file_paths[1]) # ------------------ 6. Plotting results -------------------- # Contrast usage # TODO: Failed... -> Remove # print("Plotting results") # chosen_contrast <- tail(resultsNames(results_obj), n=1) # get the last contrast: Comparison of states # print("resultsNames(results_obj)"); print(resultsNames(results_obj)) # print("chosen_contrast"); print(chosen_contrast) # ------------ 6.1 MA plot without shrinking -------------- # - M: minus <=> ratio of log-values -> log-Fold-change on Y-axis # - A: average -> Mean of normalized counts on X-axis # res.noshr <- results(dds, contrast=chosen_contrast, parallel=run_parallel) res.no_shrink <- results(dds, parallel=run_parallel) jpeg(output_file_paths[2], width=800, height=800) DESeq2::plotMA(res.no_shrink, ylim = c(-5, 5), main="MA plot without shrinkage") dev.off() # ------------ 6.2 MA plot with apeGLM shrinking -------------- # apeglm method for shrinking coefficients # -> which is good for shrinking the noisy LFC estimates while # giving low bias LFC estimates for true large differences # TODO: apeglm requires coefficients. However, resultsNames(results_obj) does not return any coefficients... # res <- lfcShrink(dds, coef=chosen_contrast, type="apeglm", parallel=run_parallel) # Pass contrast and shrink results # Use ashr as shrinkage method res <- DESeq2::lfcShrink(dds, res=res.no_shrink, type="ashr", parallel=run_parallel) jpeg(output_file_paths[3], width=800, height=800) DESeq2::plotMA(res, ylim = c(-5, 5), main="MA plot with ashr shrinkage") dev.off() # ------------ 6.3 Plot distribution of p-values in histogram -------------- jpeg(output_file_paths[4], width=800, height=800) hist(res$pvalue[res$baseMean > 1], breaks = 0:20/20, col = "grey50", border = "white", main="Histogram of distribution of p-values (non-adjusted)", xlab="p-value", ylab="Frequency") dev.off() jpeg(output_file_paths[5], width=800, height=800) hist(res$padj[res$baseMean > 1], breaks = 0:20/20, col = "grey50", border = "white", main="Histogram of distribution of p-values (adjusted)", xlab="p-value", ylab="Frequency") dev.off() # ------------- 6.4 Gene clustering ----------------- print("Plotting results: Gene clustering") # Gene clustering -> Heatmap of divergence of gene's expression in comparison to average over all samples # Transform count results to reduce noise for low expression genes transformed_dds <- DESeq2::rlog(dds, blind=FALSE) # Get top Genes -> with most variance in VSD-values/rlog-transformed counts topVarGenes <- head(order(genefilter::rowVars(SummarizedExperiment::assay(transformed_dds)), decreasing=TRUE), 20) mat <- SummarizedExperiment::assay(transformed_dds)[ topVarGenes, ] mat <- mat - rowMeans(mat) # difference to mean expression # Transform row names to gene symbols rownames(mat) <- add_gene_symbol_and_entrez_id_to_results(mat)$symbol # Additional annotations anno <- as.data.frame(SummarizedExperiment::colData(transformed_dds)[, c("condition", "add_info")]) # Create plot jpeg(output_file_paths[6], width=800, height=800) pheatmap::pheatmap(mat, annotation_col=anno, main="Divergence in gene expression in comparison to average over all samples") dev.off() # ---------- 7. Gene annotations -------------- res <- add_gene_symbol_and_entrez_id_to_results(res) resOrdered <- res[order(res$pvalue),] # Sort results by p-value # Exporting results resOrderedDF <- as.data.frame(resOrdered) write.csv(resOrderedDF, file=output_file_paths[7]) } # ----------------- Main function ----------------- main_function <- function(){ threads <- snakemake@threads[[1]] register(MulticoreParam(workers=threads)) # Snakemake variables deseq_dataset_obj <- snakemake@input[["deseq_dataset_r_obj"]] output_file_paths <- snakemake@params[["output_file_paths"]] # For gene-ID matching: Used in rename_rownames_with_ensembl_id_matching() used_algorithm <- snakemake@params["used_algorithm"] # Adjusted p-value threshold false_discovery_rate <- 0.05 # Load deseq dataset object dds <- readRDS(deseq_dataset_obj) # Create DESeq2 results object print("Creating DESeq2 results object") result_list <- savely_create_deseq2_object(dds) deseq2_obj <- result_list$dds run_parallel <- result_list$run_parallel # Rename rows deseq2_obj <- rename_rownames_with_ensembl_id_matching(deseq2_obj, used_algorithm) # Run statistical analysis print("Running statistical analysis") explore_deseq2_results(deseq2_obj, false_discovery_rate, output_file_paths, run_parallel=run_parallel, used_algorithm=used_algorithm) } # ----------------- Run main function ----------------- main_function() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 | library("DESeq2") library("AnnotationDbi") library("org.Hs.eg.db") library("clusterProfiler") library("ggplot2") library("enrichplot") create_gsea_plots <- function(gsea_obj, dotplot_file_path, gsea_plot_file_path_1, gsea_plot_file_path_2, method) { # Create plots for GSEA results # -------- Plottings --------- # 1. Dotplot jpeg(dotplot_file_path,width=800, height=800) print(clusterProfiler::dotplot(gsea_obj, showCategory=30) + ggplot2::ggtitle(paste0("DotPlot for GSE-analysis (top 30 results) with method: ", method))) dev.off() # 2. GSEA-Plot for top 10 results jpeg(gsea_plot_file_path_1, width=800, height=800) print(enrichplot::gseaplot2(gsea_obj, geneSetID = 1:5, pvalue_table=FALSE, title = paste0("GSEA-Plot for top 1-5 results with method: ", method))) dev.off() jpeg(gsea_plot_file_path_2, width=800, height=800) print(enrichplot::gseaplot2(gsea_obj, geneSetID = 6:10, pvalue_table=FALSE, title = paste0("GSEA-Plot for top 6-10 results with method: ", method))) dev.off() # for (count in c(1:10)) { # jpeg(paste0(plot_output_dir, "/gsea_plot_", method, "_", count, ".jpg"), width=800, height=800) # print(clusterProfiler::gseaplot(gsea_obj, geneSetID=1, pvalue_table=TRUE)) # dev.off() # } } explore_gsea_go <- function(ordered_gene_list, summary_file_path, gsea_obj_file_path) { # Gene Set Enrichtment Analyses # params: # ordered_gene_list: Ordered (i.e. deseq2 stat) list of genes # ----- 1. GO Enrichment -------- # GO comprises three orthogonal ontologies, i.e. molecular function (MF), # biological process (BP), and cellular component (CC) go_gsea <- clusterProfiler::gseGO(ordered_gene_list, ont = "BP", keyType = "ENSEMBL", OrgDb = "org.Hs.eg.db", verbose = TRUE) df_go_gsea <- as.data.frame(go_gsea) df_go_gsea <- df_go_gsea[order(df_go_gsea$p.adjust),] write.csv(df_go_gsea, file=summary_file_path) # Save GSEA object saveRDS(go_gsea, file=gsea_obj_file_path) return(go_gsea) } explore_gsea_kegg <- function(ordered_gene_list, summary_file_path, gsea_obj_file_path) { # KEGG pathway enrichment analysis # params: # ordered_gene_list: Ordered (i.e. deseq2 stat) list of genes names(ordered_gene_list) <- mapIds(org.Hs.eg.db, keys=names(ordered_gene_list), column="ENTREZID", keytype="ENSEMBL", multiVals="first") # res$symbol <- mapIds(org.Hs.eg.db, keys=row.names(res), column="SYMBOL", keytype="ENSEMBL", multiVals="first") # res$entrez <- mapIds(org.Hs.eg.db, keys=row.names(res), column="ENTREZID", keytype="ENSEMBL", multiVals="first") # res$name <- mapIds(org.Hs.eg.db, keys=row.names(res), column="GENENAME", keytype="ENSEMBL", multiVals="first") # ----- 1. GO Enrichment -------- # GO comprises three orthogonal ontologies, i.e. molecular function (MF), # biological process (BP), and cellular component (CC) kegg_gsea <- clusterProfiler::gseKEGG(geneList=ordered_gene_list, organism='hsa', verbose=TRUE) df_kegg_gsea <- as.data.frame(kegg_gsea) df_kegg_gsea <- df_kegg_gsea[order(df_kegg_gsea$p.adjust),] write.csv(df_kegg_gsea, file=summary_file_path) # Save GSEA object saveRDS(kegg_gsea, file=gsea_obj_file_path) return(kegg_gsea) } explore_gsea_wp <- function(ordered_gene_list, summary_file_path, gsea_obj_file_path) { # WikiPathway # params: # ordered_gene_list: Ordered (i.e. deseq2 stat) list of genes names(ordered_gene_list) <- mapIds(org.Hs.eg.db, keys=names(ordered_gene_list), column="ENTREZID", keytype="ENSEMBL", multiVals="first") # ----- 1. GO Enrichment -------- # GO comprises three orthogonal ontologies, i.e. molecular function (MF), # biological process (BP), and cellular component (CC) wp_gsea <- clusterProfiler::gseWP( geneList=ordered_gene_list, organism="Homo sapiens", verbose=TRUE) df_wp_gsea <- as.data.frame(wp_gsea) df_wp_gsea <- df_wp_gsea[order(df_wp_gsea$p.adjust),] write.csv(df_wp_gsea, file=summary_file_path) # Save GSEA object saveRDS(wp_gsea, file=gsea_obj_file_path) return(wp_gsea) } main <- function() { # Input input_dseq_dataset_obj <- snakemake@input$deseq_dataset_obj # Outputs gsea_go_obj_file_path <- snakemake@output$gsea_go_obj_file_path gsea_go_summary_file_path <- snakemake@output$gsea_go_summary_file_path gsea_kegg_obj_file_path <- snakemake@output$gsea_kegg_obj_file_path gsea_kegg_summary_file_path <- snakemake@output$gsea_kegg_summary_file_path gsea_wp_obj_file_path <- snakemake@output$gsea_wp_obj_file_path gsea_wp_summary_file_path <- snakemake@output$gsea_wp_summary_file_path # DotPlots dotplot_gsea_go_file_path <- snakemake@output$dotplot_gsea_go_file_path dotplot_gsea_kegg_file_path <- snakemake@output$dotplot_gsea_kegg_file_path dotplot_gsea_wp_file_path <- snakemake@output$dotplot_gsea_wp_file_path # GSEA Plots gsea_go_top10_plot_file_path_1 <- snakemake@output$gsea_go_top10_plot_file_path_1 gsea_kegg_top10_plot_file_path_1 <- snakemake@output$gsea_kegg_top10_plot_file_path_1 gsea_wp_top10_plot_file_path_1 <- snakemake@output$gsea_wp_top10_plot_file_path_1 gsea_go_top10_plot_file_path_2 <- snakemake@output$gsea_go_top10_plot_file_path_2 gsea_kegg_top10_plot_file_path_2 <- snakemake@output$gsea_kegg_top10_plot_file_path_2 gsea_wp_top10_plot_file_path_2 <- snakemake@output$gsea_wp_top10_plot_file_path_2 # Params input_algorithm <- snakemake@params$input_algorithm # Load DataSet dds <- readRDS(input_dseq_dataset_obj) # Create DESeq2 object dds <- DESeq(dds) res <- DESeq2::results(dds) # Filtering res <- na.omit(res) res <- res[res$baseMean >50,] # Filter out genes with low expression # Order output -> We choose stat, which takes log-Fold as well as SE into account # Alternative: lfc * -log10(P-value) # order descending so use minus sign res <- res[order(-res$stat),] # --------- Create input gene list --------------- # Extract stat values gene_list <- res$stat # Add rownames if (input_algorithm == "salmon") { # Ensembl-Transcript-IDs at first place names(gene_list) <- substr(rownames(res), 1, 15) } else if (input_algorithm == "kallisto") { # Ensembl-Transcript-IDs at second place (delimeter: "|") gene_ids_in_rows <- sapply(rownames(res), function(x) strsplit(x, '\\|')[[1]], USE.NAMES=FALSE)[2,] gene_ids_in_rows <- sapply(gene_ids_in_rows, function(x) substr(x, 1, 15), USE.NAMES=FALSE) names(gene_list) <- gene_ids_in_rows } else { stop("Unknown algorithm used for quantification") } # =========== Run GSEA =========== # ----- 1. GO Enrichment -------- go_gsea_obj <- explore_gsea_go(gene_list, gsea_go_summary_file_path, gsea_go_obj_file_path) create_gsea_plots(go_gsea_obj, dotplot_gsea_go_file_path, gsea_go_top10_plot_file_path_1, gsea_go_top10_plot_file_path_2, "go") # ----- 2. KEGG Enrichment -------- kegg_gsea_obj <- explore_gsea_kegg(gene_list, gsea_kegg_summary_file_path, gsea_kegg_obj_file_path) create_gsea_plots(kegg_gsea_obj, dotplot_gsea_kegg_file_path, gsea_kegg_top10_plot_file_path_1, gsea_kegg_top10_plot_file_path_2, "kegg") # ----- 3. WikiPathway Enrichment -------- wp_gsea_obj <- explore_gsea_wp(gene_list, gsea_wp_summary_file_path, gsea_wp_obj_file_path) create_gsea_plots(wp_gsea_obj, dotplot_gsea_wp_file_path, gsea_wp_top10_plot_file_path_1, gsea_wp_top10_plot_file_path_2, "wp") } # Run main function main() |
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | summarize_sample_counts <- function(input_count_files, sample_names) { # Loop through files and collect them in a list cov <- list() for (i in 1:length(input_count_files)) { # Load files count_file <- input_count_files[i] sample_name <- sample_names[i] # Import into our list and set col names cov[[i]] <- read.table(count_file, sep="\t", header=FALSE, stringsAsFactors=FALSE) colnames(cov[[i]]) <- c("ENSEMBL_GeneID", "GeneSymbol", sample_name) } ## construct one data frame from list of data.frames using reduce function # Reduce: Takes function and vector, then applies function to first two elements of vector, then result of that to third element, etc. df <- Reduce(function(x,y) merge(x = x, y = y, by =c("ENSEMBL_GeneID", "GeneSymbol")), cov) return(df) } main_function <- function() { # Input count files (generated by htseq-count) input_count_files <- snakemake@input[["sample_count_files"]] # Sample names sample_names <- snakemake@params[["sample_names"]] # Output file output_total_counts_table <- snakemake@output[["total_counts_table"]] # Additional count file # additional_count_file <- snakemake@params[["additional_count_file"]] # 1. Collect all counts total_counts <- summarize_sample_counts(input_count_files , sample_names) # 2. Add additional counts -> This is merged with inner joint! # if (addtional_count_file != NULL && additional_count_file != "NA" && additional_count_file != "") { # additional_counts <- read.table(additional_count_file, sep="\t", header=TRUE, stringsAsFactors=FALSE) # print(paste(c("First row lenght:"), length(additional_counts[1,]))) # print(paste(c("Second row length:"), length(additional_counts[2,]))) # # Remove suffixes of form "[1-9]?_[1-9]? from first column # additional_counts$geneID <- gsub(".[0-9]+_[0-9]+$", "", additional_counts$geneID) # print(paste(c("First row lenght:"), length(additional_counts[1,]))) # print(paste(c("Second row length:"), length(additional_counts[2,]))) # total_counts <- merge(x = total_counts, y = additional_counts, by.x="ENSEMBL_GeneID", by.y="geneID") # print(paste(c("First row lenght:"), length(total_counts[1,]))) # print(paste(c("Second row length:"), length(total_counts[2,]))) # } ## 3. write to file write.table(total_counts, output_total_counts_table, sep="\t", quote=FALSE, row.names=FALSE) sanity_check <- read.table(output_total_counts_table, sep="\t", header=TRUE, stringsAsFactors=FALSE) print(paste(c("First row lenght:"), length(sanity_check[1,]))) print(paste(c("Second row length:"), length(sanity_check[2,]))) } # Run main main_function() |
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 | library("OUTRIDER") library("annotables") library("data.table") library("ggplot2") library("ggpubr") library("plotly") library("BiocParallel") # For parallelization needed # BPPARAM = MulticoreParam(snakemake@threads) create_outrider_data_set <- function(ctsFile_path) { ### Create OUTRIDER data set # Input: ctsFile_path: File path leading to count file # Output: OUTRIDER data set ctsTable <- read.table(ctsFile_path, sep="\t", header=FALSE, stringsAsFactors=FALSE) countDataMatrix <- as.matrix(ctsTable[-1,-1]) # Extract counts & Ignore first column (geneID) and first row (sample names) mode(countDataMatrix) <- "integer" # Convert to integer rownames(countDataMatrix) <- ctsTable[-1,1] # Set rownames to geneIDs colnames(countDataMatrix) <- ctsTable[1,-1] # Set colnames to sample names # Create OutriderDataSet ods <- OutriderDataSet(countData=countDataMatrix) print("Done creating OutriderDataSet") return(ods) } filter_outrider_data_set <- function(ods) { ### Filter OUTRIDER data set: Remove genes with low counts # Input: ods: OUTRIDER data set # Output: Filtered OUTRIDER data set # --------- 3. Filter out non expressed genes -------- # filter out non expressed genes # minCounts: If True, only genes wit 0 counts in all samples are filtered out. # ALTERNATIVE: If one provides also GTF-annotation, then based on FPKM values filtering is applied ods <- filterExpression(ods, minCounts=TRUE, filterGenes=FALSE) print("Done filtering out non expressed genes") # -------- 3.1 Plotting of the filtered data --------- # TODO: Might be not applicable since we do not use FPKM values for filtering # Plot FPKM distribution across all sample/gene pairs # png_file_path <- file.path(plot_output_dir, paste("fpkm_distribution_across_all_samples_and_genes.png")) # png(png_file_path) # # TODO: This might not work, since we are not working with FPKM values # plotFPKM(ods) + theme(legend.position = 'bottom') # dev.off() # Apply filter ods <- ods[mcols(ods)[['passedFilter']]] print("Done applying filter") # -------- 3.2 Plotting of potential co-variation --------- # TODO: Might be not applicable since we do not use FPKM values # -> Requires also a sample annotation file # # Make heatmap figure bigger # options(repr.plot.width=6, repr.plot.height=5) # png_file_path = file.path(plot_output_dir, paste("covariation_heatmap.png")) # png(png_file_path) # # # use normalize=FALSE since the data is not yet corrected # # use columns from the annotation to add labels to the heatmap # plotCountCorHeatmap(ods, colGroups=c("adaptors_file"), rowGroups="condition", normalize=FALSE) # dev.off() return(ods) } # TODO: clean up naming of output files # TODO: Do not give output dir, but directly the output files?! main_function <- function() { # Counts file ctsFile_path <- snakemake@input[["counts_file"]] # With estimated size factors outrider_obj_with_estimated_size_factors_txt <- snakemake@output[["outrider_obj_with_estimated_size_factors_txt"]] outrider_obj_with_estimated_size_factors_rds <- snakemake@output[["outrider_obj_with_estimated_size_factors_rds"]] # Final Outrider object output_final_outrider_obj_file <- snakemake@output[["outrider_object_file"]] # ------- 1. Create OutriderDataSet --------- ods <- create_outrider_data_set(ctsFile_path) # ------- 2. Filter out non expressed genes --------- ods <- filter_outrider_data_set(ods) # -------- 3. Run full Outrider pipeline ------------ # run full OUTRIDER pipeline (control, fit model, calculate P-values) # Crash in case where sample groups are not equally sized! # -> Size Factors, which are accounting for sequencing depth, # are differing strongly between sample groups -> Controlling for confounders leads to crash?! # - first remote error: L-BFGS-B benötigt endliche Werte von 'fn' -> filter values?! # - https://github.com/gagneurlab/OUTRIDER/issues/25 # --------- For debugging purposes: Saves estimated size factors --------- print("Investigate estimated size factors") ods <- OUTRIDER::estimateSizeFactors(ods) saveRDS(ods, outrider_obj_with_estimated_size_factors_rds) sink(outrider_obj_with_estimated_size_factors_txt) print(OUTRIDER::sizeFactors(ods)) sink() # ------------------------------------------ print("Start running full OUTRIDER pipeline") ods <- OUTRIDER(ods, BPPARAM=SerialParam()) # Save the OutriderDataSet -> can be used for further analysis via R: readRDS(file) saveRDS(ods, output_final_outrider_obj_file) } main_function() |
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 | library("OUTRIDER") library("annotables") library("data.table") library("ggplot2") library("ggpubr") library("plotly") library("BiocParallel") # For parallelization needed # BPPARAM = MulticoreParam(snakemake@threads) explore_outrider_results <- function(ods, output_dir, sample_ids, genes_of_interest, p005_file, p010_file, ab_genes_per_sample_file, ab_samples_per_gene_file) { ### Extract OUTRIDER results # Input: ods: OUTRIDER data set # sample_ids: Sample IDs # genes_of_interest: Genes of interest # plot_output_dir: Output directory for plots # outrider_obj_file: File path to save OUTRIDER object # p005_file: File path to save p-value 5% results # p010_file: File path to save p-value 10% results # ab_genes_per_sample_file: File path to save aberrant genes per sample # ab_samples_per_gene_file: File path to save aberrant samples per gene # Output: OUTRIDER object, p005 results, p010 results, aberrant genes per sample, aberrant samples per gene # -------- 5. Output Results ------------ # -------- 5.1 significant results ---------- # get results (default only significant, padj < 0.05) res <- results(ods) res <- res[order(res$padjust),] write.table(res, file=p005_file, sep="\t", quote=FALSE, row.names=FALSE) # get results (default only significant, padj < 0.10) res <- results(ods, padjCutoff=0.1) res <- res[order(res$padjust),] write.table(res, file=p010_file, sep="\t", quote=FALSE, row.names=FALSE) # -------- 5.2 Aberrant expression ---------- # number of aberrant genes per sample nr_aberrant_genes_per_sample <- sort(aberrant(ods, by="sample")) # Use sink to include sample-names in output file sink(ab_genes_per_sample_file); print(nr_aberrant_genes_per_sample); sink() # number of aberrant samples per gene nr_aberrant_samples_per_gene <- sort(aberrant(ods, by="gene")) sink(ab_samples_per_gene_file); print(nr_aberrant_samples_per_gene); sink() # -------- 5.3 Volcano Plots for p-values ---------- print("Given sample IDs:") print(sample_ids) # Convert sample IDs # 1. "-" are converted into "." # 2. Samples which start with numbers get the prefix: "X" for (i in (1:length(sample_ids))) { sample_ids[i] <- gsub("-", ".", sample_ids[i]) # if ( grepl("^[1-9].*$", sample_ids[i]) ) { # sample_ids[i] <- paste0("X", sample_ids[i]) # Add X to sample IDs starting with a number -> Comply with Outrider conversion # } } tryCatch( expr = { for (sample_id in sample_ids) { html_file_path <- file.path(output_dir, paste(sample_id, "_pvalues_volcano.html", sep="")) png_file_path <- file.path(output_dir, paste(sample_id, "_pvalues_volcano.png", sep="")) # A. Create interactive Plotly plot interactive_plot <- plotVolcano(ods, sample_id, basePlot=FALSE) htmlwidgets::saveWidget(as_widget(interactive_plot), html_file_path) # B. Create static plot png(png_file_path) print(plotVolcano(ods, sample_id, basePlot=TRUE)) dev.off() } }, error = function(e) { print("Error in creating volcano plots") print(e) }, finally = { print("Yes, Volcano plots are done!") } ) # -------- 5.4 Gene level plots ---------- # 5.4.1 Expression Rank tryCatch( expr = { for (gene_name in genes_of_interest) { html_file_path <- file.path(output_dir, paste(gene_name, "_expressionRank.html")) jpeg_file_path <- file.path(output_dir, paste(gene_name, "_expressionRank.jpg")) # A. Create interactive Plotly plot interactive_plot <- plotExpressionRank(ods, gene_name, basePlot=FALSE) htmlwidgets::saveWidget(as_widget(interactive_plot), html_file_path) # B. Create static plot jpeg(file=jpeg_file_path) print(plotExpressionRank(ods, gene_name, basePlot=TRUE)) dev.off() } }, error = function(e) { print("Error in plotExpressionRank") print(e) }, finally = { print("Yes, Expression Rank plots are done!") } ) # 5.4.2 Quantile-Quantile-Plots (Q-Q plots) tryCatch( expr = { for (gene_name in genes_of_interest) { jpeg_file_path <- file.path(output_dir, paste(gene_name, "_qqPlot.jpg", sep="")) # B. Create static plot jpeg(file=jpeg_file_path) print(plotQQ(ods, gene_name)) dev.off() } }, error = function(e) { print("Error in plotQQ") print(e) }, finally = { print("Yes, Q-Q plots are done!") } ) # 5.4.3 Observed versus expected Expression tryCatch( expr = { for (gene_name in genes_of_interest) { html_file_path <- file.path(output_dir, paste(gene_name, "_expectedVsObservedExpression.html", sep="")) jpeg_file_path <- file.path(output_dir, paste(gene_name, "_expectedVsObservedExpression.jpg", sep="")) # A. Create interactive Plotly plot interactive_plot <- plotExpectedVsObservedCounts(ods, gene_name, basePlot=FALSE) htmlwidgets::saveWidget(as_widget(interactive_plot), html_file_path) # B. Create static plot jpeg(file=jpeg_file_path) print(plotExpectedVsObservedCounts(ods, gene_name, basePlot=TRUE)) dev.off() } }, error = function(e) { print("Error in plotExpectedVsObservedCounts") print(e) }, finally = { print("Yes, Observed versus expected Expression plots are done!") } ) } # TODO: clean up naming of output files # TODO: Do not give output dir, but directly the output files?! main_function <- function() { # Input input_final_outrider_obj_file <- snakemake@input[["outrider_object_file"]] # Output directory -> For saving plots output_dir <- snakemake@output[[1]] # Outputs significant_results_p005_output_file <- snakemake@output[["significant_results_p005_file"]] significant_results_p010_output_file <- snakemake@output[["significant_results_p010_file"]] nr_aberrant_genes_per_sample_output_file <- snakemake@output[["nr_aberrant_genes_per_sample"]] nr_aberrant_samples_per_gene_output_file <- snakemake@output[["nr_aberrant_samples_per_gene"]] # Params sample_ids <- snakemake@params[["sample_ids"]] genes_of_interest <- snakemake@params[["genes_of_interest"]] # ------- 1. Create output directory --------- dir.create(file.path(output_dir), recursive=TRUE, showWarnings=FALSE) # Create plot-directory ods <- readRDS(input_final_outrider_obj_file) # -------- 5. Output Results ------------ explore_outrider_results(ods, output_dir, sample_ids, genes_of_interest, significant_results_p005_output_file, significant_results_p010_output_file, nr_aberrant_genes_per_sample_output_file, nr_aberrant_samples_per_gene_output_file) } main_function() |
8
of
outrider/outrider_explore_results.R
86 87 88 89 90 | shell: "python {params.script} " "--input_gtf_file {input} " "--output_gtf_file {output} " "--log_file {log}" |
122 123 124 | shell: "python {params.script} -f {output.subread_compatible_flat_gtf_file} " "{input.gtf_file} {output.gff_file} 2>{log}" |
160 161 162 163 164 165 166 167 168 169 170 171 172 | shell: "featureCounts -f " # -f Option to count reads overlapping features "-O " # -O Option to count reads overlapping to multiple exons "-J " # -J: Count number of reads supporting each exon-exon junction -> Creates a separate file #"--fracOverlap 0.2 " # --fracOverlap FLOAT: Minimum fraction of a read that must overlap a feature to be assigned to that feature "-s {params.stranded} " # -s Strandedness: 0 (unstranded), 1 (stranded) and 2 (reversely stranded). "{params.paired} " # -p If specified, fragments (or templates) will be counted instead of reads. "-T {threads} " # Specify number of threads "-F {params.format} " # Specify format of the provided annotation file "-a {input.subread_compatible_flat_gtf_file} " # Name of annotation file "-o {output.subread_exon_counting_bin_file} " # Output file including read counts "{input.bam_file} " "2> {log}" |
184 185 | script: "../scripts/dexseq/merge_feature_count_files.py" |
221 222 | script: "../scripts/dexseq/dexseq_data_analysis.R" |
244 245 | script: "../scripts/dexseq/extract_significant_results.py" |
275 276 | script: "../../../scripts/create_report_html_files.R" |
306 307 | script: "../scripts/dexseq/dexseq_create_html_summary_reports.R" |
28 29 30 31 32 33 34 35 36 37 38 39 | run: annotation_table = pep.sample_table.copy() # Add the bam file paths to the annotation table in column "bamFile" annotation_table["bamFile"] = input.bam_file_paths annotation_table["sampleID"] = annotation_table["sample_name"] annotation_table["pairedEnd"] = "TRUE" # Drop all columns except "sampleID", "bamFile" and "pairedEnd" annotation_table = annotation_table[["sampleID", "bamFile", "pairedEnd"]] # Save output table annotation_table.to_csv(output.annotation_table, sep="\t", index=False) |
102 103 | script: "../scripts/fraser/fraser_dataset_exploration.R" |
145 146 | script: "../scripts/fraser/create_fraser_analysis_plots.R" |
180 181 | script: "../../../scripts/create_report_html_files.R" |
25 26 | wrapper: "v1.18.3/bio/samtools/sort" |
52 53 54 55 56 57 58 59 60 | shell: "mkdir -p {output.ref_dir};" "ln -s {input.gtf_file} {output.ref_dir}/transcripts.gtf;" "ln -s {input.fasta_file} {output.ref_dir}/genome.fa;" "IRFinder -m BuildRefProcess -t {threads} " "-r {output.ref_dir} " "-b {params.bed_file_consensus_excludable} " "-R {params.bed_file_non_polya} " "2> {log};" |
119 120 121 122 123 124 | shell: "IRFinder -m BAM " "-r {input.reference_dir} " "-d {output.output_dir} " "-t {threads} " "{input.bam_file} 2> {log}" |
170 171 172 173 | run: with open(output[0], "w") as f: for path in input: f.write(path + "\n") |
193 194 195 196 197 198 | run: with open(output[0], "w") as f: assert(len(params.samples) == len(params.conditions)) f.write("SampleNames\tCondition\n") for i in range(len(params.samples)): f.write(params.samples[i] + "\t" + params.conditions[i] + "\n") |
222 223 | script: "../scripts/irfinder/run_glm_analysis.R" |
78 79 80 81 82 83 84 85 | shell: "regtools junctions extract " "-a {params.a} " "-m {params.m} " "-M {params.M} " "-s {params.strandedness} " "-o {output} " "{input.sorted_bam} 2>{log}" |
102 103 104 105 | run: with open(output[0], "w") as f: # Creates file / Rewrites the given file for file in input.bam_files: f.write(file + "\n") |
148 149 150 151 152 153 154 155 156 157 158 159 | shell: "mkdir -p {output.output_dir}; " "python {params.leafcutter_clustering_script_path} " "-j {input.juncfile_list} " # Juncfile list "-m {params.m} " # m split reads needed so that a cluster is considered "-l {params.l} " # max intron length "-o {params.o} " # output prefix "-r {output.output_dir} " # output dir "2>{log} && " "gunzip --keep --force {output.count_file} 2>{log} && " "python {params.bed_file_create_script} " "--leafcutter_intron_file {output.unzipped_count_file} --bed_file {output.bed_file} 2>{log}" |
184 185 186 | shell: "{params.leafcutter_installation_dir}/leafviz/gtf2leafcutter.pl -o {output.output_dir}/{params.output_prefix} " "{input.reference_genome_annotation_file} 2>{log}" |
212 213 | script: "../scripts/leafcutter/create_leafcutter_group_files.py" |
285 286 287 288 289 290 291 292 | run: # Extract significant clusters (column: p.adjust) # p < 0.1 import pandas as pd df = pd.read_csv(input[0], sep="\t") df = df[df["p.adjust"] < 0.1] df = df.sort_values(by="p.adjust") df.to_csv(output[0], sep="\t", index=False) |
325 326 | script: "../../../scripts/create_report_html_files.R" |
358 359 360 361 362 363 364 365 | shell: "{params.leafcutter_installation_dir}/leafviz/prepare_results.R " "-m {input.group_file} " "-f {params.fdr} " "{input.count_file} " "{input.sample_analysis_cluster_significance_file} {input.sample_analysis_effect_sizes_file} " "{params.annotation_files_prefix} " "-o {output}" |
405 406 407 408 | shell: "R -e 'devtools::install_github(\"davidaknowles/leafcutter/leafcutter\")'; " "{params.leafcutter_installation_dir}/scripts/leafcutterMD.R --num_threads {threads} " "--output_prefix {output.output_dir}/{params.output_prefix} {input} 2>{log}" |
443 444 | script: "../scripts/leafcutter/analyze_leafcutterMD_output.py" |
482 483 | script: "../../../scripts/create_report_html_files.R" |
56 57 58 59 60 61 62 63 | shell: "regtools junctions extract " "-a {params.a} " "-m {params.m} " "-M {params.M} " "-s {params.strandedness} " "-o {output} " "{input.bam_file} 2>{log}" |
87 88 | script: "../scripts/private_junction_detection/extract_actual_junctions.py" |
109 110 | shell: "sort-bed {input.in_file} >{output.output_file} 2>{log}" |
134 135 136 137 | shell: "gtf2bed <{input.gtf_file} | grep -w gene | sort-bed - >{output.bed_file} 2>{log};" "python3 {input.chrom_transform_script} --input_gtf_file {output.bed_file} " "--output_gtf_file {output.bed_file_transformed} --log_file {log}" |
164 165 | shell: "bedtools closest {params.extra} -a {input.junc_file} -b {input.annotation_file} > {output} 2>{log}" |
186 187 | script: "../scripts/private_junction_detection/junction_collector.py" |
210 211 | script: "../scripts/private_junction_detection/filter_junctions.py" |
232 233 234 235 236 237 238 239 240 241 | run: # Extract 150 entries from each file and write them to output for input_file, output_file in zip(input, output): with open(input_file, "r") as in_file: with open(output_file, "w") as out_file: for i, line in enumerate(in_file): if i < 251: # 150 entries + header out_file.write(line) else: break |
263 264 | script: "../scripts/private_junction_detection/insert_gene_symbol_and_gene_id.R" |
307 308 | script: "../../../scripts/create_report_html_files.R" |
333 334 | script: "../scripts/private_junction_detection/filter_junctions.py" |
216 217 218 219 220 221 222 223 224 225 226 227 228 229 | run: import pandas as pd for input_file, output_file in zip(input, output): df = pd.read_csv(input_file, sep="\t") # filter for significant results (adjusted p-value < 0.10) df = df[(df["PValue"] < 0.05) & (df["FDR"] < 0.10)] df = df.sort_values(by=["PValue"]) # Extract top x results df = df.head(params.top_x_results) # write to file df.to_csv(output_file, sep="\t",index=False) |
286 287 | script: "../../../scripts/create_report_html_files.R" |
105 106 | script: "../scripts/summary/create_splice_results_summary_file.py" |
141 142 | script: "../../../scripts/create_report_html_files.R" |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | library(BiocParallel) # For parallelization needed library(DEXSeq) # For differential expression analysis library(dplyr) # -------------------- Main function -------------------- main_function <- function() { # ----------------- 1. Load snakemake variables ----------------- # inputs input_dxr_object_file_list <- snakemake@input[["dexseq_results_object_file_list"]] # outputs output_html_report_file_array <- snakemake@output[["result_html_summary_report_file_list"]] # params summary_report_fdr <- snakemake@params[["summary_report_fdr"]] threads <- snakemake@threads # ----------------- 2. Prepare analysis ----------------- # ------ 2.1 Set number of threads -------- BPPARAM <- MulticoreParam(threads) # ----------------- 3. Run analysis ----------------- # ------ 3.1 Create html summary report for condition group -------- for (i in c(1:length(input_dxr_object_file_list))) { # ------ 3.1 Load DEXSeq results object -------- current_dexseq_result_obj <- readRDS(file=input_dxr_object_file_list[i]) # Output directory & file current_output_html_report_file <- output_html_report_file_array[i] current_output_html_report_dir <- dirname(current_output_html_report_file) # HTML Summary with linkouts tryCatch( expr = { print("Creating HTML report") print("1. Create dir") dir.create(current_output_html_report_dir, showWarnings = FALSE) print("2. Create HTML report") DEXSeqHTML(current_dexseq_result_obj, FDR=summary_report_fdr, path=current_output_html_report_dir, file=basename(current_output_html_report_file), BPPARAM=BPPARAM) }, error = function(e) { print("Error in DEXSeqHTML") print(e) print("Saving Error instead of HTML report") sink(file=current_output_html_report_file); print(e); sink() }, finally = { print("Finished DEXSeqHTML") } ) } } # -------------------- Run main function -------------------- main_function() |
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 | library("BiocParallel") # For parallelization needed library("DEXSeq") # For differential expression analysis library("dplyr") source(snakemake@params[["load_subreadOutput_script"]]) # Source script to import Subread output runDexseqAnalysis <- function(countFile, input_flattened_gtf_file, sampleTable, dexseq_results_object_file, output_csv_file, BPPARAM) { # ------ A. Load count data into table ------- # 3. argument: specifies the formula for creating a linear regression model -> interaction between condition and exon # Using this formula, we are interested in differences in exon usage due to the “condition” variable changes. dxd <- DEXSeqDataSetFromFeatureCounts( countFile, flattenedfile = input_flattened_gtf_file, sampleData = sampleTable ) # dxd = DEXSeqDataSetFromHTSeq( # countFile, # sampleData=sampleTable, # design= ~ sample + exon + condition:exon, # flattenedfile=input_flattened_gtf_file # ) # ------ B. Normalization ------- dxd <- estimateSizeFactors(dxd) # Normalization -> Uses same method as DESeq2 # -------- 4.3 Dispersion estimation --------- # To test for differential exon usage, we need to estimate the variability of the data. # This is necessary to be able to distinguish technical and biological variation (noise) from real # effects on exon usage due to the different conditions. dxd <- estimateDispersions(dxd, BPPARAM=BPPARAM) # --------- C. Testing for differential exon usage ---------------- # For each gene, DEXSeq fits a generalized linear model with the formula # ~sample + exon + condition:exon # and compares it to the smaller model (the null model) # ~ sample + exon. # exon: Factor with 2 levels: this and others # Explanation for linear models in R: For every coefficient to add into formula: use symbol "+" # Interactions are separated by colon -> condition:exon -> interpreted as multiplication term # Testing: The deviances of both fits are compared using a χ2-distribution, providing a p value. # Based on this p-value, we can decide whether the null model is sufficient to explain the data, # or whether it may be rejected in favour of the alternative model, which contains an interaction # coefficient for condition:exon. The latter means that the fraction of the gene’s reads that fall # onto the exon under the test differs significantly between the experimental conditions. dxd <- testForDEU(dxd, BPPARAM=BPPARAM) # --------- D. Compute exon fold change ---------------- # Compute exon fold change numbers with formula: # count ~ condition + exon + condition:exon dxd <- estimateExonFoldChanges(dxd, fitExpToVar="condition", BPPARAM=BPPARAM) # ------- E. Results ------------ # Summarize results, save R-object and write result summary to file dxr1 <- DEXSeqResults(dxd) print("Save DEXSeq results object in R-file") saveRDS(dxr1, file=dexseq_results_object_file) print("Save summary of results in CSV-file") write.csv(dxr1, file=output_csv_file, row.names=TRUE) } # -------------------- Main function -------------------- main <- function(){ # ----------------- 1. Load snakemake variables ----------------- # inputs input_flattened_gtf_file <- snakemake@input[["flattened_gtf_file"]] input_exon_counting_bin_file <- snakemake@input[["exon_counting_bin_file"]] # params input_sample_ids <- snakemake@params[["sample_ids"]] input_sample_conditions <- snakemake@params[["sample_conditions"]] threads <- snakemake@threads # outputs dexseq_results_object_file <- snakemake@output[["dexseq_results_object_file"]] output_csv_file <- snakemake@output[["result_summary_csv_file"]] # ----------------- 2. Prepare analysis ----------------- # ------ 2.1 Set number of threads -------- BPPARAM <- MulticoreParam(threads) # register(MulticoreParam(threads)) # ------ 2.2 Load annotation data into table ------- # Table: One row for each library (each sample) # Columns: For all relevant information -> covariates # If only one covariant, it has to be named "condition"! overallSampleTable <- data.frame( row.names = input_sample_ids, condition = input_sample_conditions ) print("Sample table:") print(overallSampleTable) # --------------- 2.3 Extract only needed columns from Subread output ---------------- # Extract only needed columns from Subread output # counts_file <- fread(input_exon_counting_bin_file, header=TRUE, sep="\t", stringsAsFactors=FALSE) counts_file <- read.table(input_exon_counting_bin_file, header=TRUE, check.names=FALSE, sep="\t", stringsAsFactors=FALSE) keep_cols <- c("Geneid", "Chr", "Start", "End", "Strand", "Length", input_sample_ids) # Extract only needed columns from Subread output and ensure order of columns subset_counts <- counts_file[names(counts_file) %in% keep_cols][keep_cols] # Write selected columns to temporary file tmp_subset_counts_file <- tempfile(fileext = ".tsv") write.table(subset_counts, file=tmp_subset_counts_file, sep="\t", quote=FALSE, row.names=FALSE) # ----------------- 3. Run analysis ----------------- # Run dexseq analysis print("Run analysis") runDexseqAnalysis(tmp_subset_counts_file, input_flattened_gtf_file, overallSampleTable, dexseq_results_object_file, output_csv_file, BPPARAM) } # Run main function main() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 | import pandas as pd def clean_summary_csv_file(input, output): """ Replaces the vector symbols in the last column of the summary file and replaces the commas with semicolons :param input: Original summary file from DEXSeq (path) :param output: Output file (path) :return: """ with open(input, 'r') as f: filedata = f.read() # e.g.: c("ENST000000494424", "ENST00000373020") -> ENST000000494424;ENST00000373020 # remove whitespaces that are included in c(...) filedata = filedata.replace('c(', '') filedata = filedata.replace(')', '') filedata = filedata.replace('", "', '";"') filedata = filedata.replace('"', '') filedata = filedata.replace(",\n", "") filedata = filedata.replace(", \n", "") filedata = filedata.replace(", \n", "") with open(output, 'w') as file: file.write(filedata) def extract_significant_results(input_file, output_file, p_value_cutoff=0.05, top_x_select=1000): """ Extracts the significant results from the DEXSeq output file :param input_file: :param output_file: :param p_value_cutoff: p-value cutoff value :return: """ # Read in the results results = pd.read_csv(input_file, low_memory=False) # Remove count data (drop columns that start with "countData.") results = results.loc[:, ~results.columns.str.startswith('countData.')] # Remove entries, where the p-value is not significant # 1. Remove NA values results = results[results['padj'].notna()] # "NA" values are not significant # 2. Remove entries with p-value > 0.05 results = results[results['padj'] < p_value_cutoff] # p-value > 0.05 are not significant # Sort the results by p-value results = results.sort_values(by=['padj']) # Select the top x results results = results.head(top_x_select) # Write the results to a file results.to_csv(output_file, index=False) def integrate_gene_names(result_file, gene_mapping_file, output_file): """ Replace first two columns (gene/group IDs) with gene names :param result_file: :param gene_mapping_file: :param output_file: :return: """ # Read in the results results = pd.read_csv(result_file, low_memory=False) results['ensembl_gene_id'] = results['groupID'].str.split('+').str[0] # Get gene names from Ensembl IDs ensembl_mappings_df = pd.read_csv(gene_mapping_file, low_memory=False) # Merge the two dataframes results = pd.merge(results, ensembl_mappings_df, on='ensembl_gene_id') sorted_results = results.sort_values(by=['padj']) # Sort the results by p-value -> ascending order # Replace the first two columns with the last two columns columns = sorted_results.columns.tolist()[-2:] + sorted_results.columns.tolist()[2:-2] sorted_results = sorted_results[columns] # Save the results to a file sorted_results.to_csv(output_file, index=False) if __name__ == "__main__": # Summary file from DEXSeq & Gene mapping file snakemake_summary_file = snakemake.input.summary_csv_file snakemake_gene_mapping_file = snakemake.params.gene_mapping_file top_x_results = snakemake.params.top_x_results # Output file snakemake_output_file = snakemake.output.filtered_results_file # Clean the summary file clean_summary_csv_file(snakemake_summary_file, snakemake_output_file) # Extract the significant results extract_significant_results(snakemake_output_file, snakemake_output_file, top_x_select=top_x_results) # Integrate gene names integrate_gene_names(snakemake_output_file, snakemake_gene_mapping_file, snakemake_output_file) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | import pandas as pd if __name__ == '__main__': count_files = snakemake.input["count_files"] output_total_count_file = snakemake.output["total_counts_file"] # Iterate over all count files and merge them into one dataframe total_counts_df = pd.DataFrame() for i, count_file in enumerate(count_files): # Current sample ID current_sample_id = count_file.split("/")[-1].split(".")[0] # Read count file & add sample ID as column current_count_df = pd.read_csv(count_file, sep="\t", low_memory=False, skiprows=1) current_count_df = current_count_df.set_axis([*current_count_df.columns[:-1], current_sample_id], axis=1) if i == 0: # First count file total_counts_df = current_count_df else: # All other count files # Add only last column to the total count dataframe total_counts_df = total_counts_df.merge(current_count_df, how="outer", on=["Geneid", "Chr", "Start", "End", "Strand", "Length"]) # Write total count dataframe to file total_counts_df.to_csv(output_total_count_file, sep="\t", index=False) |
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 | library("FRASER") main_function <- function() { input_fraser_analysis_set_object_file <- snakemake@input[["fraser_analysis_set_object_file"]] # Output: Differential splicing analysis - Plots output_summary_table_file <- toString(snakemake@output[["csv_summary_table_file"]]) plot_aberrant_events_per_sample_file <- toString(snakemake@output["plot_aberrant_events_per_sample_file"][1]) plot_qq_plot_file <- toString(snakemake@output["plot_qq_plot_file"][1]) # 1. Create FRASER object dir_name <- dirname(dirname(input_fraser_analysis_set_object_file)) file_name <- basename(input_fraser_analysis_set_object_file) fds <- FRASER::loadFraserDataSet(dir=dir_name, name=file_name) print("FRASER: FRASER dataset object loaded") # 2. Collect results and save them in a data frame res <- as.data.table(results(fds)) resOrdered <- res[order(res$pValue),] # Sort results by p-value # Exporting results resOrderedDF <- as.data.frame(resOrdered) write.csv(resOrderedDF, file=output_summary_table_file) # 3. Create Plots # 3.1 Plot the number of aberrant events per sample tryCatch( expr = { # Plot number of aberrant events per sample based on the given cutoff values print("Plotting number of aberrant events per sample") print(plot_aberrant_events_per_sample_file) png(filename=plot_aberrant_events_per_sample_file, width=800, height=800) print(FRASER::plotAberrantPerSample(fds)) dev.off() }, error = function(e) { print("Error in creating aberrant events per sample plot") print(e) } ) # 3.2 Plot the qq-plot tryCatch( expr = { # Global qq-plot (on gene level since aggregate=TRUE) print("Plotting qq-plot") print(plot_qq_plot_file) jpeg(filename=plot_qq_plot_file, width=800, height=800) print(FRASER::plotQQ(fds, aggregate=TRUE, global=TRUE)) dev.off() }, error = function(e) { print("Error in creating qq-plot") print(e) } ) } main_function() |
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 | library("FRASER") library("TxDb.Hsapiens.UCSC.hg19.knownGene") library("org.Hs.eg.db") # Requierements: 1. Sample annotation, # 2. Two count matrices are needed: one containing counts for the splice junctions, i.e. the # split read counts, and one containing the splice site counts, i.e. the counts of non # split reads overlapping with the splice sites present in the splice junctions. set_up_fraser_dataset_object <- function(sample_annotation_file_path) { #' Function to set up a FRASER object #' #' @param sample_annotation_file_path Path to sample annotation file #' @param output_dir_path Path to output directory #' #' @return FRASER object # Load annotation file annotationTable <- fread(sample_annotation_file_path, header=TRUE, sep="\t", stringsAsFactors=FALSE) annotationTable$bamFile <- file.path(annotationTable$bamFile) # Required for FRASER # --------------- Creating a FRASER object ---------------- # create FRASER object settings <- FraserDataSet(colData=annotationTable, name="Fraser Dataset") # Via count reads fds <- countRNAData(settings) # Via raw counts # junctionCts <- fread(additional_junction_counts_file, header=TRUE, sep="\t", stringsAsFactors=FALSE) # spliceSiteCts <- fread(additional_splice_site_counts_file, header=TRUE, sep="\t", stringsAsFactors=FALSE) # fds <- FraserDataSet(colData=annotationTable, junctions=junctionCts, spliceSites=spliceSiteCts, workingDir="FRASER_output") return(fds) } run_filtering <- function(fraser_object, plot_filter_expression_file, plot_cor_psi5_heatmap_file, plot_cor_psi3_heatmap_file, plot_cor_theta_heatmap_file) { #' Function to run filtering #' #' @param fraser_object FRASER object #' @param output_dir_path Path to output directory #' #' @return FRASER object # --------------- Filtering ---------------- # Compute main splicing metric -> The PSI-value fds <- calculatePSIValues(fraser_object) # Run filters on junctions: At least one sample has 20 reads, and at least 5% of the samples have at least 1 reads # Filter=FALSE, since we first plot and subsequently apply subsetting fds <- filterExpressionAndVariability(fds, minExpressionInOneSample=20, minDeltaPsi=0.0, # Only junctions with a PSI-value difference of at least x% between two samples are considered filter=FALSE # If TRUE, a subsetted fds containing only the introns that passed all filters is returned. ) # Plot filtering results jpeg(plot_filter_expression_file, width=800, height=800) print(plotFilterExpression(fds, bins=100)) dev.off() # Finally apply filter results fds_filtered <- fds[mcols(fds, type="j")[,"passed"],] # ---------------- Heatmaps of correlations ---------------- # 1. Correlation of PSI5 tryCatch( expr = { # Heatmap of the sample correlation jpeg(plot_cor_psi5_heatmap_file, width=800, height=800) plotCountCorHeatmap(fds_filtered, type="psi5", logit=TRUE, normalized=FALSE) dev.off() }, error = function(e) { print("Error in creating Heatmap of the sample correlation") print(e) } ) # tryCatch( # expr = { # # Heatmap of the intron/sample expression # jpeg(plot_cor_psi5_top100_heatmap_file, width=800, height=800) # plotCountCorHeatmap(fds_filtered, type="psi5", logit=TRUE, normalized=FALSE, # plotType="junctionSample", topJ=100, minDeltaPsi = 0.01) # dev.off() # }, # error = function(e) { # print("Error in creating Heatmap of the intron/sample expression") # print(e) # } # ) # 2. Correlation of PSI3 tryCatch( expr = { # Heatmap of the sample correlation jpeg(plot_cor_psi3_heatmap_file, width=800, height=800) plotCountCorHeatmap(fds_filtered, type="psi3", logit=TRUE, normalized=FALSE) dev.off() }, error = function(e) { print("Error in creating Heatmap of the sample correlation") print(e) } ) # tryCatch( # expr = { # # Heatmap of the intron/sample expression # jpeg(plot_cor_psi3_top100_heatmap_file, width=800, height=800) # plotCountCorHeatmap(fds_filtered, type="psi3", logit=TRUE, normalized=FALSE, # plotType="junctionSample", topJ=100, minDeltaPsi = 0.01) # dev.off() # }, # error = function(e) { # print("Error in creating Heatmap of the intron/sample expression") # print(e) # } # ) # 3. Correlation of Theta tryCatch( expr = { # Heatmap of the sample correlation jpeg(plot_cor_theta_heatmap_file, width=800, height=800) plotCountCorHeatmap(fds_filtered, type="theta", logit=TRUE, normalized=FALSE) dev.off() }, error = function(e) { print("Error in creating Heatmap of the sample correlation") print(e) } ) # tryCatch( # expr = { # # Heatmap of the intron/sample expression # jpeg(plot_cor_theta_top100_heatmap_file, width=800, height=800) # plotCountCorHeatmap(fds_filtered, type="theta", logit=TRUE, normalized=FALSE, # plotType="junctionSample", topJ=100, minDeltaPsi = 0.01) # dev.off() # }, # error = function(e) { # print("Error in creating Heatmap of the intron/sample expression") # print(e) # } # ) return(fds_filtered) } detect_dif_splice <- function(fraser_object, output_fraser_analysis_set_object_file, plot_normalized_cor_psi5_heatmap_file, plot_normalized_cor_psi3_heatmap_file, plot_normalized_cor_theta_heatmap_file) { #' Function to detect differential splicing #' #' @param fraser_object FRASER object #' @param output_dir_path Path to output directory #' @param summary_table_file Path to summary table file #' #' @return FRASER object # ----------------- Detection of differential splicing ----------------- # 1. Fitting the splicing model: # Normalizing data and correct for confounding effects by using a denoising autoencoder # This is computational heavy on real size datasets and can take awhile # q: The encoding dimension to be used during the fitting procedure. Can be fitted with optimHyperParams # see: https://rdrr.io/bioc/FRASER/man/optimHyperParams.html fds <- FRASER(fraser_object, q=c(psi5=3, psi3=5, theta=2)) # Plot 1: PSI5 tryCatch( expr = { # Check results in heatmap jpeg(plot_normalized_cor_psi5_heatmap_file, width=800, height=800) plotCountCorHeatmap(fds, type="psi5", normalized=TRUE, logit=TRUE) dev.off() }, error = function(e) { print("Error in creating Heatmap of the sample correlation") print(e) } ) # Plot 2: PSI3 tryCatch( expr = { # Check results in heatmap jpeg(plot_normalized_cor_psi3_heatmap_file, width=800, height=800) plotCountCorHeatmap(fds, type="psi3", normalized=TRUE, logit=TRUE) dev.off() }, error = function(e) { print("Error in creating Heatmap of the sample correlation") print(e) } ) # Plot 3: Theta tryCatch( expr = { # Check results in heatmap jpeg(plot_normalized_cor_theta_heatmap_file, width=800, height=800) plotCountCorHeatmap(fds, type="theta", normalized=TRUE, logit=TRUE) dev.off() }, error = function(e) { print("Error in creating Heatmap of the sample correlation") print(e) } ) # 2. Differential splicing analysis # 2.1 annotate introns with the HGNC symbols of the corresponding gene txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene orgDb <- org.Hs.eg.db fds <- annotateRangesWithTxDb(fds, txdb=txdb, orgDb=orgDb) # 2.2 retrieve results with default and recommended cutoffs (padj <= 0.05 and |deltaPsi| >= 0.3) print("Saving FraserAnalysisDataSetTest results") # Saves RDS-file into savedObjects folder saveFraserDataSet(fds, dir=dirname(dirname(output_fraser_analysis_set_object_file)), name=basename(output_fraser_analysis_set_object_file)) # ----------------- Finding splicing candidates in patients ----------------- # -> Plotting the results # tryCatch( # expr = { # -------- Sample specific plots -------- # jpeg(file.path(output_dir_path, "psi5_volcano_plot_sample1.jpg"), width=800, height=800) # plotVolcano(fds, type="psi5", annotationTable$sampleID[1]) # dev.off() # jpeg(file.path(output_dir_path, "psi5_expression_sample1.jpg"), width=800, height=800) # plotExpression(fds, type="psi5", result=sampleRes[1]) # dev.off() # jpeg(file.path(output_dir_path, "expected_vs_observed_psi_sample1.jpg"), width=800, height=800) # plotExpectedVsObservedPsi(fds, result=sampleRes[1]) # dev.off() # }, # error = function(e) { # print("Error in creating plots") # print(e) # } # ) return(fds) } main_function <- function() { in_sample_annotation_file <- snakemake@input[["sample_annotation_file"]] # Output: Plot files - After filtering, no normalization plot_filter_expression_file <- snakemake@output[["plot_filter_expression_file"]] plot_cor_psi5_heatmap_file <- snakemake@output[["plot_cor_psi5_heatmap_file"]] plot_cor_psi3_heatmap_file <- snakemake@output[["plot_cor_psi3_heatmap_file"]] plot_cor_theta_heatmap_file <- snakemake@output[["plot_cor_theta_heatmap_file"]] # ToDO: Set plotType to "sampleCorrelation", however this plots are not helpful and can be ignored... # plot_cor_psi5_top100_heatmap_file <- snakemake@output[["plot_cor_psi5_top100_heatmap_file"]] # plot_cor_psi3_top100_heatmap_file <- snakemake@output[["plot_cor_psi3_top100_heatmap_file"]] # plot_cor_theta_top100_heatmap_file <- snakemake@output[["plot_cor_theta_top100_heatmap_file"]] # Output: Plot files - After filtering, normalization plot_normalized_cor_psi5_heatmap_file <- snakemake@output[["plot_normalized_cor_psi5_heatmap_file"]] plot_normalized_cor_psi3_heatmap_file <- snakemake@output[["plot_normalized_cor_psi3_heatmap_file"]] plot_normalized_cor_theta_heatmap_file <- snakemake@output[["plot_normalized_cor_theta_heatmap_file"]] # Output: Differential splicing analysis output_fraser_dataset_object_file <- snakemake@output[["fraser_data_set_object_file"]] # TODO: Integrate additional count files from external resources -> Failed... # additional_junction_counts_file <- snakemake@params[["additional_junction_counts_file"]] # additional_splice_site_counts_file <- snakemake@params[["additional_splice_site_counts_file"]] threads <- snakemake@threads register(MulticoreParam(workers=threads)) # 1. Create FRASER object fraser_obj <- set_up_fraser_dataset_object(in_sample_annotation_file) print("FRASER: FRASER dataset object created") # 2. Run filtering filtered_fraser_obj <- run_filtering(fraser_obj, plot_filter_expression_file, plot_cor_psi5_heatmap_file, plot_cor_psi3_heatmap_file, plot_cor_theta_heatmap_file) print("FRASER: Filtering done") # 3. Detect differential splicing detect_dif_splice(filtered_fraser_obj, output_fraser_dataset_object_file, plot_normalized_cor_psi5_heatmap_file, plot_normalized_cor_psi3_heatmap_file, plot_normalized_cor_theta_heatmap_file ) print("FRASER: Differential splicing analysis done") } main_function() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 | library(DESeq2) source(snakemake@input[["deseq2_constructor_script"]]) # Load IRFinder-related function results = read.table(snakemake@input[["irfinder_results_file_paths_collection"]]) paths = as.vector(results$V1) # File names must be saved in a vector experiment = read.table(snakemake@input[["sample_condition_mapping_file"]], header=T) experiment$Condition=factor(experiment$Condition,levels=c(snakemake@wildcards[["condition"]], "None")) # Set WT as the baseline in the analysis rownames(experiment)=NULL # Force removing rownames # WARNING: make sure the rownames of `experiment` is set to NULL. # WARNING: users MUST check if the order of files in the `path` matches the order of samples in `experiment` before continue metaList=DESeqDataSetFromIRFinder(filePaths=paths, designMatrix=experiment, designFormula=~1) # The above line generates a meta list containing four slots # First slot is a DESeq2 Object that can be directly passed to DESeq2 analysis. # Second slot is a matrix for trimmed means of intron depth # Third slot is a matrix for correcting splicing depth flanking introns # Fourth slot is a matrix for maximum splicing reads at either ends of introns # We build a “null” regression model on the interception only. # A “real” model can be assigned either here directly, or in the downstream step. See below dds = metaList$DESeq2Object # Extract DESeq2 Object with normalization factors ready print("Check design of matrix") colData(dds) # Check design of matrix # Please note that sample size has been doubled and one additional column "IRFinder" has been added. # This is because IRFinder considers each sample has two sets of counts: one for reads inside intronic region # and one for reads at splice site, indicating by "IR" and "Splice" respectively. # "IRFinder" is considered as an additional variable in the GLM model. # Please also be aware that size factors have been set to 1 for all samples. Re-estimation of size factors is NOT recommended and is going to bias the result. # More details at the end of the instruction. design(dds) = ~Condition + Condition:IRFinder # Build a formula of GLM. Read below for more details. dds = DESeq(dds) # Estimate parameters and fit to model print("Check actual variable names assigned by DeSeq2") resultsNames(dds) # Check the actual variable name assigned by DESeq2 res.WT = results(dds, name = "ConditionWT.IRFinderIR") # This tests if the number of IR reads are significantly different from normal spliced reads, in the WT samples. # We might only be interested in the "log2FoldChange" column, instead of the significance. # This is because "log2FoldChange" represents log2(number of intronic reads/number of normal spliced reads). # So we have the value of (intronic reads/normal spliced reads) by WT.IR_vs_Splice=2^res.WT$log2FoldChange # As IR ratio is calculated as (intronic reads/(intronic reads+normal spliced reads)) # We can easily convert the above value to IR ratio by IRratio.WT = WT.IR_vs_Splice/(1+WT.IR_vs_Splice) # Similarly, we can get IR ratio in the KO samples res.KO = results(dds, name = "ConditionKO.IRFinderIR") KO.IR_vs_Splice=2^res.KO$log2FoldChange IRratio.KO = KO.IR_vs_Splice/(1+KO.IR_vs_Splice) # Finally we can test the difference of (intronic reads/normal spliced reads) ratio between WT and KO res.diff = results(dds, contrast=list("ConditionKO.IRFinderIR","ConditionWT.IRFinderIR")) write.csv(dxr1, file=snakemake@output[["output_results_csv_file"]], row.names=TRUE) # We can plot the changes of IR ratio with p values # In this example we defined significant IR changes as # 1) IR changes no less than 10% (both direction) and # 2) with adjusted p values less than 0.05 IR.change = IRratio.KO - IRratio.WT # Create plot and save it as JPEG output_plot_file = snakemake@output[["output_plot_file"]] jpeg(file=output_plot_file) print(plot(IR.change,col=ifelse(res.diff$padj < 0.05 & abs(IR.change)>=0.1, "red", "black"))) dev.off() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | import pandas as pd # filters input_df according to given p-val threshold # -> Returns filtered dataframe def filter_dfs(input_df, p_val_threshold=0.01, columns=None): """ Filters input_df according to given p-val threshold Sort & extract top 1000 rows :param input_df: :param p_val_threshold: :param columns: :return: """ if columns is None or len(columns) == 0: columns = input_df.columns sub_df = input_df[columns] # filtering: only keep rows with p-val < p_val_threshold # .any(axis=1) -> keep rows with at least one True value output_df = sub_df[(sub_df <= p_val_threshold).any(axis=1)] # Sort by minimal p-value output_df['min_pvalue'] = output_df.min(axis=1) output_df = output_df.sort_values(by=['min_pvalue']) # Extract only top 1000 results output_df = output_df.head(n=1000) return output_df if __name__ == '__main__': # Load files all_outlier_introns_pVals_file = snakemake.input["all_outlier_introns_pVals_file"] all_outlier_clusters_pVals_file = snakemake.input["all_outlier_clusters_pVals_file"] all_outlier_effSize_file = snakemake.input["all_outlier_effSize_file"] # Output files all_filtered_introns_file = snakemake.output["all_filtered_introns_file"] condition_filtered_introns_file = snakemake.output["condition_filtered_introns_file"] all_filtered_clusters_file = snakemake.output["all_filtered_clusters_file"] condition_filtered_clusters_file = snakemake.output["condition_filtered_clusters_file"] # Load sample names for affected samples sample_ids = snakemake.params.patient_sample_ids pvalue_threshold = snakemake.params.pvalue_threshold # Load dataframes of LeafcutterMD results introns_df = pd.read_csv(all_outlier_introns_pVals_file, sep='\t') clusters_df = pd.read_csv(all_outlier_clusters_pVals_file, sep='\t') # Intron assessment results filter_dfs(introns_df, p_val_threshold=pvalue_threshold).to_csv(all_filtered_introns_file, sep='\t') filter_dfs(introns_df, p_val_threshold=pvalue_threshold, columns=sample_ids).to_csv(condition_filtered_introns_file, sep='\t') # Cluster assessment results filter_dfs(clusters_df, p_val_threshold=pvalue_threshold).to_csv(all_filtered_clusters_file, sep='\t') filter_dfs(clusters_df, p_val_threshold=pvalue_threshold, columns=sample_ids).to_csv(condition_filtered_clusters_file, sep='\t') |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | import os def create_leafcutter_group_file(output_dir, condition, control_sample_ids, patient_sample_ids): """ Creates a group file for leafcutter analysis :param output_dir: Output directory :param condition: Current condition's name :param control_sample_ids: List of control sample ids :param patient_sample_ids: :return: """ # Create group file group_file = os.path.join(output_dir, f"{condition}_group_file.txt") group_file_text = "" for sample_id in control_sample_ids: group_file_text += f"{sample_id}\tcontrol\n" for sample_id in patient_sample_ids: group_file_text += f"{sample_id}\tpatient\n" with open(group_file, "w") as f: f.write(group_file_text) if __name__ == '__main__': # Get snakemake variables output_dir = snakemake.params.output_dir control_samples_ids = snakemake.params.control_samples["sample_name"].tolist() condition_samples_array = snakemake.params.condition_samples_array for condition_samples in condition_samples_array: condition_samples_ids = condition_samples["sample_name"].tolist() current_condition = condition_samples["condition"][0] print("condition: ", current_condition) print("control samples: ", control_samples_ids) print("condition samples: ", condition_samples) print("condition samples IDs: ", condition_samples_ids) create_leafcutter_group_file(output_dir, current_condition, control_samples_ids, condition_samples_ids) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | import pandas as pd def extract_actual_junctions_from_regtools_file(input_jct_file, output_jct_file, sample_id): """ Extracts the actual junctions from the regtools file Meaning: ChromStart includes maximum overhang for the junction on the left side -> Add blockSizes[0] to get the actual start ChromEnd includes maximum overhang for the junction on the right side -> Subtract blockSizes[1] to get the actual end See docs here: https://regtools.readthedocs.io/en/latest/commands/junctions-extract/ :param input_jct_file: Input file: Contains all junctions for given sample :param output_jct_file: Output file :params sample_id: ID of current sample :return: """ # Column-names: Each line is a exon-exon junction column_names = ["chrom", "chromStart", "chromEnd", "name", "score", "strand", "thickStart", "thickEnd", "itemRgb", "blockCount", "blockSizes", "blockStarts"] # Read the file junction_df = pd.read_csv(input_jct_file, names=column_names, sep="\t") # Extract the actual junctions junction_df["max_overhang_before_start"] = junction_df["blockSizes"].str.split(",").str[0].astype(int) junction_df["max_overhang_after_end"] = junction_df["blockSizes"].str.split(",").str[-1].astype(int) junction_df["exact_jct_start"] = junction_df["chromStart"].astype(int) + junction_df["max_overhang_before_start"] junction_df["exact_jct_end"] = junction_df["chromEnd"].astype(int) - junction_df["max_overhang_after_end"] # Save the results to a file, but without header... junction_df["sample_name"] = sample_id reduced_df = junction_df[["chrom", "exact_jct_start", "exact_jct_end", "sample_name", "score", "strand"]] reduced_df.to_csv(output_jct_file, index=False, header=False, sep="\t") if __name__ == "__main__": # Input files snakemake_input_file = snakemake.input.regtools_junc_files # Output file snakemake_output_file = snakemake.output.output_file sample_id = snakemake.wildcards.sample_id # Extract the actual junctions extract_actual_junctions_from_regtools_file(snakemake_input_file, snakemake_output_file, sample_id) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 | import pandas as pd def filter_junctions(junction_collection_file, control_samples, condition_samples, only_ctr_junc_file, only_cond_junc_file, max_contrast=0.0, in_all_samples=True): """ Merges the junctions from the different samples into one file :param junction_collection_file: File containing the junctions from all samples :param control_samples: List of samples from condition 1 :param condition_samples: List of samples from condition 2 :param only_ctr_junc_file: Output file for junctions only in condition 1 :param only_cond_junc_file: Output file for junctions only in condition 2 :param max_contrast: Part of total nr of reads of all samples over all conditions, that is allowed to appear. E.g. 0.2, where total number of reads is 100 -> then max a total of 20 (-> 20%) reads are allowed to be in the contra-condition :param in_all_samples: If True, junctions have to be in all samples :return: """ # Column-names: Each line is a exon-exon junction total_junction_df = pd.read_csv(junction_collection_file, low_memory=False, sep="\t") # Select first 5 info columns and respective sample columns print("Control samples: ", control_samples) print("Condition samples: ", condition_samples) selected_columns = total_junction_df.columns[:5].tolist() + control_samples + condition_samples total_junction_df_selected = total_junction_df[selected_columns] # Collect total sum & compute maximum contrast total_junction_df_selected["total_sum"] = (total_junction_df_selected[control_samples].sum(axis=1) + total_junction_df_selected[condition_samples].sum(axis=1)) total_junction_df_selected["max_contrast"] = total_junction_df_selected["total_sum"]*max_contrast # ------------- 1. Filter only control junctions ------------- only_control_junctions_df = apply_filtering(total_junction_df_selected, control_samples, condition_samples, in_all_samples) only_control_junctions_df = only_control_junctions_df.sort_values(by="total_sum", ascending=False) # ------------- 2. Filter only condition junctions ------------- only_condition_junctions_df = apply_filtering(total_junction_df_selected, condition_samples, control_samples, in_all_samples) only_condition_junctions_df = only_condition_junctions_df.sort_values(by="total_sum", ascending=False) # Save the results in output dir only_control_junctions_df.to_csv(only_ctr_junc_file, index=False, sep="\t") only_condition_junctions_df.to_csv(only_cond_junc_file, index=False, sep="\t") def apply_filtering(input_df, samples_1, samples_2, in_all_samples_bool): """ Filters the junctions in the input_df 1. Only rows where at least one read in all samples of samples_1 are collected 2. If in_all_samples_bool is True, then only junctions in all samples_1 are collected 3. Only junctions where the sum of all samples_1 is higher than the sum of all samples_2 (depending on max_contrast) :param input_df: Input dataframe :param samples_1: List of samples from condition 1 :param samples_2: List of samples from condition 2 :param in_all_samples_bool: If True, junctions have to be in all samples of condition 1 :return: """ # 1. Select only rows where at least one sample has a value > 0 df_with_s1_jcts = input_df[input_df[samples_1].sum(axis=1) > 0] # 2. Every junction has to be in all s1 samples if in_all_samples_bool: for sample in samples_1: df_with_s1_jcts = df_with_s1_jcts[df_with_s1_jcts[sample] > 0] # 3. Filtering depending on the max_contrast column df_with_s1_jcts = df_with_s1_jcts[(df_with_s1_jcts[samples_1].sum(axis=1) > df_with_s1_jcts["max_contrast"]) & (df_with_s1_jcts[samples_2].sum(axis=1) <= df_with_s1_jcts["max_contrast"])] return df_with_s1_jcts if __name__ == "__main__": # Input files snakemake_junction_collection_file = snakemake.input.junction_collection_file # params snakemake_control_samples = snakemake.params.control_samples snakemake_condition_samples = snakemake.params.condition_samples # Output file snakemake_only_control_junctions_file = snakemake.output.only_control_junctions_file snakemake_only_condition_junctions_file = snakemake.output.only_condition_junctions_file # params snakemake_max_contrast = snakemake.params.max_contrast # Filter junctions filter_junctions(snakemake_junction_collection_file, snakemake_control_samples, snakemake_condition_samples, snakemake_only_control_junctions_file, snakemake_only_condition_junctions_file, snakemake_max_contrast) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 | library("AnnotationDbi") library("org.Hs.eg.db") extract_gene_id_from_info_col <- function(data_frame_obj, info_col, gene_id_col="gene_ensembl_id") { " Extracts gene ID from info column. " # Extract gene-IDs from info_col # Each entry in info_col looks like this: # gene_id "ENSG00000186092"; transcript_id "ENST00000335137"; exon_number "1"; gene_name "OR4F5"; gene_biotype "protein_coding"; transcript_name "OR4F5-201"; exon_id "ENSE00002234944"; # Extract the first part of the string, i.e. the gene_id gene_ids <- lapply(data_frame_obj[info_col], FUN=function(x) { gene_id <- gsub(pattern=".*gene_id \"", replacement="", x=x) gene_id <- gsub(pattern="\";.*", replacement="", x=gene_id) return(gene_id) } ) data_frame_obj[gene_id_col] <- gene_ids return(data_frame_obj) } add_gene_symbol_and_entrez_id_to_results <- function(data_frame_obj, gene_ensembl_id_col="gene_ensembl_id", gene_name_col="gene_name") { " Adds gene symbols and entrez-IDs to results object. " gene_ids_vector <- as.vector(t(data_frame_obj[gene_ensembl_id_col])) # If empty gene_ids_vector, then return fill with NA if (length(gene_ids_vector) == 0) { data_frame_obj[gene_name_col] <- character(0) } else { # Add gene symbols # Something breaks here when setting a new column name data_frame_obj[gene_name_col] <- AnnotationDbi::mapIds(org.Hs.eg.db::org.Hs.eg.db, keys=gene_ids_vector, column="SYMBOL", keytype="ENSEMBL", multiVals="first") } return(data_frame_obj) } # Main function main <- function() { # Input input_table_files <- snakemake@input # Output output_files <- snakemake@output # info_col info_col_name <- snakemake@params[["info_col_name"]] gene_ensembl_id_col_name = snakemake@params[["gene_ensembl_id_col_name"]] gene_name_col_name = snakemake@params[["gene_name_col_name"]] # Loop over input files for (i in seq_along(input_table_files)) { # Read input table df <- read.table(toString(input_table_files[i]), sep="\t", header=TRUE, stringsAsFactors=FALSE) # Extract gene ID from info column df <- extract_gene_id_from_info_col(df, info_col=info_col_name, gene_id_col=gene_ensembl_id_col_name) # Add gene symbols and entrez-IDs df <- add_gene_symbol_and_entrez_id_to_results(df, gene_ensembl_id_col=gene_ensembl_id_col_name, gene_name_col=gene_name_col_name) # Put gene_ensembl_id_col and gene_name_col to the front input_table <- df[, c(gene_ensembl_id_col_name, gene_name_col_name, setdiff(colnames(df), c(gene_ensembl_id_col_name, gene_name_col_name)))] # Write output table write.table(input_table, file=toString(output_files[i]), sep="\t", quote=FALSE, row.names=FALSE) } } # Run main function main() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | import pandas as pd def merge_junctions_naivly(input_file_list, input_sample_list, output_file): """ Merges the junctions from the different samples into one file. Naivly merging: If a junction is present in one sample, it is present in the merged file. :param input_file_list: List of files containing the junctions from all samples :param input_sample_list: List of sample names :param output_file: Output file for merged junctions :return: """ # Column-names: Each line is a exon-exon junction common_cols = ["chrom", "exact_jct_start", "exact_jct_end", "strand", "add_info"] # Shared column names column_types = {"chrom": "category", "exact_jct_start": "uint32", "exact_jct_end": "uint32", "strand": "category"} summary_df = pd.DataFrame(columns=common_cols) summary_df.astype(column_types) # Iterate over all samples and merge the junctions into one file for counter, input_file in enumerate(input_file_list): sample_name = input_sample_list[counter] current_df = pd.read_csv(input_file, low_memory=False, sep="\t") current_df.fillna(0, inplace=True) reduced_df = current_df.iloc[:, 0:6] reduced_df.columns = ["chrom", "exact_jct_start", "exact_jct_end", "sample_name", "score", "strand"] reduced_df["add_info"] = current_df.iloc[:, -2] reduced_df.rename(columns={"score": sample_name}, inplace=True) # Rename the score column to the sample name reduced_df = reduced_df[["chrom", "exact_jct_start", "exact_jct_end", "strand", "add_info", sample_name]] # Set datatypes to save memory reduced_df.astype(column_types) reduced_df.astype({sample_name: "uint16"}) # Merge the junctions summary_df = summary_df.merge(reduced_df, on=common_cols, how="outer") # Save the results to a file summary_df.fillna(0).to_csv(output_file, index=False, sep="\t") if __name__ == "__main__": # Input files snakemake_input_files = snakemake.input.all_junc_files snakemake_input_samples = snakemake.params.sample_names # Output file snakemake_output_file = snakemake.output.output_file # Merge the junctions merge_junctions_naivly(snakemake_input_files, snakemake_input_samples, snakemake_output_file) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 | import pandas as pd def load_simple_result_file(input_file_path, input_gene_name_col, input_adjusted_pval_col, tool_name): """ Simply loads the given file (automatic separator detection) and returns a dataframe with the following columns: - gene_name - <tool_name> adjusted-p-value - <tool_name> ranking """ df = None if input_file_path: # New column names ranking_col = tool_name + ": ranking" adjusted_pval_col = tool_name + ": adjusted-p-value" # Load file -> automatically detect separator df = pd.read_csv(str(input_file_path), sep=None) df[ranking_col] = df.index +1 # +1 because index starts at 0 # Rename gene name column df = df.rename(columns={input_gene_name_col: "gene_name"}) # Rename adjusted p-value column if input_adjusted_pval_col: df = df.rename(columns={input_adjusted_pval_col: adjusted_pval_col}) df = df[["gene_name", adjusted_pval_col, ranking_col]] else: # no adjusted p-value column given -> So do not use it df = df[["gene_name", ranking_col]] else: print("No input file for " + tool_name + " provided. Skipping...") return df def load_result_files(): """ Loads result files from all different tools of the given workflow. Returns an array of the resulting dataframes. Attention: Makes use of snakemake.input and snakemake.params. :return: """ output_result_dfs = [] # 1. Load pjd results try: # PJD condition if snakemake.input.pjd_condition: pjd_condition_df = load_simple_result_file(snakemake.input.pjd_condition, snakemake.params.pjd_gene_col_name, None, "PJD-condition") output_result_dfs.append(pjd_condition_df) # PJD control if snakemake.input.pjd_control: pjd_control_df = load_simple_result_file(snakemake.input.pjd_control, snakemake.params.pjd_gene_col_name, None, "PJD-control") output_result_dfs.append(pjd_control_df) except AttributeError as e: print("1. No input file for PJD provided. Skipping...") print(e) # 2. Load Leafcutter results try: if snakemake.input.leafcutter_results: leafcutter_df = load_simple_result_file(snakemake.input.leafcutter_results, snakemake.params.leafcutter_gene_col_name, snakemake.params.leafcutter_adjusted_pval_col_name, "Leafcutter") output_result_dfs.append(leafcutter_df) except AttributeError as e: print("2. No input file for Leafcutter provided. Skipping...") print(e) # 3. Load fraser results try: if snakemake.input.fraser_results: fraser_df = pd.read_csv(str(snakemake.input.fraser_results), sep=",") # select only condition samples -> params.samples_with_condition fraser_df = fraser_df[fraser_df["sampleID"].isin(snakemake.params.samples_with_condition)] fraser_df["FRASER: ranking"] = fraser_df.index fraser_df = fraser_df.rename(columns={snakemake.params.fraser_gene_col_name: "gene_name"}) fraser_df = fraser_df.rename(columns= {snakemake.params.fraser_adjusted_pval_col_name: "FRASER: adjusted-p-value"}) fraser_df = fraser_df[["gene_name", "FRASER: adjusted-p-value", "FRASER: ranking"]] output_result_dfs.append(fraser_df) except AttributeError as e: print("3. No input file for FRASER provided. Skipping...") print(e) # 4. Load dexseq results try: if snakemake.input.dexseq_results: dexseq_df = load_simple_result_file(snakemake.input.dexseq_results, snakemake.params.dexseq_gene_col_name, snakemake.params.dexseq_adjusted_pval_col_name, "DEXSeq") output_result_dfs.append(dexseq_df) except AttributeError as e: print("2. No input file for DEXSeq provided. Skipping...") print(e) # 5. Load rMATS results try: # 1. Load rMATS results for A3SS if snakemake.input.rmats_results_a3ss_jcec: rmats_a3ss_jcec_df = load_simple_result_file(snakemake.input.rmats_results_a3ss_jcec, snakemake.params.rmats_gene_col_name, snakemake.params.rmats_adjusted_pval_col_name, "rMATS-A3SS") output_result_dfs.append(rmats_a3ss_jcec_df) # 2. Load rMATS results for A5SS if snakemake.input.rmats_results_a5ss_jcec: rmats_a5ss_jcec_df = load_simple_result_file(snakemake.input.rmats_results_a5ss_jcec, snakemake.params.rmats_gene_col_name, snakemake.params.rmats_adjusted_pval_col_name, "rMATS-A5SS") output_result_dfs.append(rmats_a5ss_jcec_df) # 3. Load rMATS results for MXE if snakemake.input.rmats_results_mxe_jcec: rmats_mxe_jcec_df = load_simple_result_file(snakemake.input.rmats_results_mxe_jcec, snakemake.params.rmats_gene_col_name, snakemake.params.rmats_adjusted_pval_col_name, "rMATS-MXE") output_result_dfs.append(rmats_mxe_jcec_df) # 4. Load rMATS results for RI if snakemake.input.rmats_results_ri_jcec: rmats_ri_jcec_df = load_simple_result_file(snakemake.input.rmats_results_ri_jcec, snakemake.params.rmats_gene_col_name, snakemake.params.rmats_adjusted_pval_col_name, "rMATS-RI") output_result_dfs.append(rmats_ri_jcec_df) # 5. Load rMATS results for SE if snakemake.input.rmats_results_se_jcec: rmats_se_jcec_df = load_simple_result_file(snakemake.input.rmats_results_se_jcec, snakemake.params.rmats_gene_col_name, snakemake.params.rmats_adjusted_pval_col_name, "rMATS-SE") output_result_dfs.append(rmats_se_jcec_df) except AttributeError as e: print("5. No input file for rMATS provided. Skipping...") print(e) # Finally return the list of dataframes return output_result_dfs def merge_results(output_result_dfs): """" Load result files from different tools and merge them into one dataframe. ATTENTION: Remove empty gene_name rows, since otherwise a memory overload occurs during merging. """ merged_df = output_result_dfs[0] for df in output_result_dfs[1:]: merged_df = merged_df.merge(df, on="gene_name", how="outer") # count non-empty cells per row for chosen columns # Select columns that contain "ranking" in the column name ranking_cols_without_rmats = [col for col in merged_df.columns if "ranking" in col and "rMATS" not in col] ranking_cols_with_rmats = [col for col in merged_df.columns if "ranking" in col] # A: Agreement score without rMATS if len(ranking_cols_without_rmats) == 0: merged_df["Agreement Sum without rMATS"] = 0 else: merged_df["Agreement Sum without rMATS"] = merged_df[ranking_cols_without_rmats].notnull().sum(axis=1) # B: Agreement score with rMATS merged_df["Agreement Sum with rMATS"] = merged_df[ranking_cols_with_rmats].notnull().sum(axis=1) # sort by detection sum merged_df = merged_df.sort_values(by=["Agreement Sum without rMATS", "Agreement Sum with rMATS"], ascending=[False, False]) # replace NaN with empty string merged_df = merged_df.fillna("None") # Place col "gene_name", "Agreement Sum without rMATS", "Agreement Sum with rMATS" at the beginning cols = ["gene_name", "Agreement Sum without rMATS", "Agreement Sum with rMATS"] + \ list([col for col in merged_df.columns if col not in ["gene_name", "Agreement Sum without rMATS", "Agreement Sum with rMATS"] ]) merged_df = merged_df[cols] return merged_df if __name__ == "__main__": # input input = snakemake.input # output output = snakemake.output # params params = snakemake.params # load results print("Loading result files", flush=True) result_dfs = load_result_files() # Makes use of snakemake.input and snakemake.params # assert that list is not empty assert result_dfs, "No results loaded. Check input files." # clean results_dfs reduced_result_dfs = [] print("Cleaning result dataframes", flush=True) for df in result_dfs: # 1. Remove rows where gene_name is "None", or ".", or "NA" df = df[~df["gene_name"].isin(["None", ".", "NA"])] # 2. Remove rows where gene_name is NaN df = df.dropna(subset=["gene_name"]) # 3. Remove duplicate entries where gene_name is not unique df = df.drop_duplicates(subset="gene_name", keep="first") reduced_result_dfs.append(df) # merge results print("Now merging results", flush=True) merged_df = merge_results(reduced_result_dfs) print("Merging done", flush=True) # write output merged_df.to_csv(output[0], sep="\t", index=False) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 | library("ReportingTools") # For creating HTML reports library("knitr") # For creating HTML reports library("lattice") # For plotting # ================ Hard coded HTML code changes ================= add_index_col_fct <- " [...document.querySelectorAll('#id2 tr')].forEach((row, i) => { var cell = document.createElement(i<2 ? 'th' : 'td'); if (i <2) { row.insertCell(0); } else { var cell = row.insertCell(0); cell.classList.add('my_index_col'); cell.innerHTML = (i-1); } });" add_index_col_update_fct <- " t.on('draw.dt', function(){ console.log('Update index'); let n = 0; $('.my_index_col').each(function () { $(this).html(++n); }) })" # 1. Insert index column -> Must be inserted before DataTable is initialized original_table_init_fct_head <- "function configureTable(i, el) {" substitute_table_init_fct_head <- paste(original_table_init_fct_head, add_index_col_fct) # 2. Remove pre-ordering of table remove_to_disable_preordering <- "\"aaSorting\":[[0,'asc']]," # ------------- Following hack code is not needed anymore... ----------------- # 3. Create local variable "t" that references the datatable original_js_fct_head <- "$(this).dataTable({" substitute_js_fct_head <- paste("var t = ", original_js_fct_head) # 4. Use this as anchor to add more JS code original_js_fct_tail <- '}).columnFilter({sPlaceHolder: "head:before", aoColumns : filterClasses });' create_html_table <- function(input_file_path, sep="\t", title="Report Title", info_text="Info Text", base_name="my_report", output_dir=".") { # Load table from data file # as.data.frame(resOrdered) input_table <- as.data.frame(read.csv(input_file_path, header=TRUE, sep=sep)) if (nrow(input_table) == 0) { input_table[nrow(input_table)+1,] <- "No data" } # Remove column with no header (R names them "X") remove.cols <- names(input_table) %in% c("", "X") input_table <- input_table[! remove.cols] # Use ReportingTools to automatically generate dynamic HTML documents html_report <- ReportingTools::HTMLReport(shortName=base_name, title=title, reportDirectory=output_dir) # 1. Add a table to the report ReportingTools::publish(input_table, html_report) # 2. Add info text to the report ReportingTools::publish(info_text, html_report) # Also graphs can be added to the report # # Randomly # y <- rnorm(500) # plot<-lattice::histogram(y, main="Sample of 500 observations from a Normal (0,1)") # # 3. Add plot to the report # ReportingTools::publish(plot, html_report) # Finally, create the report ReportingTools::finish(html_report) } replace_external_scripts_and_styles <- function(input_html_file) { # Replace external scripts and styles with internal copies # Read input file html_file_content <- readLines(input_html_file, warn=FALSE) external_js_scripts <- c('<script language="JavaScript" src="jslib/jquery-1.8.0.min.js"></script>', '<script language="JavaScript" src="jslib/jquery.dataTables-1.9.3.js"></script>', '<script language="JavaScript" src="jslib/bootstrap.js"></script>', '<script language="JavaScript" src="jslib/jquery.dataTables.columnFilter.js"></script>', '<script language="JavaScript" src="jslib/jquery.dataTables.plugins.js"></script>', '<script language="JavaScript" src="jslib/jquery.dataTables.reprise.js"></script>', '<script language="JavaScript" src="jslib/bootstrap.js"></script>') external_css_styles <- c('<link rel="stylesheet" type="text/css" href="csslib/bootstrap.css" />', '<link rel="stylesheet" type="text/css" href="csslib/reprise.table.bootstrap.css" />') # Replace external scripts with CDN versions jquery_cdn <- '<script src="https://code.jquery.com/jquery-3.6.3.min.js" integrity="sha256-pvPw+upLPUjgMXY0G+8O0xUf+/Im1MZjXxxgOcBQBXU=" crossorigin="anonymous"></script>' jquery_datatable_cdn <- '<script src="https://cdn.datatables.net/1.13.1/js/jquery.dataTables.min.js"></script>' bootstrap_js_cdn <- '<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.2.3/dist/js/bootstrap.min.js"></script>' html_file_content <- sub(external_js_scripts[1], jquery_cdn, html_file_content) html_file_content <- sub(external_js_scripts[2], jquery_datatable_cdn, html_file_content) html_file_content <- sub(external_js_scripts[3], bootstrap_js_cdn, html_file_content) # Replace external styles with CDN versions bootstrap_css_cdn <- '<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@5.2.3/dist/css/bootstrap.min.css" />' html_file_content <- sub(external_css_styles[1], bootstrap_css_cdn, html_file_content) # Replace external scripts with local copies for (js_import in external_js_scripts[4:length(external_js_scripts)]) { js_source_file <- sub('<script language="JavaScript" src="', '', js_import) js_source_file <- sub('"></script>', '', js_source_file) path_to_js_file <- file.path(dirname(input_html_file), js_source_file) js_code <- paste(readLines(path_to_js_file, warn=FALSE), collapse="\n") # Replace external script with internal script html_file_content <- sub(js_import, paste('<script language="JavaScript">', js_code, '</script>', sep="\n"), html_file_content) } # Replace external styles with local copies for (css_import in external_css_styles[2:length(external_css_styles)]) { css_source_file <- sub('<link rel="stylesheet" type="text/css" href="', '', css_import) css_source_file <- sub('" />', '', css_source_file) path_to_css_file <- file.path(dirname(input_html_file), css_source_file) css_code <- paste(readLines(path_to_css_file, warn=FALSE), collapse="\n") # Replace external style with internal style html_file_content <- sub(css_import, paste('<style>', css_code, '</style>', sep="\n"), html_file_content) } return(html_file_content) # Write HTML file } add_index_column_functionality <- function(input_html_content) { " Add index column functionality to the HTML table Also disable pre-sorting by the first column " # 1. Insert index column -> Must be inserted before DataTable is initialized input_html_content <- sub(original_table_init_fct_head, substitute_table_init_fct_head, input_html_content, fixed=TRUE) # 2. Remove pre-ordering of table input_html_content <- sub(remove_to_disable_preordering, "", input_html_content, fixed=TRUE) return(input_html_content) } add_csv_download_button <- function(input_html_content) { " Add CSV download button to the HTML table. Button has class 'buttons-csv'. " # DataTables: Select only CSV button in intialization original_initialization <- "$(this).dataTable({" new_initialization <- "$(this).dataTable({\n\"buttons\": [\"csvHtml5\"]," # DataTables: Integration of buttons into DOM original_dom_declaration <- "\"sDom\": \"<'row'<'span6'l><'span6'f>r>t<'row'<'span6'i><'span6'p>>\"," new_dom_declaration <- "\"sDom\": \"<'row'<'span6'lB><'span6'f>r>t<'row'<'span6'i><'span6'p>>\"," # JS libraries additional_js_lib_1 <- '<script src="https://cdn.datatables.net/buttons/2.3.6/js/dataTables.buttons.min.js"></script>' additional_js_lib_2 <- '<script src="https://cdn.datatables.net/buttons/2.3.6/js/buttons.html5.min.js"></script>' # CSS changes # Make position relative and float right additional_css_changes <- "<style> .buttons-csv { position: relative; float: right; } </style>" # Button classes # -> Add btn-primary class to CSV button (which has class 'buttons-csv') add_class_script <- "<script>$(document).ready(function(){$('button.buttons-csv').addClass('btn btn-sm btn-primary mb-2');} );</script>" # Introduce changes # 0. DataTables initialization input_html_content <- sub(original_initialization, new_initialization, input_html_content, fixed=TRUE) # 1. DOM declaration input_html_content <- sub(original_dom_declaration, new_dom_declaration, input_html_content, fixed=TRUE) # 2. JS libraries input_html_content <- sub("</head>", paste(additional_js_lib_1, additional_js_lib_2, "</head>", sep="\n"), input_html_content, fixed=TRUE) # 3. CSS changes input_html_content <- sub("</head>", paste(additional_css_changes, "</head>", sep="\n"), input_html_content, fixed=TRUE) # 4. Button classes input_html_content <- sub("</body>", paste(add_class_script, "</body>", sep="\n"), input_html_content, fixed=TRUE) return(input_html_content) } fix_table_width <- function(input_html_content) { " Fix table width to 100% -> Make it scrollable " # Insert wrapper at initialization to manage scrolling (scrollX has issue with alignment of headers...) original_initialization <- "$(this).dataTable({" new_initialization <- paste(original_initialization, '"initComplete": function (settings, json) { $(this).wrap("<div style=\'overflow:auto; width:100%; position:relative;\'></div>"); },', sep="\n") # Ellipsis style for long text additional_css_changes <- "<style> table.dataTable td { max-width: 250px; white-space: nowrap; text-overflow: ellipsis; overflow: hidden; } </style>" # 1. DataTables initialization input_html_content <- sub(original_initialization, new_initialization, input_html_content, fixed=TRUE) # 2. CSS changes input_html_content <- sub("</head>", paste(additional_css_changes, "</head>", sep="\n"), input_html_content, fixed=TRUE) return(input_html_content) } convert_numeric_entries <- function(input_html_content) { " Convert numeric entries to be displayed properly: - Integer values are displayed without decimal places - Float values are displayed with 2 decimal places - Values < 0.01 are displayed in scientific notation " # Convert numeric entries to numeric values original_table_init <- '"aoColumnDefs": [' render_fct_entry <- "{ targets: '_all', render: function (data, type, full, meta) { let float_data = parseFloat(data); if (Number.isInteger(float_data)) { return float_data.toLocaleString('en-US', { maximumFractionDigits: 0, minimumFractionDigits: 0 }); } else if (isNaN(float_data)) { return data; } else { if (float_data < 0.01) { return float_data.toExponential(2); } else { return float_data.toLocaleString('en-US', { maximumFractionDigits: 3, minimumFractionDigits: 2 }); } } } }," input_html_content <- sub(original_table_init, paste(original_table_init, render_fct_entry, sep="\n"), input_html_content, fixed=TRUE) return(input_html_content) } # Main function main <- function() { # Import snakemake arguments input_files <- snakemake@params[["input_files"]] input_separators <- snakemake@params[["data_separators"]] input_titles <- snakemake@params[["data_titles"]] input_info_texts <- snakemake@params[["info_texts"]] output_dir <- snakemake@params[["html_output_dir"]] output_file_basenames <- snakemake@params[["html_output_file_basenames"]] # Iterate over all inputs and create HTML-reports for (i in 1:length(input_files)) { output_file_basename <- output_file_basenames[i] output_html_file <- file.path(output_dir, output_file_basename) print(paste("Creating report for", input_files[i])) print(paste("Output file basename:", output_file_basename)) create_html_table(input_files[i], sep=input_separators[i], title=input_titles[i], info_text=input_info_texts[i], base_name=output_file_basename, output_dir=output_dir) # Replace external scripts and styles with internal copies updated_html_file <- replace_external_scripts_and_styles(output_html_file) # Add index column functionality updated_html_file <- add_index_column_functionality(updated_html_file) # Add CSV download button updated_html_file <- add_csv_download_button(updated_html_file) # Fix table width updated_html_file <- fix_table_width(updated_html_file) # Convert numeric entries updated_html_file <- convert_numeric_entries(updated_html_file) # Write updated HTML file writeLines(updated_html_file, output_html_file) } } main() |
115 116 | run: pep.sample_table.to_csv(output[0], index=False) |
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | __author__ = "Julian de Ruiter" __copyright__ = "Copyright 2017, Julian de Ruiter" __email__ = "julianderuiter@gmail.com" __license__ = "MIT" from os import path import re from tempfile import TemporaryDirectory from snakemake.shell import shell log = snakemake.log_fmt_shell(stdout=True, stderr=True) def basename_without_ext(file_path): """Returns basename of file path, without the file extension.""" base = path.basename(file_path) # Remove file extension(s) (similar to the internal fastqc approach) base = re.sub("\\.gz$", "", base) base = re.sub("\\.bz2$", "", base) base = re.sub("\\.txt$", "", base) base = re.sub("\\.fastq$", "", base) base = re.sub("\\.fq$", "", base) base = re.sub("\\.sam$", "", base) base = re.sub("\\.bam$", "", base) return base # Run fastqc, since there can be race conditions if multiple jobs # use the same fastqc dir, we create a temp dir. with TemporaryDirectory() as tempdir: shell( "fastqc {snakemake.params} -t {snakemake.threads} " "--outdir {tempdir:q} {snakemake.input[0]:q}" " {log}" ) # Move outputs into proper position. output_base = basename_without_ext(snakemake.input[0]) html_path = path.join(tempdir, output_base + "_fastqc.html") zip_path = path.join(tempdir, output_base + "_fastqc.zip") if snakemake.output.html != html_path: shell("mv {html_path:q} {snakemake.output.html:q}") if snakemake.output.zip != zip_path: shell("mv {zip_path:q} {snakemake.output.zip:q}") |
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | __author__ = "Thibault Dayris" __copyright__ = "Copyright 2019, Dayris Thibault" __email__ = "thibault.dayris@gustaveroussy.fr" __license__ = "MIT" from snakemake.shell import shell from snakemake.utils import makedirs log = snakemake.log_fmt_shell(stdout=True, stderr=True) extra = snakemake.params.get("extra", "") sjdb_overhang = snakemake.params.get("sjdbOverhang", "100") gtf = snakemake.input.get("gtf") if gtf is not None: gtf = "--sjdbGTFfile " + gtf sjdb_overhang = "--sjdbOverhang " + sjdb_overhang else: gtf = sjdb_overhang = "" makedirs(snakemake.output) shell( "STAR " # Tool "--runMode genomeGenerate " # Indexation mode "{extra} " # Optional parameters "--runThreadN {snakemake.threads} " # Number of threads "--genomeDir {snakemake.output} " # Path to output "--genomeFastaFiles {snakemake.input.fasta} " # Path to fasta files "{sjdb_overhang} " # Read-len - 1 "{gtf} " # Highly recommended GTF "{log}" # Logging ) |
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | __author__ = "Julian de Ruiter" __copyright__ = "Copyright 2017, Julian de Ruiter" __email__ = "julianderuiter@gmail.com" __license__ = "MIT" from os import path from snakemake.shell import shell input_dirs = set(path.dirname(fp) for fp in snakemake.input) output_dir = path.dirname(snakemake.output[0]) output_name = path.basename(snakemake.output[0]) log = snakemake.log_fmt_shell(stdout=True, stderr=True) shell( "multiqc" " {snakemake.params}" " --force" " -o {output_dir}" " -n {output_name}" " {input_dirs}" " {log}" ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | __author__ = "Jan Forster" __copyright__ = "Copyright 2019, Jan Forster" __email__ = "j.forster@dkfz.de" __license__ = "MIT" import os from snakemake.shell import shell extra = snakemake.params.get("extra", "") log = snakemake.log_fmt_shell(stdout=True, stderr=True) discarded_fusions = snakemake.output.get("discarded", "") if discarded_fusions: discarded_cmd = "-O " + discarded_fusions else: discarded_cmd = "" blacklist = snakemake.params.get("blacklist") if blacklist: blacklist_cmd = "-b " + blacklist else: blacklist_cmd = "" known_fusions = snakemake.params.get("known_fusions") if known_fusions: known_cmd = "-k" + known_fusions else: known_cmd = "" sv_file = snakemake.params.get("sv_file") if sv_file: sv_cmd = "-d" + sv_file else: sv_cmd = "" shell( "arriba " "-x {snakemake.input.bam} " "-a {snakemake.input.genome} " "-g {snakemake.input.annotation} " "{blacklist_cmd} " "{known_cmd} " "{sv_cmd} " "-o {snakemake.output.fusions} " "{discarded_cmd} " "{extra} " "{log}" ) |
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 | __author__ = "Johannes Köster, Jorge Langa" __copyright__ = "Copyright 2016, Johannes Köster" __email__ = "koester@jimmy.harvard.edu" __license__ = "MIT" from snakemake.shell import shell from snakemake_wrapper_utils.java import get_java_opts # Distribute available threads between trimmomatic itself and any potential pigz instances def distribute_threads(input_files, output_files, available_threads): gzipped_input_files = sum(1 for file in input_files if file.endswith(".gz")) gzipped_output_files = sum(1 for file in output_files if file.endswith(".gz")) potential_threads_per_process = available_threads // ( 1 + gzipped_input_files + gzipped_output_files ) if potential_threads_per_process > 0: # decompressing pigz creates at most 4 threads pigz_input_threads = ( min(4, potential_threads_per_process) if gzipped_input_files != 0 else 0 ) pigz_output_threads = ( (available_threads - pigz_input_threads * gzipped_input_files) // (1 + gzipped_output_files) if gzipped_output_files != 0 else 0 ) trimmomatic_threads = ( available_threads - pigz_input_threads * gzipped_input_files - pigz_output_threads * gzipped_output_files ) else: # not enough threads for pigz pigz_input_threads = 0 pigz_output_threads = 0 trimmomatic_threads = available_threads return trimmomatic_threads, pigz_input_threads, pigz_output_threads def compose_input_gz(filename, threads): if filename.endswith(".gz") and threads > 0: return "<(pigz -p {threads} --decompress --stdout {filename})".format( threads=threads, filename=filename ) return filename def compose_output_gz(filename, threads, compression_level): if filename.endswith(".gz") and threads > 0: return ">(pigz -p {threads} {compression_level} > {filename})".format( threads=threads, compression_level=compression_level, filename=filename ) return filename extra = snakemake.params.get("extra", "") java_opts = get_java_opts(snakemake) log = snakemake.log_fmt_shell(stdout=True, stderr=True) compression_level = snakemake.params.get("compression_level", "-5") trimmer = " ".join(snakemake.params.trimmer) # Distribute threads input_files = [snakemake.input.r1, snakemake.input.r2] output_files = [ snakemake.output.r1, snakemake.output.r1_unpaired, snakemake.output.r2, snakemake.output.r2_unpaired, ] trimmomatic_threads, input_threads, output_threads = distribute_threads( input_files, output_files, snakemake.threads ) input_r1, input_r2 = [ compose_input_gz(filename, input_threads) for filename in input_files ] output_r1, output_r1_unp, output_r2, output_r2_unp = [ compose_output_gz(filename, output_threads, compression_level) for filename in output_files ] shell( "trimmomatic PE -threads {trimmomatic_threads} {java_opts} {extra} " "{input_r1} {input_r2} " "{output_r1} {output_r1_unp} " "{output_r2} {output_r2_unp} " "{trimmer} " "{log}" ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | __author__ = "Johannes Köster" __copyright__ = "Copyright 2016, Johannes Köster" __email__ = "koester@jimmy.harvard.edu" __license__ = "MIT" from snakemake.shell import shell extra = snakemake.params.get("extra", "") log = snakemake.log_fmt_shell(stdout=True, stderr=True) # Samtools takes additional threads through its option -@ # One thread for samtools merge # Other threads are *additional* threads passed to the '-@' argument threads = "" if snakemake.threads <= 1 else " -@ {} ".format(snakemake.threads - 1) shell( "samtools index {threads} {extra} {snakemake.input[0]} {snakemake.output[0]} {log}" ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | __author__ = "Johannes Köster" __copyright__ = "Copyright 2016, Johannes Köster" __email__ = "koester@jimmy.harvard.edu" __license__ = "MIT" import tempfile from pathlib import Path from snakemake.shell import shell from snakemake_wrapper_utils.samtools import get_samtools_opts samtools_opts = get_samtools_opts(snakemake) extra = snakemake.params.get("extra", "") log = snakemake.log_fmt_shell(stdout=True, stderr=True) with tempfile.TemporaryDirectory() as tmpdir: tmp_prefix = Path(tmpdir) / "samtools_fastq.sort_" shell( "samtools sort {samtools_opts} {extra} -T {tmp_prefix} {snakemake.input[0]} {log}" ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | __author__ = "Johannes Köster" __copyright__ = "Copyright 2016, Johannes Köster" __email__ = "koester@jimmy.harvard.edu" __license__ = "MIT" from snakemake.shell import shell from snakemake_wrapper_utils.samtools import get_samtools_opts samtools_opts = get_samtools_opts(snakemake) extra = snakemake.params.get("extra", "") log = snakemake.log_fmt_shell(stdout=True, stderr=True, append=True) shell("samtools view {samtools_opts} {extra} {snakemake.input[0]} {log}") |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | __author__ = "Johannes Köster" __copyright__ = "Copyright 2016, Johannes Köster" __email__ = "koester@jimmy.harvard.edu" __license__ = "MIT" import tempfile from pathlib import Path from snakemake.shell import shell from snakemake_wrapper_utils.samtools import get_samtools_opts samtools_opts = get_samtools_opts(snakemake) extra = snakemake.params.get("extra", "") log = snakemake.log_fmt_shell(stdout=True, stderr=True) with tempfile.TemporaryDirectory() as tmpdir: tmp_prefix = Path(tmpdir) / "samtools_fastq.sort_" shell( "samtools sort {samtools_opts} {extra} -T {tmp_prefix} {snakemake.input[0]} {log}" ) |
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | __author__ = "Joël Simoneau" __copyright__ = "Copyright 2019, Joël Simoneau" __email__ = "simoneaujoel@gmail.com" __license__ = "MIT" from snakemake.shell import shell # Creating log log = snakemake.log_fmt_shell(stdout=True, stderr=True) # Placeholder for optional parameters extra = snakemake.params.get("extra", "") # Allowing for multiple FASTA files fasta = snakemake.input.get("fasta") assert fasta is not None, "input-> a FASTA-file is required" fasta = " ".join(fasta) if isinstance(fasta, list) else fasta shell( "kallisto index " # Tool "{extra} " # Optional parameters "--index={snakemake.output.index} " # Output file "{fasta} " # Input FASTA files "{log}" # Logging ) |
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | __author__ = "Joël Simoneau" __copyright__ = "Copyright 2019, Joël Simoneau" __email__ = "simoneaujoel@gmail.com" __license__ = "MIT" from snakemake.shell import shell # Creating log log = snakemake.log_fmt_shell(stdout=True, stderr=True) # Placeholder for optional parameters extra = snakemake.params.get("extra", "") # Allowing for multiple FASTQ files fastq = snakemake.input.get("fastq") assert fastq is not None, "input-> a FASTQ-file is required" fastq = " ".join(fastq) if isinstance(fastq, list) else fastq shell( "kallisto quant " # Tool "{extra} " # Optional parameters "--threads={snakemake.threads} " # Number of threads "--index={snakemake.input.index} " # Input file "--output-dir={snakemake.output} " # Output directory "{fastq} " # Input FASTQ files "{log}" # Logging ) |
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 | __author__ = "Thibault Dayris" __copyright__ = "Copyright 2022, Thibault Dayris" __email__ = "thibault.dayris@gustaveroussy.fr" __license__ = "MIT" from snakemake.shell import shell log = snakemake.log_fmt_shell(stdout=False, stderr=True, append=True) required_thread_nb = 1 genome = snakemake.input["genome"] if genome.endswith(".gz"): genome = f"<( gzip --stdout --decompress {genome} )" required_thread_nb += 1 # Add a thread for gzip uncompression elif genome.endswith(".bz2"): genome = f"<( bzip2 --stdout --decompress {genome} )" required_thread_nb += 1 # Add a thread for bzip2 uncompression if snakemake.threads < required_thread_nb: raise ValueError( f"Salmon decoy wrapper requires exactly {required_thread_nb} threads, " f"but only {snakemake.threads} were provided" ) sequences = [ snakemake.input["transcriptome"], snakemake.input["genome"], snakemake.output["gentrome"], ] if all(fasta.endswith(".gz") for fasta in sequences): # Then all input sequences are gzipped. The output will also be gzipped. pass elif all(fasta.endswith(".bz2") for fasta in sequences): # Then all input sequences are bgzipped. The output will also be bgzipped. pass elif all(fasta.endswith((".fa", ".fna", ".fasta")) for fasta in sequences): # Then all input sequences are raw fasta. The output will also be raw fasta. pass else: raise ValueError( "Mixed compression status: Either all fasta sequences are compressed " "with the *same* compression algorithm, or none of them are compressed." ) # Gathering decoy sequences names # Sed command works as follow: # -n = do not print all lines # s/ .*//g = Remove anything after spaces. (remove comments) # s/>//p = Remove '>' character at the begining of sequence names. Print names. shell("( sed -n 's/ .*//g;s/>//p' {genome} ) > {snakemake.output.decoys} {log}") # Building big gentrome file shell( "cat {snakemake.input.transcriptome} {snakemake.input.genome} " "> {snakemake.output.gentrome} {log}" ) |
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | __author__ = "Tessa Pierce" __copyright__ = "Copyright 2018, Tessa Pierce" __email__ = "ntpierce@gmail.com" __license__ = "MIT" from os.path import dirname from snakemake.shell import shell from tempfile import TemporaryDirectory log = snakemake.log_fmt_shell(stdout=True, stderr=True) extra = snakemake.params.get("extra", "") decoys = snakemake.input.get("decoys", "") if decoys: decoys = f"--decoys {decoys}" output = snakemake.output if len(output) > 1: output = dirname(snakemake.output[0]) with TemporaryDirectory() as tempdir: shell( "salmon index " "--transcripts {snakemake.input.sequences} " "--index {output} " "--threads {snakemake.threads} " "--tmpdir {tempdir} " "{decoys} " "{extra} " "{log}" ) |
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 | __author__ = "Tessa Pierce" __copyright__ = "Copyright 2018, Tessa Pierce" __email__ = "ntpierce@gmail.com" __license__ = "MIT" from os.path import dirname from snakemake.shell import shell class MixedPairedUnpairedInput(Exception): def __init__(self): super().__init__( "Salmon cannot quantify mixed paired/unpaired input files. " "Please input either `r1`, `r2` (paired) or `r` (unpaired)" ) class MissingMateError(Exception): def __init__(self): super().__init__( "Salmon requires an equal number of paired reads in `r1` and `r2`," " or a list of unpaired reads `r`" ) def uncompress_bz2(snake_io, salmon_threads): """ Provide bzip2 on-the-fly decompression For each of these b-unzipping, a thread will be used. Therefore, the maximum number of threads given to Salmon shall be reduced by one in order not to be killed on a cluster. """ # Asking forgiveness instead of permission try: # If no error are raised, then we have a string. if snake_io.endswith("bz2"): return [f"<( bzip2 --decompress --stdout {snake_io} )"], salmon_threads - 1 return [snake_io], salmon_threads except AttributeError: # As an error has been raise, we have a list of fastq files. fq_files = [] for fastq in snake_io: if fastq.endswith("bz2"): fq_files.append(f"<( bzip2 --decompress --stdout {fastq} )") salmon_threads -= 1 else: fq_files.append(fastq) return fq_files, salmon_threads log = snakemake.log_fmt_shell(stdout=True, stderr=True) libtype = snakemake.params.get("libtype", "A") max_threads = snakemake.threads extra = snakemake.params.get("extra", "") if "--validateMappings" in extra: raise DeprecationWarning("`--validateMappings` is deprecated and has no effect") r1 = snakemake.input.get("r1") r2 = snakemake.input.get("r2") r = snakemake.input.get("r") if all(mate is not None for mate in [r1, r2]): r1, max_threads = uncompress_bz2(r1, max_threads) r2, max_threads = uncompress_bz2(r2, max_threads) if len(r1) != len(r2): raise MissingMateError() if r is not None: raise MixedPairedUnpairedInput() r1_cmd = " --mates1 {}".format(" ".join(r1)) r2_cmd = " --mates2 {}".format(" ".join(r2)) read_cmd = " ".join([r1_cmd, r2_cmd]) elif r is not None: if any(mate is not None for mate in [r1, r2]): raise MixedPairedUnpairedInput() r, max_threads = uncompress_bz2(r, max_threads) read_cmd = " --unmatedReads {}".format(" ".join(r)) else: raise MissingMateError() gene_map = snakemake.input.get("gtf", "") if gene_map: gene_map = f"--geneMap {gene_map}" bam = snakemake.output.get("bam", "") if bam: bam = f"--writeMappings {bam}" outdir = dirname(snakemake.output.get("quant")) index = snakemake.input["index"] if isinstance(index, list): index = dirname(index[0]) if max_threads < 1: raise ValueError( "On-the-fly b-unzipping have raised the required number of threads. " f"Please request at least {1 - max_threads} more threads." ) shell( "salmon quant --index {index} " " --libType {libtype} {read_cmd} --output {outdir} {gene_map} " " --threads {max_threads} {extra} {bam} {log}" ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | __author__ = "Johannes Köster" __copyright__ = "Copyright 2016, Johannes Köster" __email__ = "koester@jimmy.harvard.edu" __license__ = "MIT" import tempfile from pathlib import Path from snakemake.shell import shell from snakemake_wrapper_utils.samtools import get_samtools_opts samtools_opts = get_samtools_opts(snakemake) extra = snakemake.params.get("extra", "") log = snakemake.log_fmt_shell(stdout=True, stderr=True) with tempfile.TemporaryDirectory() as tmpdir: tmp_prefix = Path(tmpdir) / "samtools_fastq.sort_" shell( "samtools sort {samtools_opts} {extra} -T {tmp_prefix} {snakemake.input[0]} {log}" ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 | __author__ = "Johannes Köster" __copyright__ = "Copyright 2016, Johannes Köster" __email__ = "koester@jimmy.harvard.edu" __license__ = "MIT" import os import tempfile from snakemake.shell import shell extra = snakemake.params.get("extra", "") log = snakemake.log_fmt_shell(stdout=False, stderr=True) fq1 = snakemake.input.get("fq1") assert fq1 is not None, "input-> fq1 is a required input parameter" fq1 = ( [snakemake.input.fq1] if isinstance(snakemake.input.fq1, str) else snakemake.input.fq1 ) fq2 = snakemake.input.get("fq2") if fq2: fq2 = ( [snakemake.input.fq2] if isinstance(snakemake.input.fq2, str) else snakemake.input.fq2 ) assert len(fq1) == len( fq2 ), "input-> equal number of files required for fq1 and fq2" input_str_fq1 = ",".join(fq1) input_str_fq2 = ",".join(fq2) if fq2 is not None else "" input_str = " ".join([input_str_fq1, input_str_fq2]) if fq1[0].endswith(".gz"): readcmd = "--readFilesCommand gunzip -c" elif fq1[0].endswith(".bz2"): readcmd = "--readFilesCommand bunzip2 -c" else: readcmd = "" index = snakemake.input.get("idx") if not index: index = snakemake.params.get("idx", "") if "--outSAMtype BAM SortedByCoordinate" in extra: stdout = "BAM_SortedByCoordinate" elif "BAM Unsorted" in extra: stdout = "BAM_Unsorted" else: stdout = "SAM" with tempfile.TemporaryDirectory() as tmpdir: shell( "STAR " " --runThreadN {snakemake.threads}" " --genomeDir {index}" " --readFilesIn {input_str}" " {readcmd}" " {extra}" " --outTmpDir {tmpdir}/STARtmp" " --outFileNamePrefix {tmpdir}/" " --outStd {stdout}" " > {snakemake.output.aln}" " {log}" ) if snakemake.output.get("reads_per_gene"): shell("cat {tmpdir}/ReadsPerGene.out.tab > {snakemake.output.reads_per_gene:q}") if snakemake.output.get("chim_junc"): shell("cat {tmpdir}/Chimeric.out.junction > {snakemake.output.chim_junc:q}") if snakemake.output.get("sj"): shell("cat {tmpdir}/SJ.out.tab > {snakemake.output.sj:q}") if snakemake.output.get("log"): shell("cat {tmpdir}/Log.out > {snakemake.output.log:q}") if snakemake.output.get("log_progress"): shell("cat {tmpdir}/Log.progress.out > {snakemake.output.log_progress:q}") if snakemake.output.get("log_final"): shell("cat {tmpdir}/Log.final.out > {snakemake.output.log_final:q}") |
1 2 3 4 5 6 7 8 9 10 11 12 | __author__ = "Antonie Vietor" __copyright__ = "Copyright 2020, Antonie Vietor" __email__ = "antonie.v@gmx.de" __license__ = "MIT" from snakemake.shell import shell log = snakemake.log_fmt_shell(stdout=False, stderr=True) shell( "(bamtools stats {snakemake.params} -in {snakemake.input[0]} > {snakemake.output[0]}) {log}" ) |
Support
- Future updates
Related Workflows





