Software used for calculatioin of the UBCS Statistics. Results were presented during talk "Revised time estimation of the ancestral human chromosome 2 fusion" at the INTERNATIONAL SYMPOSIUM ON BIOINFORMATICS RESEARCH AND APPLICATIONS (ISBRA) December 1-4, 2020
Usage
All computations presented in the article can be reproduced using 2 Snakemake workflows:
-
"Snakefile_downloads.smk" to download all the needed data
-
"Snakefile" to reproduce all subsequent computations
LICENCE
Software is released under MIT LICENCE
Code Snippets
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 | from utils import get_chrom_sizes from consts import QUALITY_WINDOW_LENGTH, MAX_NUMBER_OF_MISMACHES from Bio.Seq import Seq alignment_file = snakemake.input['alignment_file'] snd_file = snakemake.output['snd_file'] chrom_sizes_file = snakemake.input['query_chrom_sizes_file'] chrom_sizes = get_chrom_sizes(chrom_sizes_file) query_name = snakemake.wildcards['query'] target_name = snakemake.wildcards['target'] ffrom = snakemake.params['ffrom'] snp_file = snakemake.input['snp_file'] def get_snps(snp_file): snps = {} with open(snp_file) as f: for line in f: line = line.split() start_coord = int(line[1]) + 1 end_coord = int(line[2]) + 1 for i in range(start_coord, end_coord): base = line[4] snps[i] = (base, line) return snps def get_axt_entry(f, ffrom): header = f.readline() if not header: return None header = header.split() strand = header[7] if ffrom == 'target': t_chrom = header[1] t_start = int(header[2]) q_chrom = header[4] q_start = int(header[5]) q_end = int(header[6]) target_al_seq = f.readline().rstrip().upper() query_al_seq = f.readline().rstrip().upper() else: t_chrom = header[4] t_start = int(header[5]) q_chrom = header[1] q_start = int(header[2]) query_al_seq = f.readline().rstrip().upper() target_al_seq = f.readline().rstrip().upper() f.readline() return t_chrom, t_start, q_chrom, q_start, strand, target_al_seq, query_al_seq def add_snds_from_axt_entry(t_chrom, t_start, q_chrom, q_start, strand, target_al_seq, query_al_seq, snd_bed_entries): t_count = 0 q_count = 0 for i, (t_chr, q_chr) in enumerate(zip(target_al_seq, query_al_seq)): if t_chr != '-': t_count += 1 if q_chr != '-': q_count += 1 if t_chr == q_chr: continue t_window = target_al_seq[i - QUALITY_WINDOW_LENGTH: i + QUALITY_WINDOW_LENGTH + 1] q_window = query_al_seq[i - QUALITY_WINDOW_LENGTH: i + QUALITY_WINDOW_LENGTH + 1] if len(t_window) != 2 * QUALITY_WINDOW_LENGTH + 1: continue #print('enough place') if '-' in t_window + q_window: continue #print('without deletions and insertions') if len([ 1 for t_win_chr, q_win_chr in zip(t_window, q_window) if t_win_chr != q_win_chr]) > MAX_NUMBER_OF_MISMACHES: continue #print('number of mismatches above max threshold') t_subst_start = t_start + t_count - 2 if strand == '-' and ffrom == 'query': t_subst_start = chrom_sizes[t_chrom] - (t_start + t_count - 1) t_window = str(Seq(t_window).reverse_complement()) q_window = str(Seq(q_window).reverse_complement()) t_coord_start = str(t_subst_start - QUALITY_WINDOW_LENGTH) t_coord_end = str(t_subst_start + QUALITY_WINDOW_LENGTH + 1) t_coords = t_chrom + ':' + t_coord_start + '-' + t_coord_end q_subst_start = q_start + q_count - 2 if strand == '-' and ffrom == 'target': q_subst_start = chrom_sizes[q_chrom] - (q_start + q_count - 1) q_coord_start = str(q_subst_start - QUALITY_WINDOW_LENGTH) q_coord_end = str(q_subst_start + QUALITY_WINDOW_LENGTH + 1) q_coords = q_chrom + ':' + q_coord_start + '-' + q_coord_end t_snp = int(t_coord_start) + QUALITY_WINDOW_LENGTH + 1 in snps #if t_output_window[5] != snps[int(t_coord_start)+ 6][0]: # print(t_output_window, t_output_window[5], snps[int(t_coord_start) + 6] name = ('SND_ID:' + str(len(snd_bed_entries)) , 'QUERY:' + query_name, 'TARGET:'+ target_name, 'TARGET_COORDS:' + t_coords, 'QUERY_COORDS:' + q_coords, 'CHANGE:' + t_window + '>' + q_window, 'FROM:' + ffrom, 'SNP:' + str(t_snp), 'STRAND:' + strand) name = ';'.join(name) snd_bed_entry = '\t'.join([t_chrom, t_coord_start, t_coord_end, name, '0', strand ]) snd_bed_entries[int(t_coord_start)] = snd_bed_entry def get_snd_bed_entries(alignment_file, snps): with open(alignment_file) as f: snd_bed_entries = {} while True: axt_entry = get_axt_entry(f, ffrom) if axt_entry is None: break t_chrom, t_start, q_chrom, q_start, strand, target_al_seq, query_al_seq = axt_entry add_snds_from_axt_entry(t_chrom, t_start, q_chrom, q_start, strand, target_al_seq, query_al_seq, snd_bed_entries) return snd_bed_entries def save_snd_bed_entries(snd_bed_entries_file, snd_bed_entries): with open(snd_file, 'w') as f_out: for t_coord_start in sorted(snd_bed_entries): snd_bed_entry = snd_bed_entries[t_coord_start] f_out.write(snd_bed_entry) f_out.write('\n') snps = get_snps(snp_file) snd_bed_entries = get_snd_bed_entries(alignment_file, snps) save_snd_bed_entries(snd_file, snd_bed_entries) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 | from collections import defaultdict from SND import get_SNDs_derived_in_target from SND import get_SNDs_derived_in_query from SNDWindow import SNDWindow liftover_fasta_file = snakemake.input['liftover_fasta_file'] ubcs_stats_file = snakemake.output['ubcs_stats_file'] ubcs_stats_details_file = snakemake.output['ubcs_stats_details_file'] ubcs_stats_log_file = snakemake.output['ubcs_stats_log_file'] derived_in_type = snakemake.wildcards['derived'] query = snakemake.wildcards['query'] target = snakemake.wildcards['target'] outgroup = snakemake.wildcards['outgroup'] ffrom = snakemake.wildcards['ffrom'] with_snps = snakemake.wildcards['with_snps'] == 'True' REGION_LEN = int(snakemake.wildcards['region']) chrom = snakemake.wildcards['chromosome'] WINDOW_SIZE = int(snakemake.wildcards['window_size']) NUMBER_OF_BINS = int(snakemake.wildcards['number_of_bins']) def get_UBCS_stats(): with open(ubcs_stats_file, 'w') as f_out, open(ubcs_stats_details_file, 'w') as f_details_out, open(ubcs_stats_log_file, 'w') as f_log_out: region_snds_number = defaultdict(int) region_biased_snds_number = defaultdict(int) region_p = defaultdict(int) region_expected_BCS = defaultdict(int) region_actual_BCS = defaultdict(int) if derived_in_type == 'target': SNDs = get_SNDs_derived_in_target(liftover_fasta_file) else: SNDs = get_SNDs_derived_in_query(liftover_fasta_file) if not with_snps: SNDs = [ SND for SND in SNDs if not SND.is_snp()] for SND in SNDs: region = SND.target_coord() // REGION_LEN region_snds_number[region] += 1 if SND.biased(): region_biased_snds_number[region] += 1 for region in region_snds_number: region_p[region] = region_biased_snds_number[region] / region_snds_number[region] for index, SND in enumerate(SNDs): coord = SND.target_coord() region = coord // REGION_LEN window = SNDWindow(index, snds = SNDs , window_size = WINDOW_SIZE, number_of_bins = NUMBER_OF_BINS) if WINDOW_SIZE == NUMBER_OF_BINS and window.get_max_frequency_of_cluster() >= 23: f_log_out.write(str(coord) + ' ' + str(window.get_compressed_window_counts()) + '\n') window = SNDWindow(index, snds = SNDs , window_size = WINDOW_SIZE, number_of_bins = 20) snd_is_biased = SND.biased() is_clustered = window.is_clustered() is_biased_clustered = window.is_biased_clustered() p = region_p[region] prob_of_bcs = window.get_prob_of_bcs(p) region_actual_BCS[region] += int(is_biased_clustered) region_expected_BCS[region] += prob_of_bcs o = chrom, REGION_LEN, WINDOW_SIZE, NUMBER_OF_BINS, derived_in_type, target, query, outgroup, ffrom, with_snps, coord, p, snd_is_biased, is_clustered, is_biased_clustered, prob_of_bcs f_details_out.write('\t'.join(map(str, o))) f_details_out.write('\n') for region in region_p: p = region_p[region] expected_BCS = region_expected_BCS[region] actual_BCS = region_actual_BCS[region] o = chrom, region * REGION_LEN, (region + 1) * REGION_LEN -1, WINDOW_SIZE, NUMBER_OF_BINS, derived_in_type, target, query, outgroup, ffrom, with_snps, p, expected_BCS, actual_BCS, actual_BCS - expected_BCS f_out.write('\t'.join(map(str, o))) f_out.write('\n') get_UBCS_stats() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | suppressMessages(library('liftOver')) suppressMessages(library('rtracklayer')) chain_file <- snakemake@input[['chain_file']] SNDs_file <- snakemake@input[['SNDs_file']] liftover_file <- snakemake@output[['liftover_file']] chain <- import.chain(chain_file) SNDs <- import(SNDs_file, format = 'BED') strand(SNDs) <- '+' after_liftover <- liftOver(SNDs , chain) after_liftover <- unlist(after_liftover) export(after_liftover, liftover_file, format = 'BED') |
21 22 | script: 'scripts/python/getUBCSFastStats.py' |
30 31 | script: 'scripts/R/liftover.R' |
40 41 | shell: 'bedtools getfasta -s -name -fi {input.ref_file} -bed {input.liftover_file} > {output}' |
52 53 | script: 'scripts/python/getSNDsFromAXT.py' |
64 65 | script: 'scripts/python/getSNDsFromAXT.py' |
72 73 | shell: 'samtools faidx {input}' |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Created: 1yr ago
Updated: 1yr ago
Maitainers:
public
URL:
https://github.com/bposzewiecka/tytus
Name:
tytus
Version:
1
Downloaded:
0
Copyright:
Public Domain
License:
MIT License
Keywords:
- Future updates
Related Workflows

ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...

Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...

snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...

ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics

RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...

This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...