Setup
Create a conda environment for the running of the pipeline:
conda env create --name snakemake-tara-euk --file environment.yaml
Code Snippets
149 150 | wrapper: "0.27.1/bio/fastqc" |
167 168 | wrapper: "0.27.1/bio/trimmomatic/pe" |
179 180 | wrapper: "0.27.1/bio/fastqc" |
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 | shell: """ multiqc -n multiqc.html {input.rawG} mv multiqc.html {output.html_rawG} mv multiqc_data/multiqc_general_stats.txt {output.stats_rawG} rm -rf multiqc_data multiqc -n multiqc.html {input.trimmedG} mv multiqc.html {output.html_trimmedG} mv multiqc_data/multiqc_general_stats.txt {output.stats_trimmedG} rm -rf multiqc_data multiqc -n multiqc.html {input.trimmedT} mv multiqc.html {output.html_trimmedT} mv multiqc_data/multiqc_general_stats.txt {output.stats_trimmedT} rm -rf multiqc_data multiqc -n multiqc.html {input.trimmedT} mv multiqc.html {output.html_trimmedT} mv multiqc_data/multiqc_general_stats.txt {output.stats_trimmedT} rm -rf multiqc_data """ |
233 234 235 236 | shell: """ interleave-reads.py {input.r2} {input.r1} | trim-low-abund.py --gzip -C 3 -Z 18 -M 30e9 -V - -o {output} 2> {log} """ |
248 249 250 251 252 253 | shell: """ zcat {input.r1} {input.r2} | sourmash compute -k 21,31,51\ --scaled 10000 --track-abundance \ -o {output} - 2> {log} """ |
273 274 275 276 | shell: """ megahit -1 {params.inputr1} -2 {params.inputr2} --min-contig-len {params.min_contig_len} --memory {params.memory} -t {params.cpu_threads} --out-dir {params.megahit_output_name} {params.other_options} >> {log} 2>&1 """ |
294 295 296 297 | shell: """ bwa index {input} 2> {log} """ |
304 305 306 307 | shell: """ cp {input} {output} """ |
329 330 331 332 | shell: """ bwa mem -t {params.threads} {params.extra} {input.reference} {input.r1} {input.r2} | samtools sort -o {output} - >> {log} 2>&1 """ |
343 344 345 346 | shell: """ jgi_summarize_bam_contig_depths --outputDepth {output} {input} > {log} 2>&1 """ |
361 362 363 364 | shell: """ metabat2 {params.other} --numThreads {params.threads} -i {input.assembly} -a {input.depth} -o {output} > {log} 2>&1 """ |
376 377 378 379 380 381 382 383 | shell: ''' concoct --coverage_file {input.depth} \ --composition_file {input.assembly} \ --basename {params.outdir} \ --length_threshold {params.length} \ --converge_out -t 12\ ''' |
389 390 391 392 | shell: ''' merge_cutup_clustering.py {input} > {output} ''' |
399 400 401 402 403 404 | shell: ''' mkdir -p {output} extract_fasta_bins.py {input.assembly} {input.csv} --output_path {params.outdir} touch {output.done} ''' |
411 412 413 414 415 | shell: """ ulimit -s 65536 filter_euk_bins.py {input.fastas} --minbpeuks {params.minbpeuks} --eukratio {params.eukratio} --output {output} --tempdir {params.tempdir} """ |
429 430 431 432 | shell: """ EukRep -i {input} -o {output} --prokarya {params.prok} --min {params.min_contig} > {log} 2>&1 """ |
447 448 449 450 | shell: """ metabat2 {params.other} --numThreads {params.threads} -i {input.assembly} -a {input.depth} -o {output} > {log} 2>&1 """ |
460 461 462 463 | shell: """ prodigal -i {input.assembly} -f gff -o {output.genes} -a {output.proteins} -p meta """ |
480 481 482 483 | shell: """ bwa index {input} 2> {log} """ |
505 506 507 508 | shell: """ bwa mem -t {params.threads} {params.extra} {input.reference} {input.r1} {input.r2} | samtools sort -o {output} - >> {log} 2>&1 """ |
518 519 520 521 | shell: """ coverm genome --bam-files {input.mapping} --genome-fasta-directory {input.genome_dir} --genome-fasta-extension "fa" --min-read-percent-identity 0.95 --min-read-aligned-percent 0.75 --proper-pairs-only --methods count length covered_bases covered_fraction reads_per_base mean variance trimmed_mean rpkm relative_abundance --output-format dense --min-covered-fraction 0 --contig-end-exclusion 75 --trim-min 0.05 --trim-max 0.95 --quiet > {output} """ |
534 535 536 537 | shell: """ coverm genome --bam-files {input.mapping} --genome-fasta-directory {input.genome_dir} --genome-fasta-extension "fa" --min-read-percent-identity 0.95 --min-read-aligned-percent 0.75 --proper-pairs-only --methods coverage_histogram --output-format dense --min-covered-fraction 0 --contig-end-exclusion 75 --trim-min 0.05 --trim-max 0.95 --quiet > {output} """ |
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | __author__ = "Julian de Ruiter" __copyright__ = "Copyright 2017, Julian de Ruiter" __email__ = "julianderuiter@gmail.com" __license__ = "MIT" from os import path from tempfile import TemporaryDirectory from snakemake.shell import shell log = snakemake.log_fmt_shell(stdout=False, stderr=True) def basename_without_ext(file_path): """Returns basename of file path, without the file extension.""" base = path.basename(file_path) split_ind = 2 if base.endswith(".gz") else 1 base = ".".join(base.split(".")[:-split_ind]) return base # Run fastqc, since there can be race conditions if multiple jobs # use the same fastqc dir, we create a temp dir. with TemporaryDirectory() as tempdir: shell("fastqc {snakemake.params} --quiet " "--outdir {tempdir} {snakemake.input[0]}" " {log}") # Move outputs into proper position. output_base = basename_without_ext(snakemake.input[0]) html_path = path.join(tempdir, output_base + "_fastqc.html") zip_path = path.join(tempdir, output_base + "_fastqc.zip") if snakemake.output.html != html_path: shell("mv {html_path} {snakemake.output.html}") if snakemake.output.zip != zip_path: shell("mv {zip_path} {snakemake.output.zip}") |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | __author__ = "Johannes Köster" __copyright__ = "Copyright 2016, Johannes Köster" __email__ = "koester@jimmy.harvard.edu" __license__ = "MIT" from snakemake.shell import shell extra = snakemake.params.get("extra", "") log = snakemake.log_fmt_shell(stdout=True, stderr=True) trimmer = " ".join(snakemake.params.trimmer) shell("trimmomatic PE {snakemake.params.extra} " "{snakemake.input.r1} {snakemake.input.r2} " "{snakemake.output.r1} {snakemake.output.r1_unpaired} " "{snakemake.output.r2} {snakemake.output.r2_unpaired} " "{trimmer} " "{log}") |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Created: 1yr ago
Updated: 1yr ago
Maitainers:
public
URL:
https://github.com/AlexanderLabWHOI/tara-euk-metaG
Name:
tara-euk-metag
Version:
1
Downloaded:
0
Copyright:
Public Domain
License:
MIT License
Keywords:
- Future updates
Related Workflows

ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...

Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...

snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...

ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics

RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...

This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...