A snakemake workflow for analysing synonymous and nonsynonymous mutations
This simple workflow constructs RSV-A and RSV-B synonymous and nonsynonymous mutation graphs. These graphs are scaled by gene length, tree length and multiplied based on the proportion of loci at which they may occur (3 for synonymous, as they can occur at every third codon, and 3/2 for nonsynonymous).
Running the workflow
This workflow uses Snakemake. To run from the command line, run "snakemake --cores all" from this directory. RSV-A and RSV-B can be specified as "a" or "b" in the Snakefile rule all input.
Workflow inputs
This workflow requires as input in the data folder:
-
a nwk tree file to calculate total tree length
-
a nucleotide mutation file (json format)
-
an amino acid mutation file (json format)
Code Snippets
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 | from collections import Counter import pandas as pd import json import math import numpy as np import matplotlib.pyplot as plt from matplotlib import colors import argparse from Bio import Phylo def GenesAndCodons(aa_muts, nt_muts): codons=[] all_genes =[] with open(aa_muts) as a_muts: with open(nt_muts) as n_muts: dictofgenes=dict() aamuts = json.load(a_muts) ntmuts = json.load(n_muts) genes = ('F','G','M','M2','NS1','NS2','P','SH','N') #genes in RSV for gene in genes: for key, node in aamuts['annotations'].items(): if key == gene: location_of_gene=[] location_of_gene = list(range(node['start'],node['end']+1)) #where each gene starts and ends dictofgenes[gene]=location_of_gene for k, n in aamuts['nodes'].items(): for key, node in ntmuts['nodes'].items(): if k == key: for y in node['muts']: numbers =[] number =int(y[1:-1]) numbers.append(number) for pos in numbers: for gene, location_of_gene in dictofgenes.items(): if pos in location_of_gene: codon = (math.floor((pos-location_of_gene[0])/3))+1 all_genes.append(gene) codons.append(codon) df=pd.DataFrame({'Gene':all_genes,'Codon':codons}) return(df) def MutationsineachGene(aamutations, ntmutations): genes =['F', 'G', 'M', 'M2', 'NS1', 'NS2', 'P', 'SH', 'N'] muts_in_genes = dict() muts_in_genes_correct_index=dict() df= GenesAndCodons(aamutations, ntmutations) for gene in genes: muts_in_genes[gene]= df.loc[df['Gene']==gene] for gene, muts in muts_in_genes.items(): muts = muts.reset_index(drop=True) muts_in_genes_correct_index[gene]=muts return(muts_in_genes_correct_index) def AA_Mutations(aamutations, ntmutations): aa_m = dict() with open(aamutations) as f: with open(ntmutations) as g: genes = ('F','G','M','M2','NS1','NS2','P','SH','N') aamuts = json.load(f) for gene in genes: mut_list=[] for k, n in aamuts['nodes'].items(): for i,j in n['aa_muts'].items(): if j!=[] and i ==gene: mut_list.append(j) flatlist =[item for sublist in mut_list for item in sublist] flatlist = [int(i[1:-1]) for i in flatlist] aa_m[gene]=flatlist return(aa_m) def non_synonymous_or_synonymous(aa_muts, nt_muts): aa_mutations = AA_Mutations(aa_muts, nt_muts) mutations_in_genes = MutationsineachGene(aa_muts, nt_muts) synonymousmutations =[] nonsynonymousmutations =[] ratios=[] sel =[] listofgenes =('F','G','M','M2','NS1','NS2','P','SH','N') for gene in listofgenes: all_nonsyn_muts =[] all_syn_muts =[] for (gene_,mutation), (gene__,aa_mut) in zip(mutations_in_genes.items(), aa_mutations.items()): if gene_ == gene and gene__ == gene: a =list(mutation['Codon']) all_muts = Counter(a) amino_acid_muts = Counter(aa_mut) synonymous_muts = all_muts-amino_acid_muts for genes, j in amino_acid_muts.items(): all_nonsyn_muts.append(j) nonsynonymousmutations.append(sum(all_nonsyn_muts)) for k, l in synonymous_muts.items(): all_syn_muts.append(l) synonymousmutations.append(sum(all_syn_muts)) for a, b in zip(nonsynonymousmutations, synonymousmutations): ratio = a/b #ratio of nonsynonymous to synonymous mutations if ratio>1:selection =('adaptive') elif ratio<1: selection = ('purifying') elif ratio ==1: selection =('neutral') sel.append(selection) ratios.append(ratio) df = pd.DataFrame({"gene":listofgenes, "synonymous mutations": synonymousmutations, "nonsynonymous mutations":nonsynonymousmutations, "dN/dS ratio":ratios, "selection":sel }) return(df) if __name__=="__main__": parser = argparse.ArgumentParser( description="analyse synonymous and nonsynonymous", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--aa', required=True, type=str, help="aa json file") parser.add_argument('--nt', type=str, help="nt json file") parser.add_argument('--output', type=str, help="output graph png") parser.add_argument('--outputnonsyn', type=str, help="output file for nonsynonymous mutations") parser.add_argument('--table', type=str, help="output table csv") parser.add_argument('--tree', type=str, help="input tree nwk") args = parser.parse_args() """ratio of nonsynonymous mutations in G to nonsynonymous in F is higher than synonymous G to synonymous F""" df1 = non_synonymous_or_synonymous(args.aa, args.nt) tree_file = Phylo.read(args.tree, "newick") tree_file.root_at_midpoint() tree_file.find_clades() total_len = tree_file.total_branch_length() with open(args.aa) as f: gene_length=[] dictofgenes=dict() aamuts = json.load(f) keys = ('F','G','M','M2','NS1','NS2','P','SH','N') for gene in keys: for key, node in aamuts['annotations'].items(): if key == gene: loc_list=[] loc_list = list(range(node['start'],node['end']+1)) dictofgenes[gene]=loc_list for gene, loc in dictofgenes.items(): gene_length.append(len(loc)) df1['length of gene'] =gene_length df1['synonymous mutation/gene'] = ((df1['synonymous mutations']/df1['length of gene'])/total_len)*3 #multiplied by 3 because every 3rd is an option df1['nonsynonymous mutation/gene']=((df1['nonsynonymous mutations']/df1['length of gene'])/total_len) *(3/2) #multiplied by 2/3 as 1 and 2 are an option plt.figure(figsize=(8,6)) gene_names = df1['gene'].to_list() gene_name = df1['gene'] colors_ = np.array(["green","blue","yellow","pink","black","orange","gray","cyan","magenta"]) scatter = plt.scatter(df1['length of gene'], df1['synonymous mutation/gene'], s=150, c=colors_) for i in range(0, len(df1['length of gene'])): plt.text(df1['length of gene'][i] - 10, df1['synonymous mutation/gene'][i], f'{gene_name[i]}') plt.xlabel("Gene Length", size=20) plt.ylabel("synonymous mutation rate", size=20) plt.legend(handles=scatter.legend_elements()[0], labels=gene_names, title="gene") plt.title("Number of Synonymous Mutations in Each Gene") plt.savefig(args.output) csv_file = non_synonymous_or_synonymous(args.aa, args.nt) csv_file.to_csv(args.table) plt.figure(figsize=(8,6)) scatter_1 = plt.scatter(df1['length of gene'], df1['nonsynonymous mutation/gene'], s=150, c=colors_) for i in range(0, len(df1['length of gene'])): plt.text(df1['length of gene'][i] - 10, df1['nonsynonymous mutation/gene'][i], f'{gene_name[i]}') plt.xlabel("Gene Length", size=20) plt.ylabel("nonsynonymous mutation rate", size=20) plt.legend(handles=scatter_1.legend_elements()[0], labels=gene_names, title="gene") plt.title("Number of Nonsynonymous Mutations in Each Gene") plt.savefig(args.outputnonsyn) |
16 17 18 19 20 21 22 23 24 25 | shell: """ python3 scripts/graphs.py \ --aa {input.aa} \ --nt {input.nt} \ --output {output.graph} \ --outputnonsyn {output.graphnonsyn} \ --table {output.table} \ --tree {input.tree} """ |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Created: 1yr ago
Updated: 1yr ago
Maitainers:
public
URL:
https://github.com/LauraU123/synonymous_nonysynonymous
Name:
synonymous_nonysynonymous
Version:
1
Downloaded:
0
Copyright:
Public Domain
License:
None
Keywords:
- Future updates
Related Workflows

ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...

Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...

snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...

ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics

RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...

This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...